The present description relates to methods, Artificially Cleaved Epitopes (ACEs), antibodies, reagents, immunoassays and kits for designing and detecting mutation site-specific epitopes or antigens, either in situ or ex situ in sample preparations, and their use thereof.
A gene mutation is a permanent alteration in the DNA sequence that makes up a gene. Mutations can affect anywhere from a base pair to a large segment of a chromosome. Gene mutations can be classified in two major categories: (i) Germline or hereditary mutations are inherited from a parent and are present throughout a lifetime in virtually every cell in the body. Somatic or acquired mutations occur at some time periods during a lifetime and are present only in certain cells, not in every cell in the body. There are many different types of gene mutations, such as genetic code substitution, insertion, deletion or frameshift.
Cancers result from the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. Only about 5% to 10% of all cancers are thought to be related to germline mutations, and the rest are associated with somatic mutations. Fractions of neurodegenerative diseases such as Alzheimer disease (AD), Parkinson disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are caused either by germline or somatic mutations (Kennedy et al., 2012).
Other common mutation-related disorders include, but not limited, 22q11.2 deletion syndrome, Angelman syndrome, Canavan disease, Charcot-Marie-Tooth disease, Color blindness, Cri du chat, Cystic fibrosis, Down syndrome, Duchenne muscular dystrophy, Haemochromatosis, Haemophilia, Klinefelter syndrome, Neurofibromatosis, Phenylketonuria, Polycystic kidney disease, Prader-Willi syndrome, Sickle-cell disease, Tay-Sachs disease, and Turner syndrome. The advances in molecular biology technologies have tremendously accelerated the discovery of causative genes. Despite this progress, however, the mutations causing a substantial number of diseases remain to be identified.
Mutations can occur at multiple sites of a same protein. For example, Factor XI mutation sites include: Met-18Ile, Ser-4Leu, Gly-1Arg, Asp16His, Val20Ala, Pro23Leu, Pro23Gln, Ser24Arg, Cys28Phe, Gln29His, Thr33Pro, Thr33Ile, Tyr35His, Cys38Arg, Cys38Trp, Pro48Leu, Pro52Leu, Arg54Pro, Thr57Ile, Cys58Arg, Cys58Phe, Cys58Tyr, Pro69Thr, Gly79Ala, Ser81Tyr, Lys83Arg, Gln88Stop, Cys92Gly, Met102Thr, Gly104Asp, Cys122Tyr, Thr123Met, Asp125Asp, His127Arg, Cys128Stop, Thr132Met, Tyr133Ser, Tyr133Cys, Ala134Pro, Arg144Cys, Gly155Glu, Leu172Pro, Ala181Val, Cys182Tyr, Arg184Gly, Pro188Ser, Asp198Asn, Cys212Ser, Cys212Arg, Phe221Ser, Ser225Phe, Glu226Arg, Trp228Cys, Arg234Lys, Arg234Ile, Arg234Ser, Cys237Tyr, Glu243Asp, Gly245Glu, Ser248Asn, Thr249Thr, Arg250Cys, Arg250His, Lys252Ile, Gly259Ser, Ile269Ile, Phe283Leu, Ile290Phe, Ile290Thr, Glu297Lys, Glu297Stop, Leu302Pro, Thr304Ile, Val307Phe, Arg308Cys, Cys309Stop, Thr313Ile, Cys321Phe, Glu323Lys, Gly336Arg, Ile341Met, Leu342Pro, Gly344Arg, Gly350Arg, Gly350Glu, Gly350Ala, Tyr351Ser, Tyr351 Stop, Leu355Ser, Cys356Arg, Val371Ile, Gly372Ala, Ala375Val, Arg378Cys, Gly379Gly, Trp381Leu, Trp381Arg, Pro382Leu, Trp383Stop, Thr386Asn, His388Pro, Thr389Pro, Thr390Pro, Cys398Tyr, Gly400Ser, Gly400Val, Ser401Ala, Gln406Stop, Trp407Cys, Thr410Ile, Ala412Ser, Ala412Thr, Ala412Val, Arg425Cys, Cys427Tyr, Ser428Gly, Gln433Glu, Phe442Val, Glu447Stop, Gly460Arg, Thr475Ile, Arg479Stop, Cys482Arg, Cys482Trp, Ser485Pro, Tyr493His, Trp497Cys, Val498Met, Trp501Stop, Trp501Cys, Lys518Asn, Pro520Leu, Cys527Tyr, Gly544Ser, Glu547Lys, Asp551Asp, Gly555Glu, Asp556Gly, Cys563Phe
Gene mutations may generate dysfunctional proteins, thus causing diseases. For example, the RAS-RAF-MEK-ERK-MAP kinase pathway regulates cellular growth. RAS mutation occurs in about 15% of human cancer. BRAF somatic missense mutations are found in 66% of malignant melanomas, among which a single substitution (V599E) accounts for 80%.
Gene mutations can be identified either by detecting mutated genes or the proteins encoded by mutated genes (referring to as mutant proteins hereafter). Some mutant proteins are disease-specific biomarkers, as identification of these mutant proteins is critical for disease diagnosis, staging, treatment, and prognosis. For that reason, mutation-specific antibodies are unmet needs for detecting mutation-related disease-specific biomarkers. In some cases, when a mutant protein is significantly different with the normal protein, an antibody may be generated to recognize specifically the mutant protein. However, a large number of disease-related mutant proteins are encoded by missense mutations, leading to only one amino acid substitutions in the mutant protein. For example, Wood et al. (2007) reported that the great majority of gene mutations are single-base substitutions (92.7%), with 81.9% resulting in missense changes. These subtle changes in mutant proteins make generating mutation-specific antibodies extremely difficult. For example, although v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumor protein p53 (TP53) are two of the most commonly mutated and intensely studied cancer genes, there still are no antibodies that can reliably distinguish mutant from normal versions of these proteins (Wang et al., 2011). Therefore, novel method to generate mutation-specific antibodies is an unmet need for identifying mutant proteins.
