This invention pertains generally to treatment of the facet joint, and more particularly to tools and methods for accessing, preparing and facilitating spinal distraction.
Neck and arm pain is a common ailment of the aging spine due to disc herniations, facet arthropathy and thickening of spinal ligaments which narrow spinal canal dimensions. This results in compression of the spinal cord or nerve roots, or both. Radicular pain is typically due to disc herniation and foraminal narrowing, which compresses the cervical nerve roots and causes radicular pain. Extension and ipsilateral rotation of the neck further reduces the foraminal area and contributes to pain, nerve root compression, and neural injury. Neck flexion generally increases the foraminal area.
Cervical disc herniations and foraminal stenosis typically present with upper extremity radicular pain without major motor or sensory neurologic deficit. A well-described treatment for cervical disc herniations is closed traction. There are a number of marketed devices that alleviate pain by pulling on the head to increase foraminal height.
Cervical disc herniations have been treated with anterior and posterior surgery. The vast majority are performed through an anterior surgical approach, which entails a spinal fusion. These surgeries are expensive and beget additional surgeries due to change in biomechanics of the neck. There is a 3% incidence of re-operation per year that is cumulative at adjacent levels.
There is a need in the art for minimally invasive methods and devices for accessing and preparing and distracting the facet joint to increase foraminal height and reduce radicular symptoms for patients with soft and hard disc disease.
Devices and techniques are disclosed for a percutaneous or minimally invasive surgical implantation to reduce radicular symptoms by inserting an expandable cervical distraction implant in the facet joint at a symptomatic level to decompress the nerve tissue and preserve motion. In particular, embodiments of the present invention provide for accessing and distracting the cervical facet to increase the foraminal dimension. In one embodiment, the implant of the present invention, when positioned in the cervical facet joint, increases the space between the articular facets, to increase the foraminal area or dimension, and reduce pressure on the nerve and associated blood vessels.
The procedure may be performed under conscious sedation in order to obtain intra-operative patient symptom feedback.
An aspect of an embodiment of the invention is an apparatus for accessing an interior region of a facet joint, comprising an elongate handle having a proximal end and a distal end, and a blade disposed at the distal end of the handle. The blade may have a flat leading edge such that placement of the blade through the facet capsule and into the facet cavity to generate a slit-shaped aperture in the facet capsule. Preferably, the aperture may extend substantially parallel to the first and second articulating subchondral surfaces.
In one embodiment, the blade comprises a planar lower surface extending from the leading edge, and extending proximally away from the leading edge, wherein the planar surface provides a platform to guide a second instrument through the aperture for treatment of the facet joint.
In one mode of the current embodiment, the blade comprises an upper surface opposite the lower surface, with the upper surface and lower surface defining a thickness, generally sized to be smaller than the distance between the first and second boundaries of a facet cavity.
Preferably, in one embodiment, a beveled surface emanates from the upper blade surface and extends proximally away from the leading edge. Accordingly, the thickness increases proximally along the beveled surface. The beveled surface generally facilitates manipulation of the blade into the cavity.
In one embodiment, the handle comprises a shaft extending from the distal end to the proximal end, wherein the shaft comprises a beveled surface emanating at or near the leading edge and extending proximally away from the leading edge. The beveled surface facilitates insertion of the blade into the cavity at an angle not aligned with the first and second cavity boundaries.
In another embodiment, the shaft is disposed within a central channel running along the length of the handle, and extends from the distal end of the handle. The shaft may have a D-shaped cross section providing a flat planar surface in cooperation with the blade.
Another aspect of an embodiment is an apparatus for decorticating an interior region of a facet joint, comprising an elongate handle having a proximal end and a distal end, and a rasp configured to decorticate a at least one of the articulating subchondral surfaces. The rasp may have a roughened planar surface extending distally outward from the distal end of the handle, and may be generally spatula-shaped and sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint substantially in line with the plane of the facet joint articulating surfaces. Generally the rasp comprises a compliant, thin cross section that allows the rasp to bend while being delivered into the facet from an angle out of alignment with the plane of the facet joint articulating surfaces.
The blade may have substantially planar lower surface extending from the leading edge, and extend proximally away from the leading edge. This planar surface may provide a platform for guiding the rasp in cooperation with a second instrument through the aperture for treatment of the facet joint.
In another embodiment, the rasp comprises an upper roughened surface opposite and substantially parallel with the lower surface, wherein the thickness is sized to be smaller than the distance between the first and second boundaries of a facet cavity, and to dispose the rasp to bending under light to moderate pressure. A beveled surface may emanate from the upper surface at a point proximal from a leading edge of the rasp and extending proximally away from the leading edge.
Another aspect of an embodiment is an apparatus for accessing an interior region of a facet joint, comprising an elongate handle having a proximal end and a distal end, and a spatula-shaped tip disposed at the distal end of the handle, with the tip comprising upper and lower parallel planar surface extending distally outward from the distal end of the handle. The tip may be sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint substantially in line with the plane of the facet joint articulating surfaces.
In one embodiment, the upper and lower parallel planar surfaces define a thickness that allows the tip to bend while being delivered into the facet from an angle out of alignment with the plane of the facet joint articulating surfaces.
In another embodiment, lower planar surface provides a platform for guiding a second instrument through the aperture for treatment of the facet joint.
The thickness may be generally sized to be smaller than the distance between the first and second boundaries of a facet cavity, and to dispose the tip to bending under light to moderate pressure. The apparatus may have a beveled surface emanating from the upper surface at a point proximal from a leading edge of the tip and extending proximally away from the leading edge.
In one embodiment, the handle comprises a shaft extending from the distal end to the proximal end, the shaft having a beveled surface emanating from the upper surface and terminating at a proximal location toward the handle. The lower planar surface may extend beyond the proximal location to create a platform for guiding a second instrument to the aperture and introducing the second instrument into the cavity.
The second instrument may comprise a rasp configured to decorticate at least one of the articulating surfaces, a distracter for distracting the articulating surfaces, an injector for delivering an agent into the cavity, or an introducer for delivering an implant into the cavity. The tip may function as a platform configured to receive an expandable implant and deliver the implant to a location within the cavity.
Another aspect of an embodiment is an apparatus for distracting two adjacent vertebrae, the being vertebrae separated by a facet joint comprising first and second articulating subchondral surfaces forming a facet cavity enclosed by a facet capsule. The apparatus may include an elongate handle having a proximal end and a distal end; and a wedge detachably disposed at the distal end of the handle. The wedge may have upper and lower beveled surfaces that converge toward a distal tip of the wedge, and is sized to be delivered into the cavity through an aperture in the capsule so that the upper and lower beveled surfaces contact the first and second articulating subchondral surfaces and distract the surfaces as the wedge is driven into the cavity.
In one embodiment, the wedge may comprise a recess on a proximal end of the wedge for detachably coupling the wedge to the handle.
In another embodiment, the apparatus may further include a shaft extending from the distal end of the handle proximal to the wedge. The wedge may be detachably coupled to the shaft. In one embodiment, the shaft may have a planar surface leading from the handle to the wedge to provide a platform for guiding the wedge in cooperation with a second instrument through the aperture.
Generally, the upper and lower beveled surfaces extend proximally from the distal tip to parallel upper and lower distraction surfaces, wherein the distraction surfaces are distanced from each other by a distraction thickness. The distraction thickness may correlate to a desired distraction of the articulating surfaces of the facet joint.
In another embodiment, wherein the wedge comprises one of a plurality of detachable wedges, with each of the detachable wedges having an increasingly larger distraction thickness such that the plurality of detachable wedges may be delivered to the facet joint in series from thinnest to thickest to incrementally distract the facet joint.
In a preferred embodiment, the upper and lower beveled surfaces converge to a nipple located at the distal end of the wedge, wherein the nipple is sized to be inserted in the cavity between the articulating surfaces.
