The present invention relates generally to mobile device housings and, more particularly, to a rugged mobile device housing elastically tailored to the application and incorporating multiple materials.
Mobile devices such as cellular phones, personal data assistants (PDAs), and the like often incorporate components that are susceptible to shock damage incurred during an impact event. Such components include, for example, liquid crystal displays (LCDs), keyboards, printed circuit boards (PCBs), and other structures prone to breaking under moderate stress.
Conventional housings aimed at addressing this problem in mobile devices often incorporate a stiff frame (e.g., a die-cast magnesium frame), which provides internal structure and thereby prevents large deflections. Such frames, however, take up a significant amount of space and add yet another costly component to the system.
In order to accommodate sudden shock, conventional housings also typically include a material such as a thermoplastic elastomer that has a low modulus of elasticity and which acts as a shock absorber. The use of such elastomers, however, often requires additional internal components or over-molded, wear-resistant plastics on the outside of the device housing.
Accordingly, it is desirable to provide a rugged mobile device housing able to withstand the shock and large deflections resulting from an impact event.
In accordance with the present invention, a rugged mobile device housing for protecting a component (e.g., a liquid crystal display, a keyboard, a printed circuit board, or the like) includes one or more first structures comprising a first material provided in a region of the housing capable of withstanding deflection, wherein the first material is an elastomer, and one or more second structures bonded to the first structure, wherein the second structure is a high-stiffness, high-impact-resistance plastic. The elasticity of the housing is thereby tailored by combining sections made from a stiff plastic (where deflection needs to be minimized) with adjacent sections made from a stiff elastomer (where shock absorption is desired and large deflections can be tolerated). Such tailored elasticity is of particular utility in mobile computing devices with large displays where a small form factor and rugged design is desired.
In one embodiment, the first material is a high-stiffness elastomer and the second material is a long glass fiber filled thermoplastic (or “LGF” plastic). In one embodiment, the first structure is located at a corner of the housing and the second structure is located in the middle of the housing. In another embodiment, the first structure is located in the center of the housing and the second structures are located at the ends. In yet another embodiment, a projecting handle and hinge are provided, where the first structure is located at the handle and the second structure is located at the hinge.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding -technical field, background, brief summary or the following detailed description.
In general, a rugged mobile device housing in accordance with the present invention employs one material such as a high-stiffness elastomer in a region of the housing capable of withstanding deflection, and a second material such as a high-stiffness plastic (e.g., a long glass fiber filled thermoplastic, or “LGF” plastic) in areas requiring high rigidity and/or impact resistance. A number of example structures are presented below; however, the present invention is not so limited, may be employed in wide array of housing designs.
In accordance with one embodiment, a housing includes a first structure comprising a first elastomeric material and a second structure comprising a second material bonded to the first structure, wherein the second material is a high-stiffness plastic, and wherein a component to be protected is secured to the second structure.
In this regard, “stiffness” relates to the ability of the material to resist deformation (strain) under an applied load (stress). Stiffness is usually characterized by modulus of elasticity, or “Young's modulus.” Impact strength relates to a material's ability to withstand shock loading, and may be measured using conventional testing, such as the Izod impact test. (ASTM D 256) or Charpy impact test (DIN 53453).
An elastomer is an amorphous, vulcanisate polymer that can withstand significant elastic deformation. As such, the stiffness of an elastomer is typically lower than that of other plastics. Nevertheless, in accordance with one embodiment of the present invention, the first material (used for the first structures located in areas that can withstand deformation) comprises a high-stiffness thermoplastic elastomer, e.g., a TPU (thermoplastic polyurethane) or TPEE (thermoplastic polyester elastomer). In general, the term “high-stiffness elastomer” as used herein refers to an elastomer with a room temperature flexural modulus (ASTM D 790) greater than about 20.0 MPa or with a Durometer (ASTM D 2240) of greater than about 70 Shore A. Suitable high-stiffness elastomers include, for example, various Arnitel elastomers manufactured by DSM Engineering Plastics, Hytrel elastomers manufactured by Dupont, Texin elastomers manufactured by Bayer, and Estane elastomers manufactured by Noveon.
The term “high-stiffness plastic” as used herein with respect to the second material refers to a plastic with a room temperature flexural modulus (ASTM D 790) of greater than about 7.0 GPa, preferably 10.0 GPa or higher. The term “high-impact” as used herein refers to a material with a room temperature notched Izod impact resistance (ASTM D 256) greater than about 350 J/m.
In one embodiment, the second material comprises a long glass fiber filled thermoplastic. Long glass fiber filled thermoplastics (or “LGF plastics”) are thermoplastic materials reinforced by fibers that are substantially longer than the “short” fibers traditionally used for reinforcement. While traditional short fibers might have a length of about 1.0 mm, long fibers have a length on the order of 10 mm, depending upon the application and desired properties. The use of long fibers has a number of advantageous mechanical properties—e.g., increased stiffness (approximately 10 GPa) and increased impact resistant (approximately 240 J/m, notched Izod). In this way, the high-stiffness plastic can play the role of a traditional magnesium frame. Suitable LGF plastics include, for example, Celstran long fiber reinforced thermoplastics manufactured by Ticona.
As mentioned above, the first structures are suitably fixed with respect to the second structures. The two materials may be bonded in any suitable fashion, including mechanical attachment, chemical bonding, adhesive bonding, or in any other manner. In one embodiment, the materials are bonded via a chemical bond during a molding process (“overmolding”). For example, in one embodiment, the first material is a high-stiffness elastomer and the second material is a LGF plastic, and these materials are chemically bonded during the injection molding process. Injection molding technology is well known in the art, and therefore the details of such processes need not be described herein. The component to be protected may be attached or incorporated into the housing using any convenient method, including various adhesives, mechanical fasteners, and the like.
Having thus given an overview of the present invention, various exemplary housing designs will now be described in conjunction with
In general, the design principles set forth above may be used to develop ruggedized housings for any suitable application, while obviating the need for additional stiff internal structures. The first step, once the overall size and shape of the desired housing is determined, involves identifying which area or areas of the housing are capable of tolerating deflection (e.g., bending, twisting, etc.), and which cannot. This will depend, for example, on the projected location of components that cannot safely withstand bending stress (e.g., LCD displays, brittle components, circuit boards, keyboards, and the like). Next, it is determined which areas of the housing require a high impact resistance. This will depend, not only on the placement of components, but also the location of the regions that will be allowed to deflect during an impact event. Finally, the first and second materials (e.g., the high-stiffness elastomer and high-stiffness LGF plastic, respectively) are strategically incorporated such that the housing taken as a whole can withstand the desired level of impact while protecting certain target components, which will generally be secured to a high-stiffness LGF plastic structure.
While at least one example embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the example embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.