The present invention discloses the “Artificially Cleaved Epitope” or ACE methods, antibodies, reagents, immunoassays and kits for designing and detecting mutation-specific epitopes/antigens, collectively defined as the ACE methods, and their use thereof.
The ACE methods encompass all or part of these steps: (a) Make an ACE antigen by designing, synthesizing or isolating the mutation-specific ACE structure; (b) Make ACE mutation-specific antibody with the mutation-specific ACE antigen by any antibody-making, antibody-like molecule-making methods, recombinant antibody making methods, single domain antibody making methods, and the like; (c) The mutation-specific ACE structure in sample preparations is not naturally or poorly accessible by antibody, and thus must be created artificially and precisely either in situ or ex situ by the designated hydrolytic enzyme or chemical agent treatment in a sequence- and amino acid dependent and residue chemical bond-specific manner; and (d) Detect mutation-specific ACE in situ or ex situ by any antibody-based method in any types of sample preparations. This invention also includes utilities and applications of the ACE methods, antibodies, reagents, immunoassays and kits.
In one embodiment, this invention provides unique mutation-specific ACE antigen design methods, wherein the ACE structure must possess one or combinations of these characters: (a) must be antigenic, (b) must be a complete or truncated form of an artificially chemical bond-specific hydrolytic enzyme- or agent-cleaved segment (i.e., ACE); (c) must be artificially and specifically created and/or exposed in a sequence-dependent and residue chemical bond-specific manner in samples or sample preparations (e.g., in Western blot membranes, tissues or cell lysates, tissue sections, isolated or culture cells, isolated fractions, any ACE-containing surfaces/matrices/materials, and the likes); and (d) the hidden or mutation-specific epitopes may be amino acids/peptides, sugar monomers/polymers, lipids/lipid linkers (e.g., ethanolamine), nucleic acids, ADP-ribose, or their combinations. A basic mutation-specific epitope/antigen ACE structure is “H2N-A3-A2-A1-Am(s)-A1′-A2′-A3′-COOH”, and a basic non-mutation-specific epitope/antigen ACE structure “H2N-A3-A2-A1-An(s)-A1′-A2′-A3′-COOH”, wherein A1, A2, A3, Am(s) or An(s), A1′, A2′ A3′ are amino acid residue(s) of a polypeptide/protein, wherein H2N-indicates the N-terminal direction and —COOH implies the C-terminal direction, wherein Am(s) is the mutated amino acid residue(s) that is different with the corresponding non-mutated amino acid residue(s) of An(s) in the non-mutation polypeptide/protein, wherein the covalent chemical bond(s) between Am(s) and its adjacent amino acid residues at either the N-terminal or C-terminal direction can be artificially, specifically and precisely cleaved by designed chemical bond-specific hydrolysis in samples and sample preparations to create (the new terminals) and/or expose said mutation-specific ACE structure for designing epitopes, making antibodies and mutation-specific epitopes/antigens detection.
In another embodiment, the invention provides methods of using ACE antigen to make antibodies including, but not limited to, polyclonal, monoclonal, bi-specific, recombinant, humanized, antibody-like molecules, and the likes.
In a further embodiment, the invention provides methods of detecting ACE structures in samples and sample preparations, wherein ACE in a sample is poorly accessible or unrecognizable by antibodies, and thus must be artificially created (with new terminals) and/or exposed specifically and precisely, rather than randomly or accidentally, by residue chemical bond-specific hydrolytic enzymes or agents; wherein said hydrolytic enzymes and agents are specifically selected and should be mostly the same, but may also be different, with the one(s) used for the hydrolysis-guided ACE antigen design; wherein artificially, specifically and precisely creating (new terminals) and/or exposing hidden ACE antigens can be carried out in any samples or sample preparations including, but not limited to, in vivo or in vitro, in whole or part of biological bodies or organisms, in isolated organs or organelles, in tissues or tissue sections (with or without fixation), in isolated or cultured cells, in tissue or cell lysates, in body fluids or cell culture medium, as well as in biochemical assay mixtures, on Western blot or chromatographic membranes or any supporting matrices or surfaces, in chromatographic and centrifuge fractions, in cellular or subcellular fractions, and the likes.
In an additional embodiment, the inventive ACE methods can be used to reduce non-specific bindings in all antibody-based applications. This utility is owing to the fact that the chemical bond-specific hydrolysis is able to specifically and precisely create and/or expose the ACE structures, while breaking up other structures/epitopes that are otherwise able to bind to the ACE antibody non-specifically.
The inventive ACE methods, antibodies, reagents, immunoassays and kits can be used in all antibody-based applications, including, but not limited to, Western blot, immunocytochemistry, immunofluorescence, immunoelectron microscopy, immunoprecipitation, flow cytometry, Enzyme-Linked Immuno-Sorbent Assay (ELISA), peptide array, antibody array, or any other types of immunoassays, and the like.
The inventive ACE methods, antibodies, reagents, immunoassays and kits can be employed in a number of areas, including, but not limited to: (a) determination of mutation-specific epitopes or sequences, (b) monitoring changes in mutation sites in vivo and in vitro, (c) diagnosis of diseases, (d) development of therapeutic agents for treatment of diseases, and (g) the likes.
A few examples of diagnosing diseases with the ACE methods, antibodies, reagents, immunoassays, and kits may include, but are not limited to: (a) somatic or germline mutation-related diseases; (b) cancer; (c) neurological, neurodegenerative; and (c) inherited diseases; (d) mutation-related biomarkers, and (e) the like.
The ACE methods, antibodies and reagents can be used in therapeutic applications including, but not limited to, those related to gene mutations.
The ACE methods, antibodies, reagents, and immunoassays can be assembled to kits for research, diagnostic and therapeutic applications.