Another aspect of an embodiment is an apparatus for distracting two adjacent vertebrae, having an elongate handle with a proximal end and a distal end, and upper and lower reciprocating members disposed at the distal end of the handle. The upper and lower reciprocating members may be coupled to the handle via a hinge located between proximal and distal ends of the upper and lower reciprocating members. The distal ends of the upper and lower reciprocating members may extend past the distal end of the handle such that the distal ends of the upper and lower reciprocating members may be pressed together to create a smaller profile for entry into the facet capsule and in between the first and second articulating subchondral surfaces. The entry into the facet capsule may result in extension of the proximal ends of the upper and lower reciprocating members away from the handle, wherein the proximal ends of the upper and lower reciprocating members are configured be articulated toward the handle, the hinge acting as a fulcrum to separate the distal ends of the upper and lower reciprocating members and distract the first and second articulating subchondral surfaces.
Generally, the distal ends of the upper and lower reciprocating members may be sized to be delivered into the facet cavity through an aperture in the facet capsule.
In one embodiment, the handle may comprise a hollow tube, with a shaft running through the tube to the distal end of the handle, and a rasp coupled to the shaft at the distal end of the handle, wherein the shaft may be reciprocated within the tube such that the rasp runs along a subchondral surface to decorticate the surface.
Another aspect of an embodiment is an introducer for delivering an implant to an interior region of a facet joint, comprising an elongate handle having a proximal end and a distal end, and a spatula-shaped tip disposed at the distal end of the handle, the tip comprising upper and lower parallel planar surface extending distally outward from the distal end of the handle. The tip may be sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint substantially in line with the plane of the facet joint articulating surfaces, and comprises a platform configured to receive the implant and deliver the implant to a location within the cavity.
In one embodiment, the implant may comprise an inflatable membrane with a pocket configured to slide over the distal tip of the introducer. In this case, the introducer has a delivery line extending from the proximal end of the handle to distal tip and being configured to dispense an inflation medium to the inflatable membrane.
Another aspect of an embodiment is an apparatus for delivering an agent to an interior region of a facet joint, having an elongate handle with a proximal end and a distal end, and a shaft extending from the distal end of the handle. The shaft has a beveled surface at its distal tip, and a delivery line extending from the proximal end of the handle to the distal tip of the shaft. The beveled distal tip of the shaft may be sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint to deliver the agent to a treatment location within the joint. A blade may also be included on the distal end of the shaft, the blade configured to facilitate access into the facet joint.
In one embodiment of the current aspect, the shaft may comprise a lower planar surface extending proximally from the distal tip, wherein the lower planar surface provides a platform for guiding the apparatus in cooperation with a second instrument through the aperture.
Another aspect of an embodiment is a surgical system for treating the facet joint, comprising a first apparatus configured to gain access to the joint. The first apparatus may have an elongate handle having a proximal end and a distal end, and spatula-shaped tip disposed at the distal end of the handle, the tip comprising upper and lower parallel planar surface extending distally outward from the distal end of the handle. The tip may be sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint substantially in line with the plane of the facet joint articulating surfaces. The lower planar surface may provide a platform for guiding a second instrument through the aperture for treatment of the facet joint. The second instrument may comprise a planar surface that is configured to mate with the planar surface of the first instrument and slide distally along the first instrument to into the facet joint.
Another aspect of an embodiment is a system for facet joint immobilization, comprising: a facet access blade configured to pierce through the facet capsule and into the facet cavity to generate a slit-shaped aperture in the facet capsule that extends substantially parallel to the first and second articulating subchondral surfaces. The system may include a distraction apparatus configured to be delivered through the facet capsule and into the facet cavity to distract the first and second articulating subchondral surfaces a predetermined distance, and a decortication apparatus configured to be delivered through the facet capsule and into the facet cavity to decorticate at least one of the first and second articulating subchondral surfaces a predetermined distance. An introducer may also be delivered through the facet capsule and into the facet cavity to deliver an implant between the first and second articulating subchondral surfaces to immobilize the joint at the predetermined distance.
Another aspect of an embodiment is a method for accessing the facet joint of a patient, comprising: delivering a cutting blade to the facet joint capsule; and piercing through the facet capsule and into the facet cavity with the cutting blade to generate a slit-shaped aperture in the facet capsule, the aperture being oriented and sized to accommodate access into the facet joint
The method may further include delivering an introducer through the aperture and into the facet cavity. The cutting blade may be configured to guide delivery of the introducer.
Another aspect of an embodiment is a method for accessing the facet joint of a patient, comprising: delivering a first apparatus configured to gain access to the joint. The first apparatus comprising an elongate handle having a proximal end and a distal end, and a spatula-shaped tip disposed at the distal end of the handle, the tip comprising upper and lower parallel planar surface extending distally outward from the distal end of the handle. The tip is sized to be delivered into the facet joint via an aperture in the joint capsule and oriented in the joint substantially in line with the plane of the facet joint articulating surfaces. A second apparatus is delivered by guiding the second apparatus along the lower planar surface of the first apparatus and through the aperture for treatment of the facet joint. The second apparatus may have a planar surface that is configured to mate with the planar surface of the first apparatus and slide distally along the first apparatus to into the facet joint.
Yet another aspect of an embodiment is a method for immobilizing the facet joint of a patient; comprising delivering a cutting blade to the facet joint capsule; piercing through the facet capsule and into the facet cavity with the cutting blade to generate an aperture in the facet capsule accessing the joint with an introducer; preparing the joint by sanding down cortical bone with a rasp; wherein the rasp is configured to be non-invasively inserted within the aperture created by the cutter; and delivering a distraction device into the facet cavity and distracting the first and second articulating subchondral surfaces.
In one embodiment, the introducer facilitates delivery of the rasp and distraction device.
In one embodiment, the distraction device comprises a wedge detachably disposed at the distal end of an elongate handle, with the method further including delivering the wedge into the cavity through an aperture in the capsule so that the wedge contacts the first and second articulating subchondral surfaces and distract the surfaces as the wedge is driven into the cavity.
In another embodiment, the distraction device comprises an inflatable membrane, and distracting the first and second articulating subchondral surfaces comprises inflating the membrane.
In yet another embodiment, the distraction device comprises a reciprocating introducer, and distracting the first and second articulating subchondral surfaces comprises inserting the introducer into the facet joint and articulating a pair of distal reciprocating members.
Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
Referring more specifically to the drawings, for illustrative purposes, one embodiment of an apparatus is generally shown in
The facet joints 16 allow constrained spinal motion, while protecting the contained neural structures. From a kinematic viewpoint, the intervertebral facet joints 16 are highly constrained sliding planar articulations, lubricated by synovial fluid contained within the facet joint capsule 30. In the cervical spine, the geometry of the cervical vertebral bodies provides a high degree of protection for the neural elements by limiting normal motion of the spine to within physiologic limits. The upward inclination of the superior articular surfaces of the facet joints allows for considerable flexion and extension, as well as for lateral mobility.
The distraction, preparation and delivery devices disclosed herein facilitate minimally invasive or percutaneous surgical access, distraction and implant delivery to the facet joint, which is advantageous due to reduced surgical time, reduced recovery time, and improved surgical outcome. Each vertebral segment comprises a spinous process 34 located at the posterior end of the vertebrae, with the vertebral body located anteriorly. Each vertebra comprises an inferior articular (or transverse) process 35 and the superior articular process 37 that form four posterior articulating, e.g. opposing subchondral, surfaces: two superior facets 18 and two inferior facets 16. The inferior facet 18 from the inferior articular process 35 of the upper vertebra 12 and the superior facet from the superior articular process 37 of the lower vertebra 14 form the facet joint 16 on each lateral side of the spine.
Located medial to the articular processes 37 and vertebral bodies 26 is an aperture, or intervertebral foramina 38, that serves as a nerve root canal for the spinal nerves and vessels that transmit signals from the spinal chord to respective locations in the body.
