The present invention relates to bipolar transistors, and more particularly to silicon-containing, e.g., SiGe, heterojunction bipolar transistors (HBTs) that include a self-heating structure in the circuit level that obviates avalanche carrier related damages which typically decrease the drive current gain in both the forward and reverse bias mode. The present invention also provides a method for recovering hot carrier induced degradation of HBTs and other like bipolar transistors.
Bipolar transistors are electronic devices with two p-n junctions that are in close proximity to each other. A typical bipolar transistor has three device regions: an emitter, a collector, and a base disposed between the emitter and the collector. Ideally, two p-n junctions, i.e., the emitter-base and collector-base junctions, are separated by a specific distance. Modulation of the current flow in one p-n junction by changing the bias of the nearby junction is called “bipolar transistor action”.
If the emitter and collector are doped n-type and the base is doped p-type, the device is an “npn” transistor. Alternatively, if the opposite doping configuration is used, the device is a “pnp” transistor. Because the mobility of minority carriers, i.e., electrons, in the base region of npn transistors is higher than that of holes in the base of pnp transistors, higher frequency operation and higher speed performances can be obtained with npn transistors. Therefore, npn transistors comprise the majority of bipolar transistors used to build integrated circuits.
As the vertical dimensions of bipolar transistors are scaled more and more, serious device operational limitations have been encountered. One actively studied approach to overcome these limitations is to build transistors with emitter materials whose band gap is larger than the band gap of the material used in the base. Such structures are referred to in the art as ‘heterojunction’ transistors.
Heterostructures comprising heterojunctions can be used for both majority carrier and minority carrier devices. Among minority carrier devices, heterojunction bipolar transistors (HBTs) in which the emitter is formed of Si and the base of a silicon germanium (SiGe) alloy have recently been developed. The SiGe alloy is narrower in band gap than silicon.
The advanced SiGe bipolar and complementary metal oxide semiconductor (BiCMOS) technology uses a SiGe base in the HBT. In the higher-frequency (such as multi-GHz) regime, conventional compound semiconductors such as, for example, GaAs and InP, currently dominate the market for high-speed wired and wireless communication devices. SiGe BiCMOS promises not only a comparable performance to GaAs in devices such as power amplifiers, but also a substantial cost reduction due to integration of HBTs with standard CMOS, yielding the so-called “system on a chip”.
As silicon germanium (SiGe) heterojunction bipolar transistor (HBT) performance moves up over 200 GHz, it has become apparent that the avalanche degradation mechanism becomes the dominant reliability concern for SiGe HBT circuit applications. This is due to the fact that the high frequency performance of the bipolar transistor is achieved by vertical scaling of the device, which decreases the vertical depth of the junctions and increases the electrical field within the device. This high electrical field at the collector-base junction during operation generates high energetic carriers that can damage the insulating interfaces around the device's emitter and shallow trench isolation (STI) interfaces. Avalanche carrier related damages will decrease (or degrade) the device current gain in both forward and reverse active mode.
The avalanche degradation mechanism was recently discovered and it imposes a very big constraint for high frequency and high power performance of SiGe HBTs. See, for example, G. Zhang, et al., “A New Mixed-Mode Base Current Degradation Mechanism in Bipolar Transistors”, IEEE BCTM 1.4, 2002 and Z. Yang, et al., “Avalanche Current Induced Hot Carrier Degradation in 200 GHz SiGe Heterojunction Bipolar Transistors”, Proc. International Reliability Physics Symposium, pp. 339–343, 2003.
A sample avalanche degradation of a typical SiGe HBT is shown in
Any methods to recover the avalanche degradation will greatly benefit the SiGe HBT circuit's performance and application range. However, there has not been any recovery method reported in the prior art to date because this degradation mechanism has only been fully investigated in the last year or so.
In view of the above, there is a need for providing a method to recover the avalanche degradation mentioned above in order to fabricate bipolar transistors, particularly SiGe HBTs, that can operate at the high frequencies currently required for the present generation of bipolar transistors.
Avalanche degradation is caused by avalanche hot carriers, which are highly energetic carriers that originate from the impact ionization of the collector-base junction when a bipolar transistor, particularly a SiGe HBT, is operating in the forward active mode. The avalanche hot carriers create damage within the bipolar transistor and decrease the device's current gain by increasing base current. The hot carrier effect is worse for the newer generation bipolar transistor devices and it increases in the collector-base junction with the increase of device performance. Moreover, avalanche hot carriers affect the breakdown voltage of bipolar transistors, especially SiGe HBTs. Specifically, a high avalanche current results in low breakdown voltage of the bipolar transistor.