All hidden antigens designed below are derived from the mutation-specific epitope/antigen ACE basic structure “H2N-A3-A2-A1-Am(s)-A1′-A2′-A3′-COOH”, and the non-mutation-specific epitope/antigen ACE basic structure “H2N-A3-A2-A1-An(s)-A1′-A2′-A3′-COOH”, as described above in the section (SUMMARY OF THE INVENTION). In exemplary ACE structures described in this invention, the single capital letters represent one-letter standard amino acid abbreviations. KLH all together is the abbreviation for Keyhole Limpet Hemocyanin, which is one of the most commonly used immunogenic carriers for antibody production. The dash “-” represents covalent chemical bond conjugation.
The invention summarized above may be better understood by referring to the following description, which should be read in conjunction with the accompanying claims and drawings in which like reference numbers are used for like parts. This description in which some examples of the embodiments of the inventions are shown, is to enable one to build and use an implementation of the invention, and is not intended to limit the invention, but to serve as a particular example thereof. Those skilled in the art should appreciate that they may readily use the conception and specific embodiments disclosed as a basis for modifying or designing other methods and systems for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent methods, designs, constructs, antibodies, kits, samples, and cell lines do not depart from the spirit and scope of the invention in its broadest form.
As used herein, the term “detection” or “detecting” is interchangeable with discovering, uncovering, finding, recognizing, revealing, determining, examining, measuring, and the like.
As used herein, “in situ” refers to a phenomenon or event occurred in exactly the original location, both in vivo and in vitro, including but not limited to, in whole or part of biological bodies or organisms, in isolated organs, cells, and organelles, in tissues or tissue sections (with or without fixation), in isolated or cultured cells, in body fluids or cell culture media, as well as on Western blot membranes, and any supporting matrices or surfaces, in chromatographic and centrifuge fractions, in reaction mixtures, and the like.
As used herein, “ex situ” is the opposite of “in situ”, and refers to a phenomenon or event that does not occur in the original place both in vivo and in vitro.
As used herein, the term “hidden antigen” is often interchangeable with “hidden hapten or segment” or “ACE structure”, and refers to an antigen epitope/segment/structure that, in its intact or natural form, is less antigenic and/or poorly accessible to large molecules including, but not limited to, antibodies. For example, an ACE structure may be a mutation site(s), macromolecule-to-macromolecule conjugation site, or a segment normally located inside its parent macromolecule, or may be covered by other surrounding molecules/structure(s)/cell membranes either in situ or ex situ, and thus is poorly or not accessible to antibodies.
As used herein, the term “macromolecule” refers to a polymeric molecule with more than 2 same or different units, either in a linear or branched sequence, including, but not limited to, polypeptides, polysaccharides, lipids or phospholipids, and nucleic acids, poly(ADP-ribose), or any combinations of the above.
As used herein, the term “carbohydrate” is interchangeable with the term “saccharide”, typically referring to either polymeric or monomeric sugar molecules.
As used herein, the term “mutation site-specific hapten” refers to a segment that contains a macromolecular mutation site, which may need to be linked to an immunogenic carrier in order to become a complete antigen.
As used herein, the term “mutation site-specific antibody” refers to antibody that can specifically recognize a mutation site.
As used herein, the term “sidechain” refers to a chemical group that is attached to or branches from a core part of the molecule called the “mainchain” or backbone. In polymers, side chains extend from a backbone structure.
As used herein, the term “hydrolytic enzyme” refers to proteases, glycosidases, lipases or phospholipases, nucleases, and the like, which are currently known or will be identified in the future and are capable of cleaving particular chemical bonds in macromolecules in a site-specific manner.
As used herein, the term “agent”, may be interchangeable with “hydrolytic agent” or “chemical agent”, and refers to chemicals or any other non-biological materials that are currently known or will be identified in the future, and are capable of cleaving particular chemical bonds in macromolecular backbones in a site-specific manner. Hydrolytic agents may include, but are not limited to, 2-nitro-5-thiocyanobenzoic acid (NTCB)+Ni that cleaves the peptide bond at cysteine loci (Degani and Patchornik, 1974); cyanogen bromide (CNBr) that cleaves at methionine loci; BNPS-skatole [2-(2-nitrophenylsulfenyl)-3-methylindole] that cleaves at tryptophan loci; and formic acid that cleaves at aspartate loci in protein backbones.
Hydrolytic proteases and agents include, but are not limited to, Arg-C proteinase, Asp-N endopeptidase, Asp-N endopeptidase+N-terminal Glu, BNPS-Skatole, caspase1, caspase2, caspase3, caspase4, caspase5, caspase6, caspase7, caspase8, caspase9, caspase10, chymotrypsin, clostripain (clostridiopeptidase B), CNBr, enterokinase, factor Xa, formic acid, glutamyl endopeptidase, granzymeB, hydroxylamine, iodosobenzoic acid, LysC, LysN, NTCB (2-nitro-5-thiocyanobenzoic acid), pepsin, proline-endopeptidase, proteinase K, staphylococcal peptidase I, tobacco etch virus protease, thermolysin, thrombin, trypsin, and the like.
The chemical bond-cleaving site specificities of hydrolytic enzymes or agents can be found in publicly accessible databases including, but not limited, to Swiss-Prot ExPASy and the National Center for Biotechnology Information.
Glycosidases include, but are not limited to, exoglycosylase, endoglycosylase, any combination of exoglycosylase and endoglycosylase, and/or sialidase, fucosidase, mannosidase, galactosidase, xylosidase, and the like.
Lipases include, but are not limited to, triglyceride lipase, pancreatic lipase, lysosomal lipase, hepatic lipase, hormone-sensitive lipase, endothelial lipase, lingual lipase, and the like.
Phospholipases include, but are not limited to, phospholipase A1, phospholipase A2, phospholipase B, phospholipase C, phospholipase D, GPI-phospholipase C, GPI-phospholipase D, and the like.