Each facet joint 16 is covered by a dense, elastic articular capsule 28, which is attached just beyond the margins of the articular facets 18, 22. The inside of the capsule is lined by a synovial membrane (not shown), which secretes synovial fluid for lubricating the facet joint. The exterior of the joint capsule is surrounded by a capsular ligament (not shown), which may be temporarily repositioned to give access for insertion of the extendable implant of the present invention, described in further detail below. Thus, from a posterior-lateral approach, access to the facet joint 16 is relatively straightforward and well prescribed, as compared to other regions of the spine, which present a higher likelihood of trauma and risk of permanent damage.
It should also be noted that
As a result of the stenosed foraminal height H.sub.s, the height of the facet joint 16, or distance between subchondral articulating surfaces 18 and 22, is also narrowed, (shown as value D.sub.s in
The blade 110 is coupled to shaft 108 that is received inside a central channel 116 running axially down handle 106. The shaft and blade protrude distally from the handle 106 so that flat surface 114 running along the bottom of the blade 112 is exposed. The flat surface 114 facilitates introduction and cooperation of additional instruments used for the procedure, discussed in further detail below.
The shaft 108 has a beveled surface 118 that terminates at a point on the distal tip 102 of blade 112. As will be described in further detail below, the beveled surface 118 allows the blade 112 to access into the facet joint from sub-optimal angles of entry, and wedge the blade 112 into the joint for treatment.
It is appreciated that blade 112 may be a separable from shaft 108 and joined with an adhesive, fastener or other securing means. Alternatively blade 112 and shaft 108 may comprise one contiguous or integral piece of material. The blade and shaft may comprise a hardened metal, such as stainless steel or titanium.
The blade 112 and shaft 108 correspondingly have a D-shaped cross-section. Accordingly, chamber 116 of handle 106 also has a D-shaped cross-section, and is sized to receive shaft 108 and blade 112 with a snug fit. Handle 106 may comprise a plastic or similar polymer that is extruded, molded, or heat-shrunk in shape.
Once we have gained access to the facet joint cavity 30 with the cutting blade of the facet access tool 100, an introducer 150 may be inserted into the joint. The introducer 150, illustrated in
The tip 154 generally comprises a straight, flat leading edge 110 at distal end 152. Although the leading edge 152 is shown as a straight-line surface when viewed from above in
The tip 254 is coupled to shaft 158 that is received within a D-shaped opening channel 168 of the handle 156. The shaft 158 and tip 154 protrude distally from the handle 156 so that flat surface 160 running along the bottom of the tip and shaft is exposed. The shaft 158 has a beveled surface 162 that terminates at a point proximal to the distal tip end 152 of tip 154.
The malleable and thin planar shape of the “spatula” tip 154 and beveled shaft 158 allow for suboptimal entry angles and compensates for the narrow spacing of the facet joint. In the method of the present invention, the tip 154 is inserted into the opening 32 created by the facet access tool 100. The flat, thin cross-section of tip 154 is configured to easily slide into thin, planar cavity 30 of the facet joint 30.
As shown in
The introducer 150 may be inserted into the cavity 30 after the access blade 100 has been removed, or may be inserted while the access blade 100 is still in place, essentially using the access blade to guide the introducer 150 by sliding the flat bottom surface 160 along the bottom surface 114 of the access blade, as shown in
In a similar fashion as illustrated in
With proper access and orientation of the instruments in the facet joint 16, the articular surfaces 18 and 22 may be distracted to increase the distance D.sub.s. Distraction of the joint 16 may be accomplished via a number of methods, including use of an inflatable membrane such as that disclosed in U.S. patent application Ser. No. 11/618,619 filed on Dec. 29, 2006, herein incorporated by reference in its entirety.
Referring now to
The detachable tip 172, further illustrated in
The upper and lower beveled surfaces 182 converge to nipple 176 from a box shaped platform defined by lower and upper parallel distraction surfaces 188, and 190. The distance between the lower and upper distraction surfaces 188, and 190 sets the thickness T of the wedge.
The inserter 170 may be directed into to the facet joint cavity 30 with guidance from sliding it along introducer 150. When inserted into the cavity 30, the inserter generates an outward compressive force on the subchondral surfaces 18 and 22 to increase the distance between them to a desired treatment or nominal value D.sub.T. As shown in
This distraction of walls 18 and 22 correspondingly increases the height of the intervertebral foramin to a treatment or nominal value H.sub.T. The value of D.sub.T, and resulting increase in H.sub.T may be predetermined by the surgeon prior to the surgery based on pre-op analysis of the patient's condition and anatomy, and/or may also be iteratively devised by patient feedback of symptom improvement during the procedure.
Referring now to
The distal tips 210 of the pivoting members 202, 204 are configured to collapse down over rasp 208 to facilitate entry of the duckbill into the facet joint cavity 30. Correspondingly, the proximal ends 212 of the pivoting members 202, 204 expand outward from tube 214. Once properly positioned within the cavity 30, the proximal ends of the pivoting members 202, 204 (which are in an expanded configuration), can be manually pressed inward toward the shaft 214. This activation causes the duckbill to expand at distal tips 210, and distract the facet joint 16.
With the facet joint surfaces 18, 22 distracted, the rasp 232 may be articulated distally outward from the duckbill and on to the facet surfaces 18, 22. The rasp 208 may be reciprocated back and forth within the tube 214 (via manual manipulation of the proximal end of shaft 220), thereby decorticating (by sanding or grating the surface) the surfaces in preparation for fusion.
The shaft 238 has a beveled surface 240 that terminates at a point proximal to the distal tip 236 of the rasp 232. The thin, flexible shape allows the rasp to bend and access into the facet joint from sub-optimal angles of entry. The rasp may have one or more surfaces comprise a plurality of teeth 234 configured to grate down the hard cortical surface of the opposing facet joint surfaces 18, 22.
Alternative decorticating devices may include a flat device with an aggressive cutting surface that is rolled to achieve roughening of the facet surface (not shown), and a device with two opposing rasp surfaces that articulate in a lateral motion through a “scissor like” activation feature. In such a configuration, the two blades of the scissors have flat upper and lower roughened surfaces that would simultaneously decorticate the opposing subchondral surfaces by remote manipulation of the blades. In other embodiments, decorticating devices may take the form of an abraded shaft and decorticating may be performed by rolling the device. In yet other embodiments, decorticating device may take the form of a file mechanism and decorticating may be performed with a back and forth filing motion, where the decorticating device is positioned and actuated using floss.
With the facet joint 16 distracted and decorticated, the method of the present invention includes an embodiment where a specifically shaped piece of structural bone allograft (not shown) is then inserted into the space of distraction between the opposing facet joint surfaces. The bone allograft may be one of a series or kit of bone allograft having a predetermined shape and size (e.g. be sized in thickness that vary by small increments). The bone allograft may then be further shaped by the physician to have a custom size and shape correlating to the specific anatomy of the patient to be treated.
The bone allograft is further supplemented with an injectable biomaterial such as bone morphogenic protein (BMP) to supplement the fusion potential at this level.
Device 260 includes an elongate handle 268 having a flat cutting blade 264 on its distal end 262. The blade 264 generally comprises a straight, flat (i.e. planar), leading edge at distal tip 262. Although the leading edge 262 is shown as a straight-line surface when viewed from above in
The blade 264 is coupled to shaft 272 that is received inside a central channel running axially down handle 268. The shaft and blade protrude distally from the handle 268 so that flat surface 266 running along the bottom of the blade 262 is exposed. The flat surface 266 facilitates introduction and cooperation with additional instruments such as introducer 150.
The shaft 272 has a beveled surface 274 that terminates at a point on the distal tip 262 of blade 264. The beveled surface 274 allows the blade 112 to access into the facet joint from sub-optimal angles of entry, and wedge the blade into the joint for treatment.
