As modern portable systems become more sophisticated and more densely packed, there has come a need for circuits and devices to operate at much lower supply voltages. Many processors and memories now operate at voltages of around 1V or lower. In order to protect these systems, the load switch has been widely adopted as a method to both protect the load as well as control the off and on characteristics of the load device.
For previous generations of systems where the supply voltages are above 2V, the predominant load switch technology has been the PMOS power transistor used as a switch, as shown in
For systems that have supply voltages in the 1V range, the PMOS load switch is not usable and the device of choice becomes a NMOS load switch transistor device. However with the NMOS transistor as a load switch, the gate voltage must now exceed the source voltage in order for the NMOS transistor to turn on. Since the input voltage is around 1V, this means that the voltage on the gate must be at least 2*VT above the voltage at the source for the NMOS transistor to be turned on and fully enhanced. In order to accomplish this task, the circuit must pump the gate voltage higher than the source voltage by means of a charge pump. This technique is widely used in the industry when controlling an NMOS load switch. However, this technique does have a significant drawback; power dissipation. Unlike the PMOS device whose gate can be controlled by a simple inverter, the NMOS device requires a charge pump and an oscillator circuit to be actively running during the time that the NMOS switch is turned on in order to maintain the gate voltage. This consumes power and takes away from the power that is available to run the system at the output of the NMOS load switch. Furthermore, the power dissipation of the charge pump system is related to the square of its supply voltage (equation 1), so that if the input voltage to the switch should be raised, so will the power dissipation.
Pavg=CEXT*VDD2*Fclk (1)
In the prior art system (
Other prior art techniques have been used to try to get around the power dissipation issue. One such prior art embodiment replaces the ring oscillator with a voltage controlled oscillator (VCO). In this prior art system (
Embodiments described include a power NMOS load switch that is controlled by a charge pump and oscillator. The control of the oscillator is determined by a comparator and a feedback network.
In a preferred embodiment, the feedback network is comprised of two capacitors. The ratio of the two capacitors determine the overall gain of the feedback system. Since the gate voltage on the power NMOS switch will be several times greater than the input voltage that is the power supply for the digital circuits, the ratio must place the feedback voltage to the comparator below the input voltage of the NMOS load switch.
The concept of the a burst mode charge pump as described herein introduces a feedback control loop in order to regulate the gate voltage of an NMOS load switch. By introducing the control loop, it is possible to use the charge pump and oscillator to pump up the gate voltage to a prescribed value that is set by the ratio of the feedback network and then turn the charge pump and oscillator off once the threshold voltage has been achieved thereby saving power. Specific embodiments are described below, which are not intended as limiting.
Since the gate of an NMOS load switch is primarily a capacitance, the voltage on the gate can stay stable for a long period of time and not require refreshing until the gate leakage causes the voltage level to decay to some predetermined threshold value, wherein the feedback system will respond and once again turn on the charge pump and oscillator to recharge the NMOS gate voltage.
One embodiment includes a power NMOS load switch that is controlled by a charge pump and oscillator. The control of the oscillator is determined by a comparator and a feedback network that is comprised of two capacitors. The ratio of the two capacitors determine the overall gain of the feedback system. Since the gate voltage on the power NMOS switch will be several times greater than the input voltage that is the power supply for the digital circuits, the ratio must place the feedback voltage to the comparator below the input voltage of the switch.
The capacitive divider is used to ratio the feedback voltage into the comparator because a resistive divider network to ground would produce a constant current flow from the charge pump output to ground necessitating that the charge pump be operated continuously to supply that load current; exactly the opposite of what is trying to be achieved. The capacitive divider will draw no current and will divide down the voltage appropriately. The burst mode of operation regulates the on time of the ring oscillator and charge pump in order to achieve lower overall power dissipation.
Referring to the figures and drawings in detail,
An example of a charge pump CP that can be used with the embodiment of
For this NMOS load switch to work properly, the charge needs to be transferred forward during each cycle which means that switch MS2 must be turned on by the voltage on C3. The gate to source voltage of MS2 is 2 ΔV which must be larger than the VT of MS2. That is:
2ΔV>VT (2)
The gain of the CTS charge pump voltage stage gain can be given by the equation:
G
V
=G
V2
=V2−V1=ΔV (3)
Although the CTS charge pump is used as part of the current embodiment, other charge pump types of circuits could be used with equal results, as noted above. The uniqueness of the embodiments described herein do not rely on a specific type of charge pump circuit to achieve the end result.
Accompanying the charge pump CP is a ring oscillator circuit, an example of which is shown in
The final block in the control loop is the comparator, and various types of comparators that can be used are described further below. The comparator, generally, is used to provide the set points for the switching on and off of the ring oscillator by measuring the divided down gate voltage of the NMOS load switch.
With the control loop in mind, reference is made to the system operation shown in
As was mentioned above, since the gate voltage on the power NMOS switch will be several times greater than the input voltage that is the power supply for the digital circuits, the ratio must place the feedback voltage to the comparator below the input voltage of the switch. The Schmitt trigger circuit is one preferred type of comparator that can be used and which has a built in hysteresis that allows for such ratio to be easily satisfied. The rising level threshold on the input of the Schmitt trigger device can be set by adjusting the W/L ratios of transistors M1 and M3 in
While the Schmitt trigger comparator is suitable for this application since it is essentially a pseudo-digital circuit and can operate at very low supply voltages, a low voltage analog comparator design (
Although described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the intended spirit and scope.