Enzymes used in the invention may be natural, recombinant or chemically synthesized. They may be substantially pure, partially purified, or present in a crude biological sample.
As used herein, the term “organism” refers to all cellular life-forms including, but not limited to, prokaryotes and eukaryotes, non-cellular life-forms, and nucleic acid-containing entities including, but not limited to, bacteriophages and viruses.
As used herein, the term “sample or sample preparation” refers to a collection of inorganic, organic or biochemical molecules either in a pure or mixture form, either in nature (e.g., in a biological- or other specimen) or artificial type, either in heterogeneous or homogeneous form, either in isolated, partially isolated or non-isolated form, or either in solution or in a form immobilized or semi-immobilized on any supporting materials including but not limited to electrophoresis matrix (e.g., gel or capillary), Western blot membrane (e.g., nitrocellulose membranes), agarose support (e.g., gel or bead), nano particles, any supporting surface, cell culture plates, multiplex beads, or chromatographic supporting matrix, sucrose gradient medium. “Sample” further refers to a biological sample.
As used herein, the term “organism” refers to all cellular life-forms, including but not limited to prokaryotes and eukaryotes, as well as non-cellular life-forms, nucleic acid-containing entities, including but not limited to bacteriophage and viruses.
As used herein, the terms “biological sample” refer to a collection of a whole organism or a subset of its tissues, cells or component parts (e.g. body fluids, including but not limited to blood, mucus, lymphatic fluid, synovial fluid, cerebrospinal fluid, saliva, amniotic fluid, amniotic cord blood, urine, vaginal fluid and semen). “Biological sample” further refers to a homogenate, lysate, subcellular fraction or extract prepared from a whole organism or a subset of its tissues, cells or component parts, or a portion thereof. “Biological sample” also refers to sample preparations including but not limited to on electrophoretic and chromatographic gels, on Western, Southern, and Northern blot membranes, in isolated organelles, and in separated fractions.
As used herein, the term “tissue section” refers to a thin slice prepared from a whole organism or a subset of its tissues, cells or component parts (e.g. body fluids, including but not limited to blood, mucus, lymphatic fluid, synovial fluid, cerebrospinal fluid, saliva, amniotic fluid, amniotic cord blood, urine, vaginal fluid and semen).
As used herein, the term “mutation site-specific antibody” further refers to one or more antibodies, and also referred to as immunoglobulins. Mutation site-specific antibody may be natural or partially or wholly produced artificially, e.g. recombinant, or antibody fragments. A mutation site-specific antibody may be monoclonal or polyclonal, humanized, VHHs bispecific, and heteroconjugate antibodies, as well as antibody-like binding partners (e.g., phage display antibody-like fusion protein). Mutation site-specific antibody may be made in all immunoreactive animals or organisms including but not limited to rabbit, rat, camelids, mouse, sheep, horse and donkey. The antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: VHHs, IgG, IgM, IgA, IgD, and IgE, as well as antibody-like molecules.
As used herein, the term “non-mutation site-specific antibody” refers to one or more antibodies that recognize the normal amino acid residues corresponding to the mutation site in the normal protein rather than the corresponding mutated residues in the mutant protein.
As used herein, the term “pan antibody” refers to one or more antibodies that recognize epitopes that are not located on the mutation site.
The mutation site-specific haptens or antigens may be used to select its binding partners by, for example, phage display or yeast display. The haptens or antigens include, but are not limited to, any chemical monomers or polymers, amino acids or peptides, carbohydrates, lipids or phospholipids, nucleotides, poly (ADP-riboses), and the like.
As used herein, the term “antigenicity’ refers to the antigen capacity to stimulate the production of antibodies and the capacity to react with antibodies.
As used herein, the term “primary antibody” refers to antibody raised against an epitope of interest. The epitope can be a protein, peptide, carbohydrate, lipid, phospholipid, nucleic acid, any combination of the above, or any other macromolecules.
As used herein, the term “secondary antibody” refers to an antibody that binds to primary antibodies or antibody fragments. They are typically labeled with measurable probes for detection, purification, or cell sorting applications.
As used herein, the term “immunoassay” refers to any antibody-based measurement of the content of any substance in a sample. The presence of antigen and/or antibody can be assayed. The most common method is to label either antigen or antibody with any suitably detectable materials including, but not limited to, enzymes, radioisotopes, magnetic or fluorescent labels, or nanoparticles.
As used herein, the term “Western blot” or its interchangeable term “immunoblot” refers to an analytical method for detection of proteins or modified proteins in a sample. It uses gel electrophoresis to separate molecules in a sample. The separated molecules are then transferred to a membrane (typically nitrocellulose) that can hold the macromolecules, where such macromolecules of interest can be detected specifically with antibodies.
As used herein, the term “Enzyme-Linked ImmunoSorbent Assay” or “ELISA” refers to any method of detecting the presence and level of an antibody or an antigen in a sample. There are several variants of ELISA, including, but not limited to, sandwich ELISA, competitive ELISA, indirect ELISA, ELISA Reverse and the like. The most common procedure is to coat an antibody or antigen onto a surface, and then to add molecules of interest (antigen or antibody) to the precoated surface so that an antibody to antigen complex can form. The tagged antibodies or antigens, or the added secondary antibody with a detectable tag, can then be detected with a readout system.
As used herein, the term “immunohistochemistry” commonly refers to a method of antibody-based localization of antigens in a sample, commonly in a tissue section. An antibody to antigen interaction can be visualized by microscopy at the cellular level via any detectable means including, but not limited to, antibodies tagged by fluorophors, chromospheres or luminescence, or any detectable tags with any combinations of the above, including, but not limited to, peroxidase and its variants, chemiluminescence and its variants, and fluorescent molecules such as fluorescein isothiocyanate (FITC), Texas Red, rhodamine (TRITC), coumarin, cyanine, Alexa Fluors and the DyLight Fluors, and their derivatives.