The blade 264 and shaft 272 correspondingly have a D-shaped cross-section. Accordingly, the chamber of handle 268 also has a D-shaped cross-section, and is sized to receive shaft 272 and blade 264 with a snug fit.
The shaft has one or more channels 276 that run axially down the length of the shaft to deliver an injectable biomaterial from lines 280 located at the proximal end 270 of handle 268 to the distal tip 262 of the device. Thus, with the distal tip 262 positioned in the facet joint cavity 230, bmp is delivered though channels 276 to distal tip 262 at the treatment site.
Distraction may also be accomplished via insertion of an inflatable membrane in the joint 16.
The insertion device 300 comprises a handle 316 at its proximal end 318, and a malleable “spatula” shaped tip 306 at its distal end 308.
The tip 306 generally comprises a straight, flat leading edge at distal end 308. Although the leading edge 308 is shown as a straight-line surface when viewed from above in
The tip 306 is coupled to shaft 310 that is received within a D-shaped opening channel of the handle 316. The shaft 310 and tip 306 protrude distally from the handle 316 so that flat surface 314 running along the bottom of the tip and shaft is exposed. The shaft 310 has a beveled surface 312 that terminates at a point proximal to the distal tip end 308 of tip 306.
Inflatable membrane 302, in accordance with the present invention, has a pocket 304 such that the inflatable membrane 302 can be disposed on distal end 308, and delivered through opening 32 created by the access tool 100 and into the cavity 30. Delivery into the cavity may be guided by sliding lower surface 314 along introducer 150. Once the inflatable membrane 302 is positioned in the proper location within cavity 30, inflation medium is delivered through line 330 running axially along shaft 310 from proximal end 318 to distal tip 308, and the inflatable membrane 302 is expanded inside the joint 30. The inflatable membrane 302 generates a force on the opposing facet surfaces and distracts the joint. With the added pressure, the insertion device 300 is simply just pulled out of the joint, with the tip 306 sliding out of pocket 304 while the inflatable membrane 302 retains its position.
The malleable and thin planar shape of the “spatula” tip 306 and beveled shaft 312 allow for suboptimal entry angles and compensates for the narrow spacing of the facet joint. Thus, the inflatable membrane 302 may be delivered from a less invasive, by non-aligned orientation.
The delivered implant is configured to distract the joint and reverse narrowing of the nerve root canal 38 and alleviate symptoms of cervical stenosis. However, it is also within the scope of the present invention to size the implant according to other spinal conditions, for example to correct for cervical kyphosis or loss of cervical lordosis
The process for achieving indirect cervical decompression and fusion may also include posterior stabilization with any number of commercially available implants & instrument sets available in the art.
Although the embodiments disclosed above are directed primarily to installation in the cervical facet joint, it is contemplated that the devices and methods may also be used to increase foraminal dimension in other regions of the spine, e.g. thoracic, lumbar, etc.
Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation application of Ser. No. 15/467,773, filed Mar. 23, 2017, which is a continuation application of Ser. No. 14/675,626, filed Mar. 31, 2015, which is a continuation application of Ser. No. 12/350,609, filed Jan. 8, 2009, now U.S. Pat. No. 9,005,288, which claims priority to U.S. Provisional Patent Application No. 61/020,082, entitled “METHODS AND APPARATUS FOR ACCESSING AND TREATING THE FACET JOINT,” filed on Jan. 9, 2008. The full disclosures of the above-listed patent applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1934962 | Barry | Nov 1933 | A |
2708376 | Booth | May 1955 | A |
2984241 | Carlson | May 1961 | A |
3486505 | Morrison | Dec 1969 | A |
4479491 | Martin | Oct 1984 | A |
4530355 | Griggs | Jul 1985 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4772287 | Ray et al. | Sep 1988 | A |
4877020 | Vich | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
5015247 | Michelson | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5100405 | McLaren | Mar 1992 | A |
5135528 | Winston | Aug 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5236460 | Barber | Aug 1993 | A |
5443514 | Steffee | Aug 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5527312 | Ray | Jun 1996 | A |
5549679 | Kuslich et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5584832 | Schlapfer et al. | Dec 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5632747 | Scarborough et al. | May 1997 | A |
5649945 | Ray | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5720748 | Kuslich et al. | Feb 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5792044 | Foley et al. | Aug 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5879353 | Terry | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5891147 | Moskovitz | Apr 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5899908 | Kuslich et al. | May 1999 | A |
5928238 | Scarborough et al. | Jul 1999 | A |
5953820 | Vasudeva | Sep 1999 | A |
5961522 | Mehdizadeh | Oct 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
6008433 | Stone | Dec 1999 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6080155 | Michelson | Jun 2000 | A |
6090143 | Meriwether et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6113602 | Sand | Sep 2000 | A |
6149650 | Michelson | Nov 2000 | A |
RE37005 | Michelson et al. | Dec 2000 | E |
6159245 | Meriwether et al. | Dec 2000 | A |
6174311 | Branch et al. | Jan 2001 | B1 |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6179873 | Zientek | Jan 2001 | B1 |
6190388 | Michelson et al. | Feb 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6200322 | Branch et al. | Mar 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
RE37161 | Michelson et al. | May 2001 | E |
6224595 | Michelson | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
D444878 | Walter | Jul 2001 | S |
D445188 | Walter | Jul 2001 | S |
6264656 | Michelson | Jul 2001 | B1 |
6267763 | Castro | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6283966 | Boufburg | Sep 2001 | B1 |
6315795 | Scarborough et al. | Nov 2001 | B1 |
6325827 | Lin | Dec 2001 | B1 |