Despite being possible to work outside the avalanche regime (VCB less than 1 V), operation in the avalanche region (VCB greater than 1 V) is necessary to achieve high output power for high frequency bipolar transistors, e.g., SiGe HBTs. High output power is required for radar and wireless communication applications. In SiGe HBT technologies, the avalanche reliability is the major concern. VCB denotes the voltage between the collector and base.
The recovery of avalanche degradation is important since the avalanche degradation effect mentioned above is getting worse with high unity current gain frequency fT devices. For example, a 1% current gain degradation was observed for a 200 GHz SiGe HBT, while 10% current gain degradation was observed for a 300 GHz SiGe HBT, after similar stress. Moreover, it is important to recover the avalanche degradation since the device hot carrier lifetime goes with the square of the degradation. For instance, if the degradation recovers by 50%, then the lifetime will be extended by 4×.
In view of the above, the present invention provides a method and structure for recovering the avalanche degradation that is exhibited by prior art bipolar transistors, especially SiGe HBTs. In particular, the applicants of the present invention have discovered that the degradation caused by the avalanche effect described above can be significantly recovered by increasing the collector-base junction temperature utilizing a thermal anneal.
Specifically, and in broad terms, the method of the present invention thus comprises subjecting an idle bipolar transistor such as a HBT exhibiting avalanche degradation to a thermal anneal step which increases temperature of the transistor thereby recovering said avalanche degradation of said bipolar transistor.
In one embodiment of the present invention, the annealing source is a self-heating structure that is a Si-containing resistor that is located side by side with an emitter of the bipolar transistor. During the recovering step, the bipolar transistor including the self-heating structure is placed in the idle mode (i.e., without bias) and a current from a separate circuit is flown through the self-heating structure. The self-heating structure increases the temperature of the bipolar transistor to about 200° C. or greater. In a few hours, typically from about 1 to about 10 hours, the degradation will be recovered.
In another embodiment of the present, the annealing step is a result of providing a high forward current around the peak fT current to the bipolar transistor while operating below the avalanche condition (VCB of less than 1 V). Under the above conditions, about 40% or greater of the degradation can be recovered. This is due to self-heating effect of the bipolar transistor which means the device's effective temperature increases if the device is operating in the high power range. The peak fT current denotes the driving current needed for the device achieving maximum fT.
In yet another embodiment of the present invention, the thermal annealing step may include a rapid thermal anneal (RTA), a furnace anneal, a laser anneal, a spike anneal or any other like annealing step which can increase the temperature of the bipolar transistor to a temperature of about 200° C. or above.
In addition to the method described above, the present invention also provides a bipolar transistor, especially a HBT, structure that includes a self-heating element that is present at the device level which can be used to increase the temperature of the bipolar transistor thereby recovering avalanche degradation. Specifically, and in broad terms, the bipolar transistor structure of the present invention comprises a Si-containing semiconductor substrate having a collector located therein; a base located atop said collector, and an emitter located on said base, said emitter having extended portions which are self-aligned to outer edges of said base, said extended portions of said emitter serve as a heating element.
The present invention, which provides a method and structure that can be used for the recovery of device degradation cause by avalanche hot carriers, will now be described in more detail by referring to the following drawings that accompany the present application. It is noted that the drawings of the inventive structure are provided herein for illustrative purposes and thus they are not drawn to scale.
Reference is first made to
As shown, substrate 12 includes a collector 14 that is formed into the substrate 12 via an ion implantation step. The trench isolation region 16 is made using techniques well known in the art including, for example, lithography, etching, optionally forming a trench liner, trench filling and, if needed, planarization. The trench fill material includes a trench dielectric material such as a high-density oxide or tetraethylorthosilicate (TEOS).
The structure 10 shown in
The base 18, including the extrinsic base 20, is formed by a low temperature epitaxial growth process (typically 450°–700° C.). The base 18 and the extrinsic base 20 may comprise Si, SiGe or a combination of Si and SiGe. The base 18 can also be comprised of SiGeC or a combination of Si and SiGeC. Preferably, the base 18 and extrinsic base 20 are comprised of SiGe or a combination of Si and SiGeC. The base 18 is monocrystalline over the substrate 12, while the extrinsic base 20 is polycrystalline over the trench isolation region 16. The region, e.g., interface, in which monocrystalline material is converted to polycrystalline material is referred to as the facet region.
The structure 10 also includes an emitter 22 which is located atop the base 18. In accordance with the present invention, the emitter 22 has extended portions (labeled as 22A and 22B) that are self-aligned to outer edges 18A and 18B of the base 18. The extended portions 22A and 22B of the emitter 22 serve as a self-heating element within the structure. The emitter 22 comprises a doped semiconductor material such as polySi, Si or SiGe. Preferably, the emitter 22, including the extended portions 22A and 22B, are comprised of polySi. In such a preferred embodiment when the emitter 22 and the extended portions 22A and 22B are comprised of polySi, it is preferred that the base be comprised of SiGe.