As used herein, the term “immunocytochemistry” is often interchangeable with immunohistochemistry. Immunocytochemistry emphasizes a method of using antibodies to detect specific antigens at the cellular level. Immunocytochemistry may differ somewhat from immunohistochemistry in that it is often performed on samples of intact cells, whereas immunohistochemical samples are usually on tissue sections.
As used herein, the term “immunoprecipitation” refers to a technique of antibody precipitating its antigen molecule out of mixture samples. This process is often used to isolate and concentrate a particular antigen or antigen complex from other molecules in a sample. Immunoprecipitation often requires coupling antibody-antigen complexes to a solid support substance in the procedure for separation of antibody-antigen complexes from other molecules in a sample.
As used herein, the term “co-immunoprecipitation” refers to immunoprecipitation of intact antigen complexes.
As used herein, the term “flow cytometry” refers to a method of counting, examining, and sorting particles suspended in a stream of fluid. It allows simultaneous multi-parametric analysis of the physical and/or chemical characteristics of single cellular particles flowing through an optical and/or electronic detection apparatus.
As used herein, “artificially cleaved epitope or ACE” refers to an epitope that is artificially cleaved for creating more antigenic and accessible epitope to antibody for detection or forming antibody-to-ACE complex purpose.
The “Artificially Cleaved Epitope” or “ACE” does not include naturally cleaved antigens in vivo.
As used herein, “hydrolysis-guided ACE design or ACE design” refers to antigen design methods that use an artificially cleaved epitope (ACE) as a hapten or antigen. The ACE is not naturally accessible to antibody or antibody-like molecules but can be artificially, specifically and precisely created and/or exposed in a sample by the chemical bond-specific hydrolysis of macromolecules.
As used herein, “hydrolysis-guided ACE antibody production” is interchangeable with “ACE antibody production” refers to making antibody with an ACE hapten or antigen designed by the ACE design methods.
As used herein, “residue” and “monomer” (of macromolecules) is often interchangeable, refers to a specific unit within polymeric chains of peptides, polysaccharides, lipids, nucleic acids, poly(ADP-ribose), and the like.
As used herein, “create or expose” (of ACE antigen) is often interchangeable.
As used herein, the term “create” refers to artificially creating ACE structures with free terminals in samples or sample preparations for antibody detection.
As used herein, “ACE methods” refers to a group of collective techniques including, but not limited to: (i) ACE design, (ii) making ACE antibody, (iii) ACE exposure and detection either in situ or ex situ in a sample, and (iv) ACE method applications. The ACE methods require to use: (a) structural and sequence information of molecular conjugates or linear hidden antigen, (b) chemical bond-cleaving specificities and properties of hydrolytic enzymes and agents, and (c) ACE exposure and detection methods.
This invention provides the novel “hydrolysis-guided ACE methods” or simply “ACE methods”, including, but not limited to, all or part of these steps: (i) selecting a specific hydrolytic enzyme or chemical agent-cleaved mutation site-specific or a hidden ACE sequence or its truncated form; (ii) the ACE structure is a non-cleaved segment of an intact macromolecule in vivo, and is either poorly antigenic, or inaccessible by antibody, but can be artificially, specifically and precisely created and/or exposed by the residue chemical bond-specific hydrolytic enzyme, agent or their combinations, (iii) conjugate the ACE hapten to an immunogenic carrier for making it a complete antigen, (iv) a spacer including but not limited to GGG (glycine-glycine-glycine) may sometimes be added to increase the flexibility of the ACE, (v) use the complete antigen to make the antibodies or antibody-like molecules or binding partners, (vi) remove non-specific antibodies to the mutation site by negative absorption with the non-mutation peptide(s), (vii) create and/or expose the ACE artificially, specifically and precisely, rather than randomly or accidentally, either in situ or ex situ in any sample preparations by the specifically designated chemical bond-specific hydrolytic enzyme or means, and (viii) detect or image the ACE structure in sample preparations by antibody-based methods.
The mutation-specific ACE has a basic structure is H2N-A3-A2-A1-Am(s)-A1′-A2′-A3′-COOH, and the corresponding non-mutation specific epitope/antigen ACE structure is H2N-A3-A2-A1-An(s)-A1′-A2′-A3′COOH, wherein H2N-A3-A2-A1-Am(s)-A1′-A2′-A3′-COOH and H2N-A3-A2-A1-An(s)-A1′-A2′-A3′-COOH are polypeptides or proteins, wherein the mutation or non-mutation sites are either poorly recognized (owing to insignificant difference) or cannot be accessible (hidden) in its original nature form by antibody, and thus must be artificially, specifically and precisely created and/or exposed by residue chemical bond-specific hydrolysis in situ or ex situ in sample preparations; wherein H2N— indicates the N-terminal direction and —COOH implies the C-terminal direction, wherein Am(s) is the mutated amino acid residue(s) that is different with the corresponding non-mutated amino acid residue(s) of An(s) in the non-mutation polypeptide/protein, wherein the covalent chemical bond(s) between Am(s) and its adjacent amino acid residues at either the N-terminal or C-terminal direction can be artificially, specifically and precisely cleaved by designed chemical bond-specific hydrolysis in samples and sample preparations to create (the new terminals) and/or expose said mutation-specific ACE structure for designing mutation-specific epitopes, making mutation-specific antibodies and for mutation-specific epitopes/antigens detection. Examples are given in
The ACE Antigen Design for Reducing Non-Specific Bindings.
The ACE methods can also be used to reduce antibody non-specific bindings in all antibody-based methods. The reduction of antibody non-specific binding is owing to the fact that the ACE methods can artificially, precisely and specifically create and/or expose the ACE, while breaking up the antibody non-specific binding structures.