6371984 | Van Dyke et al. | Apr 2002 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6423063 | Bonutti | Jul 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6425919 | Lambrecht | Jul 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6451023 | Salazar et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6478796 | Zucherman et al. | Nov 2002 | B2 |
6500206 | Bryan | Dec 2002 | B1 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6524312 | Landry et al. | Feb 2003 | B2 |
6530955 | Boyle et al. | Mar 2003 | B2 |
6537279 | Michelson | Mar 2003 | B1 |
6558390 | Cragg | May 2003 | B2 |
6565574 | Michelson | May 2003 | B2 |
6565605 | Fallin et al. | May 2003 | B2 |
6569186 | Winters et al. | May 2003 | B1 |
6575899 | Foley et al. | Jun 2003 | B1 |
6575919 | Reiley et al. | Jun 2003 | B1 |
6575979 | Cragg | Jun 2003 | B1 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582432 | Michelson | Jun 2003 | B1 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6626905 | Schmiel et al. | Sep 2003 | B1 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6635060 | Hanson et al. | Oct 2003 | B2 |
6641582 | Hanson et al. | Nov 2003 | B1 |
6648893 | Dudasik | Nov 2003 | B2 |
6652584 | Michelson | Nov 2003 | B2 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6666866 | Martz et al. | Dec 2003 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6682535 | Hoogland | Jan 2004 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6709458 | Michelson | Mar 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6719794 | Gerber et al. | Apr 2004 | B2 |
6723095 | Hammerslag | Apr 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6751875 | Jones | Jun 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6793679 | Michelson | Sep 2004 | B2 |
6805715 | Reuter et al. | Oct 2004 | B2 |
6808537 | Michelson | Oct 2004 | B2 |
6814738 | Naughton et al. | Nov 2004 | B2 |
6823871 | Schmieding | Nov 2004 | B2 |
6840941 | Rogers et al. | Jan 2005 | B2 |
6851430 | Tsou | Feb 2005 | B2 |
6875213 | Michelson | Apr 2005 | B2 |
6899719 | Reiley et al. | May 2005 | B2 |
6921403 | Cragg et al. | Jul 2005 | B2 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6979333 | Hammerslag | Dec 2005 | B2 |
6986772 | Michelson | Jan 2006 | B2 |
7001385 | Bonutti | Feb 2006 | B2 |
7008453 | Michelson | Mar 2006 | B1 |
7033362 | McGahan et al. | Apr 2006 | B2 |
7033392 | Schmiel et al. | Apr 2006 | B2 |
7033394 | Michelson | Apr 2006 | B2 |
7066961 | Michelson | Jun 2006 | B2 |
D524443 | Blain | Jul 2006 | S |
7083623 | Michelson | Aug 2006 | B2 |
7090698 | Fallin et al. | Aug 2006 | B2 |
7096972 | Orozco, Jr. | Aug 2006 | B2 |
7101398 | Dooris et al. | Sep 2006 | B2 |
7115128 | Michelson | Oct 2006 | B2 |
7118598 | Michelson | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7156877 | Lotz et al. | Jan 2007 | B2 |
7166110 | Yundt | Jan 2007 | B2 |
7175023 | Martin | Feb 2007 | B2 |
7179263 | Zdeblick et al. | Feb 2007 | B2 |
7207991 | Michelson | Apr 2007 | B2 |
D541940 | Blain | May 2007 | S |
7220280 | Kast et al. | May 2007 | B2 |
7255703 | Mujwid et al. | Aug 2007 | B2 |
7261739 | Ralph et al. | Aug 2007 | B2 |
7264622 | Michelson | Sep 2007 | B2 |
7273498 | Bianchi et al. | Sep 2007 | B2 |
7288093 | Michelson | Oct 2007 | B2 |
7291149 | Michelson | Nov 2007 | B1 |
7300440 | Zdeblick et al. | Nov 2007 | B2 |
7326211 | Padget et al. | Feb 2008 | B2 |
7326214 | Michelson | Feb 2008 | B2 |
7371238 | Soboleski et al. | May 2008 | B2 |
7399303 | Michelson | Jul 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7431722 | Michelson | Oct 2008 | B1 |
7445636 | Michelson | Nov 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7452369 | Barry | Nov 2008 | B2 |
7465304 | Haufe et al. | Dec 2008 | B1 |
7476226 | Weikel et al. | Jan 2009 | B2 |
7476251 | Zucherman et al. | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7491205 | Michelson | Feb 2009 | B1 |
7491240 | Carver et al. | Feb 2009 | B1 |
7500992 | Li | Mar 2009 | B2 |
7517358 | Peterson | Apr 2009 | B2 |
7524333 | Lambrecht et al. | Apr 2009 | B2 |
7569054 | Michelson | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7580743 | Bourlion et al. | Aug 2009 | B2 |
7591851 | Winslow et al. | Sep 2009 | B2 |
7601170 | Winslow et al. | Oct 2009 | B2 |
7608077 | Cragg et al. | Oct 2009 | B2 |
7608107 | Michelson | Oct 2009 | B2 |
7615079 | Flickinger et al. | Nov 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7641664 | Pagano | Jan 2010 | B2 |
7648509 | Stark | Jan 2010 | B2 |
7648523 | Mirkovic et al. | Jan 2010 | B2 |
7655027 | Michelson | Feb 2010 | B2 |
7655043 | Peterman et al. | Feb 2010 | B2 |
7662173 | Cragg et al. | Feb 2010 | B2 |
D611147 | Hanson et al. | Mar 2010 | S |
7682378 | Truckai et al. | Mar 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7686807 | Padget et al. | Mar 2010 | B2 |
7699878 | Pavlov et al. | Apr 2010 | B2 |
D615653 | Horton | May 2010 | S |
7708761 | Petersen | May 2010 | B2 |
7722619 | Michelson | May 2010 | B2 |
D619719 | Pannu | Jul 2010 | S |
D620113 | Courtney et al. | Jul 2010 | S |
7763024 | Bertagnoli et al. | Jul 2010 | B2 |
7763050 | Winslow et al. | Jul 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
D623748 | Horton et al. | Sep 2010 | S |
D623749 | Horton et al. | Sep 2010 | S |
7789898 | Peterman | Sep 2010 | B2 |
D627468 | Richter et al. | Nov 2010 | S |
7824431 | McCormack | Nov 2010 | B2 |
7837713 | Peterson | Nov 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7846184 | Sasso et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7862589 | Thramann | Jan 2011 | B2 |
7867277 | Tohmeh | Jan 2011 | B1 |
D631967 | Horton | Feb 2011 | S |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7887565 | Michelson | Feb 2011 | B2 |
7892261 | Bonutti | Feb 2011 | B2 |
7892286 | Michelson | Feb 2011 | B2 |
7896803 | Schara et al. | Mar 2011 | B2 |
7896903 | Link | Mar 2011 | B2 |
7901439 | Horton | Mar 2011 | B2 |
7914530 | Michelson | Mar 2011 | B2 |
7918891 | Curran et al. | Apr 2011 | B1 |
7922729 | Michelson | Apr 2011 | B2 |
7922766 | Grob et al. | Apr 2011 | B2 |
7935136 | Alamin et al. | May 2011 | B2 |
7938857 | Krueger et al. | May 2011 | B2 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7988712 | Hale et al. | Aug 2011 | B2 |
7988714 | Puekert et al. | Aug 2011 | B2 |
7998174 | Malandain et al. | Aug 2011 | B2 |
8007534 | Michelson | Aug 2011 | B2 |
8029540 | Winslow et al. | Oct 2011 | B2 |
8043334 | Fisher et al. | Oct 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8062303 | Berry et al. | Nov 2011 | B2 |
8066705 | Michelson | Nov 2011 | B2 |