The emitter 22 can be a layer with variable doping concentration, or a composition that can be grown in a state-of-the-art low temperature epitaxy system. The emitter 22 can also be formed by either an in-situ doping deposition process or by first deposition a polySi, Si or SiGe layer and then doping by ion implantation.
After forming the emitter 22, the emitter 22 is patterned by lithography and etching to provide the configuration shown in
The structure 10 also shown in
As shown in
In addition to employing the self-heating structure described above to cause recovery of the hot carrier degradation of the bipolar transistor, the present invention also contemplates an embodiment in which any bipolar transistor device, including the one depicted above, is subjected to an annealing step in which a high forward current is applied to the bipolar transistor while operating below the avalanche condition. By ‘high forward current’ it is meant a current that is equal to or greater than peak fT. By ‘below the avalanche condition’ it is meant a VCB of less than 1 V, typically around 0.5 V. Under the above conditions, about 40% or greater of the degradation can be recovered. This is due to self-heating effect of the bipolar transistor which means the device effective temperature increases if the device is operating in the high power range.
In yet another embodiment of the present invention, the thermal annealing step may include a rapid thermal anneal (RTA), a furnace anneal, a laser anneal, a spike anneal or any other like annealing step which can increase the temperature of the bipolar transistor to a temperature of about 200° C. or above. When such annealing processes are employed, the annealing step is typically performed in the presence of an inert ambient such as Ar, He, Ne, N2, Xe, Kr or mixtures thereof.
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3602841 | McGroddy | Aug 1971 | A |
4397695 | Arlt et al. | Aug 1983 | A |
4665415 | Esaki et al. | May 1987 | A |
4853076 | Tsaur et al. | Aug 1989 | A |
4855245 | Neppl et al. | Aug 1989 | A |
4952524 | Lee et al. | Aug 1990 | A |
5006913 | Sugahara et al. | Apr 1991 | A |
5060030 | Hoke | Oct 1991 | A |
5081513 | Jackson et al. | Jan 1992 | A |
5108843 | Ohtaka et al. | Apr 1992 | A |
5134085 | Gilgen et al. | Jul 1992 | A |
5310446 | Konishi et al. | May 1994 | A |
5354695 | Leedy | Oct 1994 | A |
5371399 | Burroughes et al. | Dec 1994 | A |
5391503 | Miwa et al. | Feb 1995 | A |
5391510 | Hsu et al. | Feb 1995 | A |
5459346 | Asakawa et al. | Oct 1995 | A |
5471948 | Burroughes et al. | Dec 1995 | A |
5557122 | Shrivastava et al. | Sep 1996 | A |
5561302 | Candelaria | Oct 1996 | A |
5565697 | Asakawa et al. | Oct 1996 | A |
5571741 | Leedy | Nov 1996 | A |
5592007 | Leedy | Jan 1997 | A |
5592018 | Leedy | Jan 1997 | A |
5670798 | Schetzina | Sep 1997 | A |
5679965 | Schetzina | Oct 1997 | A |
5683934 | Candelaria | Nov 1997 | A |
5840593 | Leedy | Nov 1998 | A |
5861651 | Brasen et al. | Jan 1999 | A |
5880040 | Sun et al. | Mar 1999 | A |
5940736 | Brady et al. | Aug 1999 | A |
5960297 | Saki | Sep 1999 | A |
5989978 | Peidous | Nov 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6025280 | Brady et al. | Feb 2000 | A |
6046464 | Schetzina | Apr 2000 | A |
6066545 | Doshi et al. | May 2000 | A |
6090684 | Ishitsuka et al. | Jul 2000 | A |
6107143 | Park et al. | Aug 2000 | A |
6117722 | Wuu et al. | Sep 2000 | A |
6133071 | Nagai | Oct 2000 | A |
6165383 | Nagai | Dec 2000 | A |
6221735 | Manley et al. | Apr 2001 | B1 |
6228694 | Doyle et al. | May 2001 | B1 |
6246095 | Brady et al. | Jun 2001 | B1 |
6255169 | Li et al. | Jul 2001 | B1 |
6261964 | Wu et al. | Jul 2001 | B1 |
6265317 | Chiu et al. | Jul 2001 | B1 |
6274444 | Wang | Aug 2001 | B1 |
6284623 | Zhang et al. | Sep 2001 | B1 |
6284626 | Kim | Sep 2001 | B1 |
6319794 | Akatsu et al. | Nov 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20060118912 A1 | Jun 2006 | US |