The present invention further discloses methods of using ACE antigens to make ACE antibodies. Such antibodies can be made with ACE antigens in conjunction with all antibody making methods including but not limited to those described in the books: Antibodies—A Laboratory Manual (1988), Cold Spring Harbor Laboratory Press, and Current Protocols in Immunology (1997), John Wiley & Sons, Inc. Exemplary antibodies may be polyclonal, monoclonal, humanized, bispecific, heteroconjugate antibodies, antibody-like binding partners, and the like.
ACE Polyclonal Antibodies:
The ACE polyclonal antibody can usually be made by injecting specific ACE antigens into animals including, but not limited to, chickens, goats, guinea pigs, hamsters, horses, mice, rats, sheep and the like. Specific ACE haptens are usually linked to an immunogenic carrier including, but not limited to, KLH, serum albumin, bovine thyroglobulin, soybean trypsin inhibitor, or the like. Adjuvants are normally used to improve or enhance an immune response to antigens. Blood serum from these animals contains polyclonal antibodies, also known as antiserum, that bind to the same ACE hapten or antigen. Antigens may be also injected into chickens for generation of polyclonal antibodies in egg yolks.
ACE Monoclonal Antibodies:
The ACE monoclonal antibody is normally derived from a single cell line and obtained by fusing antibody-secreting lymphocytes with a cancer cell line. A mouse, hamster, rat, rabbit or other appropriate host animal can typically be immunized with a complete ACE antigen made by attaching an ACE hapten to an immunogenic carrier. Alternatively, the lymphocytes may be immunized in vitro. Spleen cells immunized with ACE antigens are then fused with myeloma cells using a fusing agent to make hybridomas. A mixture of hybridomas is then diluted and subcloned. The clones from single parent cells are then selected. The antibodies produced from the single clones (monoclonal) are then tested for their binding affinity and specificity to the antigens by any single or combinations of antibody-based methods including, but not limited to, immunoblotting, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, peptide array, ELISA or all other immunoassays, or immunoelectron microscopy. The clones with the highest binding affinity and specificity to the ACE structures or clones for specific applications are then selected and grown in cultures or in the peritoneal cavity of animals to a high volume for the production of monoclonal antibodies.
Antibodies can be purified using ACE hapten-conjugated matrices or resins, or by using Protein A/G or complete antigen-affinity chromatography for separation of antibodies from other molecules in crude antibody preparations. Negative absorptions may be required for separating mutation site-specific antibodies from the non-specific site.
ACE Recombinant Antibodies:
The ACE monoclonal antibodies may be natural or artificial (either partially or wholly), for example, recombinant DNA methods. Recombinant monoclonal antibody involves molecular cloning and expression of immunoglobulin gene segments in cells, viruses or yeasts. Immunoglobulin DNA expression vectors can be made with the DNAs from hybridoma cells immunized with ACE antigen. These vectors can then be transfected into a host cells including, but not limited to, myeloma cells in which recombinant monoclonal antibodies are expressed.
ACE Single-Domain Antibodies (Also Known as Single-Domain Antibody Fragments, Variable Domain of Heavy Chain Antibodies or VHHs, and Nanobodies):
Camelids and Cartilaginous fishes can produce a single N-terminal domain antibody (without the light chains). VHH is fully capable of antigen binding (Harmsen and De Haard, 2007). The expression vectors can be selected or cloned with ACE epitopes/antigens. The single-domain antibody fragments (VHHs) can be produced in microorganisms. VHHs can recognize hidden antigenic sites, and thus have advantage in detecting ACE epitopes/antigens. This ability is probably due to the smaller size and the ability of the extended CDR3 loop to penetrate into the ACE sites. Furthermore, VHHs are well suited for construction of bi-specific or multiple-specific ACE antibodies.
ACE Binding Partners:
The ACE antibodies or binding partners may also be made by methods including, but not limited to, phage display, yeast display, ribosome display, bacterial display, and mRNA display.
ACE Humanized Antibodies:
The ACE antigen can be used to make humanized antibodies or human antibodies made by recombinant methods. One approach is to merge an animal DNA sequence that encodes the small binding portion of a monoclonal antibody, with a human DNA sequence that encodes the rest of the large portion of the antibody. The hybrid DNA construct encoding the hybrid antibodies to ACE antigens can be readily isolated, sequenced and expressed for antibody production.
The feature of reducing nonspecific binding provides a further utility of the ACE methods. This is because chief obstacles associated with conventional antigen design and antibody production are: (i) weak antigenicity, (ii) antibody poor accessibility to antigen; and (iii) antibody non-specific binding. The inventive ACE methods can minimize all these obstacles by: (a) creating and/or exposing more antigenic N- and/or C-terminal ACE structure; (b) increasing antibody accessibility to the artificially and specifically created and/or exposed ACE structures; and (c) reducing non-specific bindings by the breakup of non-specific binding molecules.
The feature of reducing non-specific binding in the inventive methods may be also useful in immunoprecipitation (IP) studies. This is because the high levels of added immunoglobulin bands often disturb observing immuno-precipitated proteins/molecules of interest on Western blot membranes. The ACE methods can preserve the ACE structures while breaking up of added immunoglobulins on Western blot membranes, and thus eliminate unwanted immunoglobulin bands.