D650481 | Gottlieb et al. | Dec 2011 | S |
8097034 | Michelson | Jan 2012 | B2 |
8100944 | Lauryssen et al. | Jan 2012 | B2 |
D653757 | Binder | Feb 2012 | S |
8114158 | Carl et al. | Feb 2012 | B2 |
8118838 | Winslow et al. | Feb 2012 | B2 |
8128660 | Mitchel et al. | Mar 2012 | B2 |
8133261 | Fisher et al. | Mar 2012 | B2 |
8142503 | Malone | Mar 2012 | B2 |
8147553 | Vresilovic et al. | Apr 2012 | B2 |
8162981 | Vestgaarden | Apr 2012 | B2 |
8172877 | Winslow et al. | May 2012 | B2 |
8177872 | Nelson et al. | May 2012 | B2 |
8197513 | Fisher et al. | Jun 2012 | B2 |
8206418 | Triplett et al. | Jun 2012 | B2 |
8267966 | McCormack et al. | Sep 2012 | B2 |
D674900 | Janice et al. | Jan 2013 | S |
8348979 | McCormack | Jan 2013 | B2 |
8361152 | McCormack et al. | Jan 2013 | B2 |
8366748 | Kleiner | Feb 2013 | B2 |
8382767 | Wassinger et al. | Feb 2013 | B2 |
D677791 | Danacioglu et al. | Mar 2013 | S |
8394107 | Fanger et al. | Mar 2013 | B2 |
8394129 | Morgenstern et al. | Mar 2013 | B2 |
D681205 | Farris et al. | Apr 2013 | S |
8425558 | McCormack et al. | Apr 2013 | B2 |
8439922 | Arnold et al. | May 2013 | B1 |
8512347 | McCormack et al. | Aug 2013 | B2 |
8523908 | Malone | Sep 2013 | B2 |
8529609 | Helgerson et al. | Sep 2013 | B2 |
8623054 | Mccormack et al. | Jan 2014 | B2 |
8668722 | Pavlov et al. | Mar 2014 | B2 |
8753345 | McCormack et al. | Jun 2014 | B2 |
8753347 | McCormack et al. | Jun 2014 | B2 |
8764755 | Michelson | Jul 2014 | B2 |
8828062 | McCormack et al. | Sep 2014 | B2 |
8834530 | McCormack | Sep 2014 | B2 |
8845727 | Gottlieb et al. | Sep 2014 | B2 |
8870882 | Kleiner | Oct 2014 | B2 |
D723690 | McCormack et al. | Mar 2015 | S |
D723691 | McCormack et al. | Mar 2015 | S |
8998905 | Marik et al. | Apr 2015 | B2 |
9005288 | McCormack et al. | Apr 2015 | B2 |
9011492 | McCormack et al. | Apr 2015 | B2 |
D732667 | McCormack et al. | Jun 2015 | S |
9186193 | Kleiner et al. | Nov 2015 | B2 |
D745156 | McCormack et al. | Dec 2015 | S |
9211198 | Michelson | Dec 2015 | B2 |
9220608 | McKay | Dec 2015 | B2 |
D750249 | Grimberg, Jr. et al. | Feb 2016 | S |
9271765 | Blain | Mar 2016 | B2 |
9333086 | McCormack et al. | May 2016 | B2 |
9358127 | Duffield et al. | Jun 2016 | B2 |
9381049 | McCormack et al. | Jul 2016 | B2 |
9427264 | Kleiner et al. | Aug 2016 | B2 |
9504583 | Blain | Nov 2016 | B2 |
9622791 | McCormack et al. | Apr 2017 | B2 |
9622873 | McCormack et al. | Apr 2017 | B2 |
9622874 | McCormack et al. | Apr 2017 | B2 |
9629665 | McCormack et al. | Apr 2017 | B2 |
9717403 | Kleiner et al. | Aug 2017 | B2 |
9937053 | Melkent et al. | Apr 2018 | B2 |
10039649 | McCormack et al. | Aug 2018 | B2 |
10149673 | McCormack et al. | Dec 2018 | B2 |
10172721 | McCormack et al. | Jan 2019 | B2 |
D841165 | McCormack et al. | Feb 2019 | S |
D841167 | Ricca et al. | Feb 2019 | S |
10201375 | McCormack et al. | Feb 2019 | B2 |
10206787 | Voellmicke | Feb 2019 | B2 |
10219910 | McCormack et al. | Mar 2019 | B2 |
10226285 | McCormack et al. | Mar 2019 | B2 |
10238501 | McCormack et al. | Mar 2019 | B2 |
10327913 | Palmatier et al. | Jun 2019 | B2 |
10456175 | McCormack et al. | Oct 2019 | B2 |
10568666 | McCormack et al. | Feb 2020 | B2 |
10588672 | McCormack et al. | Mar 2020 | B2 |
D884895 | McCormack et al. | May 2020 | S |
D887552 | Tanaka et al. | Jun 2020 | S |
10682243 | Phan et al. | Jun 2020 | B2 |
D911525 | Tanaka et al. | Feb 2021 | S |
RE48501 | McCormack et al. | Apr 2021 | E |
11272964 | Mccormack et al. | Mar 2022 | B2 |
11285010 | Mccormack | Mar 2022 | B2 |
20010004710 | Felt et al. | Jun 2001 | A1 |
20010047208 | Michelson | Nov 2001 | A1 |
20010053914 | Landry et al. | Dec 2001 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020068941 | Hanson et al. | Jun 2002 | A1 |
20020077641 | Michelson | Jun 2002 | A1 |
20020107519 | Dixon et al. | Aug 2002 | A1 |
20020143343 | Castro | Oct 2002 | A1 |
20020147496 | Belef et al. | Oct 2002 | A1 |
20020165612 | Gerber | Nov 2002 | A1 |
20020169471 | Ferdinand | Nov 2002 | A1 |
20020177866 | Weikel et al. | Nov 2002 | A1 |
20030023312 | Thalgott | Jan 2003 | A1 |
20030028251 | Mathews | Feb 2003 | A1 |
20030032962 | McGahan et al. | Feb 2003 | A1 |
20030033017 | Lotz et al. | Feb 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030105526 | Bryant et al. | Jun 2003 | A1 |
20030109928 | Pasquet et al. | Jun 2003 | A1 |
20030139816 | Michelson | Jul 2003 | A1 |
20030144737 | Sherman | Jul 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030158553 | Michelson | Aug 2003 | A1 |
20030225416 | Bonvallet et al. | Dec 2003 | A1 |
20040010259 | Keller et al. | Jan 2004 | A1 |
20040059337 | Hanson et al. | Mar 2004 | A1 |
20040073217 | Michelson | Apr 2004 | A1 |
20040087948 | Suddaby | May 2004 | A1 |
20040087956 | Weikel et al. | May 2004 | A1 |
20040106999 | Mathews | Jun 2004 | A1 |
20040133277 | Michelson | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040162562 | Martz | Aug 2004 | A1 |
20040215344 | Hochshculer et al. | Oct 2004 | A1 |
20050010294 | Michelson | Jan 2005 | A1 |
20050015097 | Mujwid et al. | Jan 2005 | A1 |
20050015149 | Michelson | Jan 2005 | A1 |
20050021042 | Marnay et al. | Jan 2005 | A1 |
20050027358 | Suddaby | Feb 2005 | A1 |
20050033432 | Gordon et al. | Feb 2005 | A1 |
20050038511 | Martz et al. | Feb 2005 | A1 |
20050049623 | Moore et al. | Mar 2005 | A1 |
20050049705 | Hale et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050065518 | Michelson | Mar 2005 | A1 |
20050065519 | Michelson | Mar 2005 | A1 |
20050065608 | Michelson | Mar 2005 | A1 |
20050065609 | Wardlaw | Mar 2005 | A1 |
20050080422 | Otte et al. | Apr 2005 | A1 |
20050090829 | Martz et al. | Apr 2005 | A1 |
20050090901 | Studer | Apr 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050119680 | Dykes | Jun 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159650 | Raymond et al. | Jul 2005 | A1 |
20050159746 | Grob et al. | Jul 2005 | A1 |
20050177240 | Blain | Aug 2005 | A1 |
20050182417 | Pagano | Aug 2005 | A1 |
20050209698 | Gordon et al. | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050234455 | Binder et al. | Oct 2005 | A1 |
20050240188 | Chow et al. | Oct 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050251257 | Mitchell et al. | Nov 2005 | A1 |
20050267480 | Suddaby | Dec 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20060036243 | Sasso et al. | Feb 2006 | A1 |
20060036247 | Michelson | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060041311 | McLeer | Feb 2006 | A1 |
