Methods and apparatus for acquiring a swiped fingerprint image

Information

  • Patent Grant
  • 8077935
  • Patent Number
    8,077,935
  • Date Filed
    Friday, April 22, 2005
    19 years ago
  • Date Issued
    Tuesday, December 13, 2011
    13 years ago
Abstract
A method for assisting a user of a fingerprint sensing system includes sensing a position of a user's finger relative to a swiped fingerprint image sensor, and providing to the user, in response to the sensed finger position, an indication of finger placement relative to the fingerprint image sensor. The indication of finger placement may include a display on a computer monitor of actual finger placement and desired finger placement. The fingerprint sensing system may include an image sensor to sense a fingerprint on a swiped finger, a finger position sensor to sense the position of the finger relative to the image sensor, and processing apparatus to provide the indication of finger placement to the user.
Description
FIELD OF THE INVENTION

This invention relates to systems and methods for electronically sensing biometric features of an object, such as a fingerprint. More particularly, the invention relates to methods and apparatus for assisting a user of a fingerprint sensing system wherein a fingerprint image is acquired by swiping a finger over an image sensor.


BACKGROUND OF THE INVENTION

Electronic fingerprint sensing has received increased attention as a technique for reliable identification of individuals. Electronic fingerprint sensing may be used in stationary equipment, such as security checkpoints, and in portable devices, such as mobile phones and other wireless devices, and smart cards. Accordingly, electronic fingerprint sensing systems are required to be compact, highly reliable and low in cost.


Various electronic fingerprint sensing methods have been proposed. Known methods include optical sensing and capacitive sensing with a two-dimensional array of electrodes.


Capacitive fingerprint sensing using a swiped finger technique is disclosed in International Publication No. WO 02/47018, to Benkley for “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods,” published Jun. 13, 2002. Conductive elements, or plates, are formed on an insulating substrate to create a linear one-dimensional capacitive sensing array for detecting topographic variations in an object, such as a finger. The linear array includes multiple drive plates which are sequentially excited with short duration electronic waveform bursts. An orthogonal pickup plate connected to a charge sensing circuit sequentially detects the intensity of the electric field created by each drive element. With each complete scan of the drive plates, a linear one-dimensional slice of the fingerprint is acquired. By swiping a finger across the gap between the drive plates and the pickup plate, and scanning the gap at a much faster rate than the swipe speed, a two-dimensional image based on capacitance can be produced. The image represents the fingerprint.


Training a user to properly swipe his or her finger across the image sensor remains an impediment to adoption of these devices. In order to acquire a useful fingerprint image, the user must position the finger on the sensor area and keep the finger substantially flat while swiping the finger over the image sensor within an acceptable range of speeds.


SUMMARY OF THE INVENTION

According to a first aspect of the invention, a method is provided for assisting a user of a fingerprint sensing system. The method comprises sensing a position of a user's finger relative to a swiped fingerprint image sensor, and providing to the user, in response to the sensed finger position, an indication of finger placement relative to the fingerprint image sensor.


The indication of finger placement may comprise a display of actual finger placement and desired finger placement. The indication of finger placement may be provided on a visual display device, such as a computer monitor. The indication of finger placement may include a visual cue to start a swipe of the user's finger when the actual finger placement matches the desired finger placement.


The position of the user's finger may be sensed with a finger position sensor. An angle of the user's finger relative to the sensor may be determined from start and end positions of the user's finger on the sensor. The angle of the user's finger relative to the finger position sensor may be displayed to assist the user in moving to the desired finger placement.


The indication of finger placement may include a visual display of finger placement, an audible indication of finger placement, or both. The visual display may be provided on a computer monitor or by a series of display lights, such as light-emitting diodes. In one embodiment, the display of finger placement on the computer monitor comprises a side view of finger placement relative to the fingerprint image sensor. In another embodiment, the display of finger placement on the computer monitor comprises a top view of finger placement relative to the fingerprint image sensor.


According to a second aspect of the invention, a fingerprint sensing system is provided. The fingerprint sensing system comprises an image sensor to sense ridge peaks and ridge valleys of a fingerprint on a moving finger, a finger position sensor to sense a position of the finger relative to the image sensor, and processing apparatus to provide to a user, in response to the sensed finger position, an indication of finger placement relative to the image sensor.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, reference is made to the accompanying drawings, which are incorporated herein by reference and in which:



FIG. 1 is a block diagram of a fingerprint sensing system according to a first embodiment of the invention;



FIG. 2 is a block diagram of a sensing portion of the fingerprint sensing system of FIG. 1;



FIG. 3 shows an example of a finger position sensor that may be utilized in the fingerprint sensing system of FIG. 1;



FIG. 4 shows an example of a swiped fingerprint image sensor that may be utilized in the fingerprint sensing system of FIG. 1;



FIG. 5 illustrates a display of desired finger position generated by the processor on the visual display device;



FIG. 6 illustrates a display of desired finger position and actual finger position generated by the processor on the visual display device;