The inventive ACE methods can solve the issues inherited in those epitopes that are: (i) hidden/concealed within molecule(s)/structure(s) and thus poorly or not recognizable, or not accessible to antibodies; (ii) poorly antigenic; and (iii) interfered with non-specific bindings. Such epitopes include, but are not limited to, those of protein mutation sites, those that are folded within their parent proteins/molecules, macromolecule-to-macromolecule covalent conjugation sites, molecule-to-molecule non-covalent binding sites, proteins/molecules that are inserted into cellular membranes, structures or organelles, and proteins/molecules that are interfered with non-specific bindings. In addition, the ACE structures with free terminals are more charged, and thus more antigenic than the internal sequence (Clark et al., 1969). Therefore, the ACE methods are effective in detecting hidden epitopes as shown in
In one embodiment, the invention provides methods of artificially, specifically and precisely creating and/or exposing ACE structures for detection; thus improving the ACE antigenicity and antibody accessibility in any types of sample preparations, wherein the ACE structures in samples or sample preparations are naturally absent or hidden, and poorly accessible to antibodies, and thus, must be artificially and precisely created and/or exposed either in sample preparations by specifically selected hydrolytic enzymes or agents; wherein the artificially creating and/or exposing the ACE structures can be carried out in any type of sample preparations including, but not limited to, in vivo or in vitro, in whole or part of biological bodies or organisms, in isolated organs or organelles, in tissues or tissue sections (with or without fixation), in isolated or cultured cells, in body fluids or cell culture media, in tissue or cell lysates, in cellular or subcellular fractions, on Western blot membranes, in chromatographic or centrifuge fractions, in biochemical assay mixtures, and the like.
The method of creating and exposing the ACE structure in a sample preparation further comprises treating the sample preparation with a fixative before treating the sample preparation with the hydrolytic enzyme or hydrolytic agent. The fixative is selected from the group consisting of an aldehyde, an alcohol, acetone, and osmium tetroxide, including, but not limited to, formaldehyde, paraformaldehyde, and glutaraldehyde.
The said hydrolytic enzymes and agents for artificial ACE creation and/or exposure are specific and precise, rather than random or accidental (also see below). The enzymes and agents should be mostly the same, but can also be very occasionally different, with the one(s) used for the ACE antigen design. If the different hydrolytic enzymes or agents are selected, they must preserve the ACE structures for detection. The availability, property and chemical bond specificity of hydrolytic enzymes and agents for ACE exposures and detections can be found in public disclosures, publications/literatures, and websites including, but not limited to: www.expasy.ch/tools/peptidecutter.
Other methods to improve the accessibility of a hidden epitope are to use detergents (such as Triton X100 or SDS), different pH solutions, or physical measures such as heat to treat sample before performing antibody-based detections. These methods are principally and profoundly different, and usually less, if any, effective, relative to the ACE detecting methods. One explanation is that detergent and heat treatments are non-specific, random or accidental, usually cannot break covalent chemical bonds near the mutation sites or folded molecules, and sometimes destroy (rather than expose) the epitopes. In comparison, the ACE methods employ the ACE antigen to make antibodies and then use ACE antigen design information to specifically, rather than randomly or accidentally, select residue chemical bond-specific hydrolytic enzyme(s)/agent(s) for artificially, specifically and precisely breaking the designated chemical bonds to create (new terminals) and/or expose the ACE structures for antibody detection. Therefore, the ACE methods not only fully preserve and expose the antigen structure, but also enhance antigenicity of the antigen structure by creating antigenic/charged terminals.
A number of antigen retrieval (AR) protocols have been published (Shi, 2011). To date, these protocols were solely for immunochemistry (ICC) or immunohistochemistry (IHC), and have been applied predominantly to archival “paraffin blocks” for IHC in diagnostic surgical pathology (Shi, 2011). Many antibody reagent companies also have antigen retrieval protocols on their websites. However, these protocols are not based on the ACE antigen design and detection described in this application, rather, they are based on random AR attempts and/or reversal of protein formaldehyde adducts and cross-links formed in the course of tissue fixation (Kuhlmann and Krischan, 1981). Therefore, these protocols are used solely for IHC or ICC and usually with a very low success rate, and have potential to destroy the antigen of interest. Therefore, the effectiveness of these protocols is accidental and unpredictable.
For example, most formalin-fixed tissue requires an antigen retrieval step before immunohistochemical staining can proceed. This is due to the formation of methylene bridges during fixation, which cross-link proteins and therefore mask antigenic sites.” The Ihcworld's protocol (www.ihcworld.com) describes that “the use of enzyme digestion method may destroy some epitopes and tissue morphology”. The protocol of R&D (www.rndsystems.com) recognizes that “the disadvantages of enzyme digestion method are the low success rate for restoring immunoreactivity and the potential for destroying both tissue morphology and the antigen of interest.” It is also noted in the Millipore's protocol (www.millipore.com) that “the listed (enzyme digestion) procedure is only suggested; no warranty or guarantee of performance of the above procedure is made or implied”.
For pathologists and morphologists, “seeing is believing” and most cancers are diagnosed by morphologic methods. O'Leary et al. (2010) and Shi (2011), two pioneers in the AR research, have suggested: “the AR technique is in many ways still in the developing stage. Further development of the AR technique must be based on a better scientific understanding of the molecular mechanisms, which represents the key pathways to improved cell/tissue sample preparation and standardization of IHC in clinical diagnostic applications.”
The inventive ACE methods can robustly improve immunolabeling not only for IHC or ICC, but all antibody-based preparations including, but not limited to, in tissues or tissue lysates, cellular or subcellular fractions, Western blot membranes, chromatographic or centrifuge fractions, and the like.
An additional step of the ACE methods requires artificially, specifically and precisely create (terminals) and/or exposure of the ACE structure before detection. At first glance, this seems an additional step in compared with conventional antibody detection methods. However, in practice, this step can breakup non-specific binding molecules, thus reducing non-specific bindings significantly in all antibody-based applications.
Another issue may be that artificial creation of new terminals and/or exposure of the ACE structure may change the size of the protein/molecule to be detected. This obstacle can be overcome by separation of samples first by, for instance, Western blotting, followed by ACE structure exposure (in situ) on Western blot membranes with specifically selected hydrolytic enzyme(s) or agent(s) for detection. For immunohistochemistry, ACE in tissue sections can be exposed directly in situ with the specifically selected hydrolytic enzyme(s) or agent(s). After washing, the artificially exposed ACE structures can then be detected by the ACE antibody. For immunoassays, regular two-antibody sandwich methods can be used, i.e., a general antibody binds the non-mutation sites or the outside of the ACE structure, whereas the ACE antibody binds the mutation site ACE structures.