20060058790 | Carl et al. | Mar 2006 | A1 |
20060058793 | Michelson | Mar 2006 | A1 |
20060058878 | Michelson | Mar 2006 | A1 |
20060069442 | Michelson | Mar 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060079962 | Michelson | Apr 2006 | A1 |
20060085068 | Barry | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060095028 | Bleich | May 2006 | A1 |
20060095036 | Hammerslag | May 2006 | A1 |
20060111779 | Peterson | May 2006 | A1 |
20060111780 | Petersen | May 2006 | A1 |
20060111781 | Petersen | May 2006 | A1 |
20060142762 | Michelson | Jun 2006 | A1 |
20060149279 | Mathews | Jul 2006 | A1 |
20060149289 | Winslow et al. | Jul 2006 | A1 |
20060184172 | Michelson | Aug 2006 | A1 |
20060189991 | Bickley | Aug 2006 | A1 |
20060190081 | Kraus et al. | Aug 2006 | A1 |
20060195109 | McGahan et al. | Aug 2006 | A1 |
20060200137 | Soboleski et al. | Sep 2006 | A1 |
20060200138 | Michelson | Sep 2006 | A1 |
20060200139 | Michelson | Sep 2006 | A1 |
20060206118 | Kim et al. | Sep 2006 | A1 |
20060217812 | Lambrecht et al. | Sep 2006 | A1 |
20060229627 | Hunt et al. | Oct 2006 | A1 |
20060235391 | Sutterlin | Oct 2006 | A1 |
20060241597 | Mitchell et al. | Oct 2006 | A1 |
20060241626 | McGahan et al. | Oct 2006 | A1 |
20060241758 | Peterman et al. | Oct 2006 | A1 |
20060247632 | Winslow et al. | Nov 2006 | A1 |
20060247633 | Winslow et al. | Nov 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060259142 | Dooris et al. | Nov 2006 | A1 |
20060271195 | Thramann | Nov 2006 | A1 |
20060276790 | Dawson et al. | Dec 2006 | A1 |
20060276801 | Yerby et al. | Dec 2006 | A1 |
20060276897 | Winslow et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070016195 | Winslow et al. | Jan 2007 | A1 |
20070016196 | Winslow et al. | Jan 2007 | A1 |
20070016218 | Winslow et al. | Jan 2007 | A1 |
20070032871 | Michelson | Feb 2007 | A1 |
20070043362 | Malandain et al. | Feb 2007 | A1 |
20070050031 | Khosrowshahi | Mar 2007 | A1 |
20070055245 | Sasso et al. | Mar 2007 | A1 |
20070055263 | Way et al. | Mar 2007 | A1 |
20070073402 | Vresilovic et al. | Mar 2007 | A1 |
20070083265 | Malone | Apr 2007 | A1 |
20070123863 | Winslow et al. | May 2007 | A1 |
20070123888 | Bleich et al. | May 2007 | A1 |
20070135814 | Farris | Jun 2007 | A1 |
20070135921 | Park | Jun 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070149983 | Link | Jun 2007 | A1 |
20070150061 | Trieu | Jun 2007 | A1 |
20070161991 | Altarac et al. | Jul 2007 | A1 |
20070162138 | Heinz | Jul 2007 | A1 |
20070179617 | Brown et al. | Aug 2007 | A1 |
20070179619 | Grob et al. | Aug 2007 | A1 |
20070191861 | Allard et al. | Aug 2007 | A1 |
20070225721 | Thelen et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070244483 | Winslow et al. | Oct 2007 | A9 |
20070250167 | Bray et al. | Oct 2007 | A1 |
20070276491 | Ahrens | Nov 2007 | A1 |
20070282441 | Stream et al. | Dec 2007 | A1 |
20070288014 | Shadduck et al. | Dec 2007 | A1 |
20070293949 | Salerni et al. | Dec 2007 | A1 |
20070299451 | Tulkis | Dec 2007 | A1 |
20080015581 | Eckman | Jan 2008 | A1 |
20080021457 | Anderson et al. | Jan 2008 | A1 |
20080021464 | Morin et al. | Jan 2008 | A1 |
20080058954 | Trieu | Mar 2008 | A1 |
20080065219 | Dye | Mar 2008 | A1 |
20080077245 | Lee | Mar 2008 | A1 |
20080097436 | Culbert et al. | Apr 2008 | A1 |
20080108996 | Padget et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080154377 | Voellmicke | Jun 2008 | A1 |
20080161810 | Melkent | Jul 2008 | A1 |
20080161929 | McCormack et al. | Jul 2008 | A1 |
20080167657 | Greenhaigh | Jul 2008 | A1 |
20080177311 | Winslow et al. | Jul 2008 | A1 |
20080183209 | Robinson et al. | Jul 2008 | A1 |
20080195206 | Chee et al. | Aug 2008 | A1 |
20080208341 | McCormack et al. | Aug 2008 | A1 |
20080216846 | Levin | Sep 2008 | A1 |
20080234677 | Dahners et al. | Sep 2008 | A1 |
20080234758 | Fisher et al. | Sep 2008 | A1 |
20080249571 | Sasso et al. | Oct 2008 | A1 |
20080255564 | Michelson | Oct 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20080255622 | Mickiewicz et al. | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080255667 | Horton | Oct 2008 | A1 |
20080275455 | Berry et al. | Nov 2008 | A1 |
20080287955 | Michelson | Nov 2008 | A1 |
20080300685 | Carls et al. | Dec 2008 | A1 |
20080306537 | Culbert | Dec 2008 | A1 |
20080312744 | Vresilovic et al. | Dec 2008 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090138053 | Assell et al. | May 2009 | A1 |
20090177205 | McCormack et al. | Jul 2009 | A1 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090177237 | Zucherman et al. | Jul 2009 | A1 |
20090182429 | Humphreys et al. | Jul 2009 | A1 |
20090234397 | Petersen | Sep 2009 | A1 |
20090248076 | Reynolds et al. | Oct 2009 | A1 |
20090263461 | McKay | Oct 2009 | A1 |
20090270929 | Suddaby et al. | Oct 2009 | A1 |
20090275994 | Phan et al. | Nov 2009 | A1 |
20090297603 | Joshi | Dec 2009 | A1 |
20090306671 | McCormack et al. | Dec 2009 | A1 |
20090312763 | McCormack et al. | Dec 2009 | A1 |
20100036418 | Siemionow et al. | Feb 2010 | A1 |
20100069912 | McCormack et al. | Mar 2010 | A1 |
20100082065 | Butler et al. | Apr 2010 | A1 |
20100086185 | Weiss | Apr 2010 | A1 |
20100093829 | Gorman | Apr 2010 | A1 |
20100111829 | Drapeau et al. | May 2010 | A1 |
20100114318 | Gittings et al. | May 2010 | A1 |
20100145391 | Kleiner | Jun 2010 | A1 |
20100145459 | Mcdonough et al. | Jun 2010 | A1 |
20100191241 | McCormack et al. | Jul 2010 | A1 |
20100211104 | Moumene et al. | Aug 2010 | A1 |
20100286783 | Lechmann et al. | Nov 2010 | A1 |
20110004247 | Lechmann et al. | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110054613 | Hansen | Mar 2011 | A1 |
20110077686 | Mishra et al. | Mar 2011 | A1 |
20110082548 | Assell et al. | Apr 2011 | A1 |
20110144755 | Baynham et al. | Jun 2011 | A1 |
20110184470 | Gorek et al. | Jul 2011 | A1 |
20110190821 | Chin et al. | Aug 2011 | A1 |
20110245930 | Alley et al. | Oct 2011 | A1 |
20110295327 | Moskowitz et al. | Dec 2011 | A1 |
20110307061 | Assell et al. | Dec 2011 | A1 |
20120010659 | Angert et al. | Jan 2012 | A1 |
20120010662 | O'Neil et al. | Jan 2012 | A1 |
20120010669 | O'Neil et al. | Jan 2012 | A1 |
20120029545 | Nelson et al. | Feb 2012 | A1 |
20120065613 | Pepper et al. | Mar 2012 | A1 |
20120130496 | Duffield et al. | May 2012 | A1 |
20120143334 | Boyce et al. | Jun 2012 | A1 |
20120179259 | Mcdonough et al. | Jul 2012 | A1 |
20120215259 | Cannestra | Aug 2012 | A1 |
20120245689 | Gimbel et al. | Sep 2012 | A1 |
20120265250 | Ali | Oct 2012 | A1 |
20120277801 | Marik et al. | Nov 2012 | A1 |
20120283776 | Mishra | Nov 2012 | A1 |
20120323242 | Tsuang et al. | Dec 2012 | A1 |
20130006364 | McCormack et al. | Jan 2013 | A1 |
20130012994 | McCormack et al. | Jan 2013 | A1 |
20130013070 | McCormack et al. | Jan 2013 | A1 |
20130018474 | McCormack et al. | Jan 2013 | A1 |
20130023889 | Blain et al. | Jan 2013 | A1 |
20130023995 | McCormack et al. | Jan 2013 | A1 |
20130023996 | McCormack et al. | Jan 2013 | A1 |
20130030440 | McCormack et al. | Jan 2013 | A1 |
20130030532 | McCormack et al. | Jan 2013 | A1 |
20130110168 | McCormack et al. | May 2013 | A1 |
20130110243 | Patterson et al. | May 2013 | A1 |
20130123922 | McCormack | May 2013 | A1 |
20130144389 | Bonutti | Jun 2013 | A1 |
20130226239 | Altarac et al. | Aug 2013 | A1 |
20130238095 | Pavento et al. | Sep 2013 | A1 |
20130253649 | Davis | Sep 2013 | A1 |
20130274763 | Drapeau et al. | Oct 2013 | A1 |
20130310839 | McCormack et al. | Nov 2013 | A1 |
20130310878 | McCormack et al. | Nov 2013 | A1 |
20130310943 | McCormack et al. | Nov 2013 | A1 |
20130317548 | Malone | Nov 2013 | A1 |
20130338720 | Kleiner | Dec 2013 | A1 |
20140012318 | Goel | Jan 2014 | A1 |
20140025113 | McCormack et al. | Jan 2014 | A1 |
20140100657 | McCormack et al. | Apr 2014 | A1 |
20140114415 | Tyber | Apr 2014 | A1 |
20140135930 | Georges | May 2014 | A1 |
20140172103 | O'Neil et al. | Jun 2014 | A1 |
20140228959 | Niemiec et al. | Aug 2014 | A1 |
20140296916 | Mccormack et al. | Oct 2014 | A1 |
20140379087 | McCormack | Dec 2014 | A1 |
20150025635 | Laubert | Jan 2015 | A1 |
20150100129 | Waugh et al. | Apr 2015 | A1 |
20150201977 | Mccormack et al. | Jul 2015 | A1 |
20150230834 | Cannestra | Aug 2015 | A1 |
20150297357 | McCormack et al. | Oct 2015 | A1 |
20150328005 | Padovani et al. | Nov 2015 | A1 |
20150328010 | Martynova et al. | Nov 2015 | A1 |
20150342648 | Mccormack et al. | Dec 2015 | A1 |
20150342649 | Mccormack et al. | Dec 2015 | A1 |
20160008040 | Mccormack et al. | Jan 2016 | A1 |
20160242754 | Mccormack et al. | Aug 2016 | A1 |
20160250035 | De Villiers et al. | Sep 2016 | A1 |
20160317316 | Mccormack et al. | Nov 2016 | A1 |
20160331553 | Liou et al. | Nov 2016 | A1 |
20170027713 | Kleiner | Feb 2017 | A1 |
20170135733 | Donner et al. | May 2017 | A1 |
20170189199 | Maier et al. | Jul 2017 | A1 |
20170216044 | McCormack et al. | Aug 2017 | A1 |
20170281360 | Seifert | Oct 2017 | A1 |
20170348027 | McCormack et al. | Dec 2017 | A1 |
20170354444 | McCormack et al. | Dec 2017 | A1 |
20170360571 | Mesiwala | Dec 2017 | A1 |
20180161077 | McCormack et al. | Jun 2018 | A1 |
20180303631 | Phan et al. | Oct 2018 | A1 |
20190083271 | Donner et al. | Mar 2019 | A1 |
20190209151 | McCormack et al. | Jul 2019 | A1 |
20190239932 | McCormack et al. | Aug 2019 | A1 |
20190240041 | McCormack et al. | Aug 2019 | A1 |
20190247099 | McCormack et al. | Aug 2019 | A1 |
20190307571 | McCormack et al. | Oct 2019 | A1 |
20190307572 | McCormack et al. | Oct 2019 | A1 |
20190350626 | McCormack et al. | Nov 2019 | A1 |
20200085475 | McCormack et al. | Mar 2020 | A1 |
20200155205 | Tanaka et al. | May 2020 | A1 |
20200289285 | Siemionow et al. | Sep 2020 | A1 |
20200375633 | McCormack et al. | Dec 2020 | A1 |
20200405502 | Gephart et al. | Dec 2020 | A1 |
20210059833 | Tanaka et al. | Mar 2021 | A1 |
20210378720 | Mccormack et al. | Dec 2021 | A1 |
20210386434 | Tanaka et al. | Dec 2021 | A1 |
20220031297 | Mccormack et al. | Feb 2022 | A1 |
20220151663 | Mccormack et al. | May 2022 | A1 |
20220211513 | Mccormack et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
G9304368.6 | May 2003 | DE |
2722980 | Feb 1996 | FR |
H11508781 | Aug 1999 | JP |
2004523288 | Aug 2004 | JP |
2008509735 | Apr 2008 | JP |
2008522787 | Jul 2008 | JP |
2012501234 | Jan 2012 | JP |
2014516268 | Jul 2014 | JP |
9641582 | Dec 1996 | WO |
9949818 | Oct 1999 | WO |
00035388 | Jun 2000 | WO |
0053126 | Sep 2000 | WO |
0101895 | Jan 2001 | WO |
0234120 | May 2002 | WO |
02038062 | May 2002 | WO |
02076335 | Oct 2002 | WO |
2005032358 | Apr 2005 | WO |
2006058221 | Jun 2006 | WO |
2006130791 | Dec 2006 | WO |
2007120903 | Oct 2007 | WO |
2008083349 | Jul 2008 | WO |
2008127978 | Oct 2008 | WO |
2008153732 | Dec 2008 | WO |
2009089367 | Jul 2009 | WO |
2009148619 | Dec 2009 | WO |
2010030994 | Mar 2010 | WO |
2010074714 | Jul 2010 | WO |
2010107692 | Sep 2010 | WO |
2011050140 | Apr 2011 | WO |
2013043584 | Mar 2013 | WO |
2014188280 | Nov 2014 | WO |
2016049784 | Apr 2016 | WO |
Entry |
---|
US 7,063,700 B2, 06/2006, Michelson (withdrawn) |
Spinal News International, “FDA clears Renovis Surgical 3D-printed titanium standalone cervical cage”, first available Apr. 11, 2016. https://spinalnewsinternational.com/fda-clears-renovis-surgical-3d-printed-titanium-standalone-cervical-cage/. |
Research Gate, “DTRAX Posterior Cervical Cage”, first available Jul. 2016. (hllps://www.researchgate.net/figure/ DTRAX-Posterior-Cervical-Cage-Note-The-cervical-cages-are-manufactured-from-implant_fig3_305314436). |
Providence Medical Technology, “Cavux Cervical Cages”, first available Oct. 5, 2016. (hllps://web.archive.org/web/20161005063842/https:/providencemt.com/cavux-cervical-cages/). |
Providence Medical Technology, “Posterior Cervical Stabilization System (PCSS)”, first available Jun. 21, 2020. (hllps://web.archive.org/web/20200621181620/hllps:/providencemt.com/pcss/). |
Atul Goel, Facetai distraction as treatment for single- and multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report, J Neurosurg Spine, Jun. 2011, pp. 689-696. |
Press Release, Interventional Spine, Inc., Interventional Spine, Inc. Introduces the PERPOS Fusion Facet Prep Kit, Oct. 14, 2008, 1 Page. |
Press Release, minSURG Corp., Orthopedic Development Corporation's TruFUSE Procedure Tops 1,750 Patients in First Year, Sep. 24, 2007, 1 Page. |
Press Release, Interventional Spine, Inc., FDA Grants Conditional Approval to Interventional Spine's PercuDyn System IDE Application, Jul. 1, 2008, 1 Page. |
Stein, et al., “Percutaneous Facet Joint Fusion: Preliminary Experience,” Journal of Vascular and Interventional Radiology, Jan.-Feb. 1993, pp. 69-74, vol. 4, No. 1. |
Number | Date | Country | |
---|---|---|---|
20210022881 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
61020082 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15467773 | Mar 2017 | US |
Child | 17035835 | US | |
Parent | 14675626 | Mar 2015 | US |
Child | 15467773 | US | |
Parent | 12350609 | Jan 2009 | US |
Child | 14675626 | US |