A host of residue chemical bond-specific hydrolytic enzymes or chemical agents including, but not limited to, proteases, glycosidases, lipases/phospholipases, poly(ADP-ribose) hydrolases, nucleases, and the likes, are available and can be specifically selected for the ACE methods. The criteria for selecting specific hydrolytic enzymes or agents for the ACE antigen design/detection depend on the molecular sequence of the ACE structure, and the substrate chemical bond-cleaving specificities, and the ACE organization, size and antigenicity. The selecting criteria also depend on which antibody-based methods/applications will be used. For Western blot analysis, for example, it is not ideal to select an enzyme that creates too small pieces of ACE structures. Therefore, the use of the ACE methods requires understanding the structure, organization and location information of hidden antigens, the properties of hydrolytic enzymes or chemical agents, and which antibody-based methods/applications are used.
The present invention encompasses various utilities and applications of the ACE methods including, but not limited to: (i) research and discovery (R&D), (ii) diagnosing diseases, monitoring of disease stage and response to treatment, and disease prognosis, (iii) screening of therapeutic agents, (iv) determining mutation or non-mutation sites, (v) detecting hidden antigens that are normally difficult to be detected by general antibody-based methods, (vi) reducing antibody non-specific bindings in all antibody-based methods, and (vii) therapeutic applications for treatment of mutation-related diseases.
Gene mutations occur in many diseases. However, mutation site-specific antibodies are difficult to make by the conventional antibody design and detecting methods. The inventive methods of designing and detecting mutation-specific or hidden ACE antigens can therefore be used for disease diagnosis, staging, monitoring progress and treatment, and prognosis, for example, diagnosis of cancers, diagnosis of neurological, neurodegenerative diseases, diagnosis of inherited diseases, and therapeutic antibodies.
In bioreagent or R&D area, mutation-specific ACE methods, reagents, antibodies, immunoassays and kits can be used in all antibody-based applications including but not limited to detect, identify, isolation, locate and characterize protein mutation sites. The mutation-specific ACE structures can be artificially created and/or exposed directly either in situ or ex situ on Western blot membranes, tissue sections or any other type of biological sample preparations.
ACE methods, antibodies, reagents, immunoassays, and kits can be used directly for all antibody-based separations of mutation-specific ACE structures.
An example is to separate molecules in a biological sample with 2-dimensional electrophoresis gel, followed by exposing ACE structures with designated hydrolytic enzymes or agents, and then labeling the spots on the gel/blotting membranes with the ACE antibodies. The ACE positive spots on the gel or membrane can be cut, extracted, and identified with any mass spectrometry (MS)-related methods.
Another example is that ACE structures/segments can be captured with the ACE antibodies in a mixture or biological sample lysates, and then detected by any analytical methods. In the MS method, ACE parent macromolecules in a sample may need to be denatured, and then digested with designated hydrolytic enzymes or agents, to artificially, specifically and precisely expose the ACE structures. After isolation from the sample with the corresponding immobilized ACE antibodies, and then elution from antibody, the ACE structures can then be identified by MS-related methods.
An additional example is to identify ACE structures in samples by the method of antibody array-coupled peptide surface liquid extraction. The procedure includes: (i) coat ACE antibodies to surfaces or matrices mostly by covalent means; (ii) treat samples with specifically selected ACE hydrolytic enzymes or agents; (iii) inhibit the hydrolytic enzymes or agents with inhibitors or any other means, or separate the hydrolytic enzymes or agents from the samples by any biochemical means; (iv) incubate ACE segment-containing samples with ACE antibody-coated surfaces or matrices; (v) separate bound from non-bound ACE segments on the surfaces or matrices by washing; (vi) extract bound ACE segments by appropriate liquid including, but not limited to, low pH buffers or organic solvents; (vii) detect ACE segments in the liquid by any analytical means including, but not limited to, liquid chromatography, fluorescent, ultraviolet and visible spectrometry, or any MS-related methods.
The ACE antibodies of the invention may be useful, for example, in targeting the mutation sites, for treating mutation-related diseases including, but not limited to neurodegenerative diseases, cancer, vascular diseases, inflammatory diseases, macular degeneration, transplant rejection, multiple sclerosis, stroke, heart diseases, diabetes, infectious diseases and all protein mutation-related diseases.
The present invention may be relevant to the delivery of ACE antibodies to the target by carriers including, but not limited to, liposomes. This may be done by packing liposomes with mutation site-specific antibodies and hydrolytic enzymes including, but not limited to proteases, glycosidases/deglycosylases, lipases or phospholipases, nucleases, or cytotoxic agents such as chemotherapeutic agents, toxins, or radioactive isotopes. Review articles about immunoliposome and immunoliposome-mediated delivery can be found in publications (e.g., Pirollo et al., 2008; Brignole and Marimpietri et al., 2005; Bendas 2001; Maruyama, 2000).
The ACE antigen design of the invention may be used for preparations of vaccines to particular diseases including, but not limited to, cancers, neurodegenerative diseases, inherited diseases, and aging-related diseases. The vaccines may be preventive or therapeutic.
In another aspect, the present invention provides kits for detecting the ACEs in biological samples. Such kits comprise ACE antibodies, hydrolytic enzymes or agents, and other items including, but not limited to secondary antibodies, enzyme modulators, cofactors, and buffer systems.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/312,285, filed Dec. 6, 2011, which claims priority to Ser. No. 61/420,354 filed on Dec. 7, 2010.
Number | Date | Country | |
---|---|---|---|
62209774 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13312285 | Dec 2011 | US |
Child | 15236509 | US | |
Parent | 13312285 | Dec 2011 | US |
Child | 13312285 | US |