FIG. 7 illustrates a display of desired finger position and actual finger position, with the finger lifted and a small sensor area covered;



FIG. 8 illustrates a display of desired finger position and actual finger position, with the finger lifted and a moderate sensor area covered;



FIG. 9 illustrates a display of desired finger position and actual finger position, with the finger lifted and a small sensor area covered;



FIG. 10 illustrates a display of the finger in the desired position, with a visual cue to start a swipe;



FIG. 11 illustrates a display of desired finger position and an acquired fingerprint;



FIGS. 12A and 12B are flow charts of a process for finger position sensing and display, and fingerprint acquisition;



FIG. 13 is a block diagram of a fingerprint sensing system according to a second embodiment of the invention;



FIG. 14 illustrates a display of finger swipe area and desired finger placement in accordance with a third embodiment of the invention;



FIG. 15 illustrates a display of finger swipe area, desired finger placement and actual finger placement in the third embodiment; and



FIG. 16 illustrates a display of finger swipe area, actual finger placement and a visual cue to start a swipe in the third embodiment.





DETAILED DESCRIPTION

A fingerprint sensing system 10 in accordance with a first embodiment of the present invention is shown in FIG. 1. A sensing portion of the system is shown in FIG. 2. As shown in FIG. 1, fingerprint sensing system 10 may include a sensor block 20, a processor 22, a visual display device 24 and an audio output device 26. The visual display device 24 may be a computer monitor, for example, in this embodiment. As shown in FIG. 2, sensor block 20 receives drive signals from and delivers sense signals to a sensor circuit 108. Sensor circuit 108 may be part of processor 22 shown in FIG. 1.


Sensor block 20 includes a swiped fingerprint image sensor 110 and a finger position sensor 112. Image sensor 110 and finger position sensor 112 may be fabricated on a single substrate as described below. Sensor circuit 108 includes an image sensing circuit 124, a position sensing circuit 122 and a microprocessor and memory 130. Image sensor 110 receives drive signals 104 from and delivers sense signals 106 to image sensing circuit 124. Position sensor 112 receives drive signals 105 from and delivers sense signals 107 to position sensing circuit 122. Microprocessor and memory 130 acquires and processes image data and finger position data and controls operation of the system. The components of fingerprint sensing system 10 are described below.


An embodiment of sensor block 20 is shown in FIG. 3. In the embodiment of FIG. 3, finger position sensor 112 includes a position pickup plate 202 and multiple position drive plates 210, 212, . . . 220 and 222. An expected direction of finger motion across sensor block 20 is indicated by arrow 230. Pickup plate 202 and drive plates 210, 212, . . . 220 and 222 may be conductive traces on a substrate 232. A sensing portion 202a of pickup plate 202 is a straight conductor that is disposed generally orthogonally with respect to the expected direction of finger motion. In addition, drive plates 210, 212, . . . 220 and 222 may include sensing portions (such as sensing portion 210a) that are straight conductors disposed generally orthogonally with respect to the expected direction of finger motion.


The drive plates 210, 212, . . . 220 and 222 are spaced from pickup plate 202 by progressively increasing distances. Thus, for example, drive plate 212 is spaced from pickup plate 202 by a greater distance than drive plate 210. Adjacent drive plates may be equally spaced. However, equal spacing between adjacent drive plates is not required. The drive plates 210, 212, . . . 220 and 222 are dimensioned and spaced from pickup plate 202 to sense the bulk of a finger rather than fingerprint features. Thus, the spacing between each drive plate and the pickup plate may be greater than about two times the typical spacing between ridge peaks and ridge valleys of a fingerprint.


In operation, drive plates 210, 212, . . . 220 and 222 are energized sequentially with signal bursts supplied by position sensing circuit 122 (FIG. 1). The signal bursts are coupled to pickup plate 202 and are detected by position sensing circuit 122. In the case where a finger is in contact or near contact with the energized drive plate and the pickup plate, the signal burst is conducted through the bulk of the finger to the pickup plate. In the case where the finger is not in contact with the energized drive plate, the signal burst is conducted through air to the pickup plate, and a much smaller signal is detected. Thus, the sensed signal level indicates whether the finger is in contact with the energized drive plate and the pickup plate. By analyzing the detected signals from all of the drive plates, the position of the finger end can be determined. The finger may contact more than one of the drive plates at a given time. However, the last drive plate in contact with the finger indicates the position of the finger end.


In the embodiment of FIG. 3, ground plates 240 are positioned between adjacent drive plates and between drive plate 210 and pickup plate 202. Each of ground plates 240 may be connected to ground or to another reference potential. In addition, a width 242 of the sensing portion of drive plates 210, 212, . . . 220 and 222 increases with distance from pickup plate 202. The increased widths of the position drive plates compensates, at least in part, for the reduced signal coupling from drive plates that are more distant from pickup plate 202.


It will be understood that different types of finger position sensors may be utilized within the scope of the invention. Additional finger position sensors are disclosed in the aforementioned International Publication No. WO 02/47018, which is hereby incorporated by reference. The disclosed finger position sensors include a plurality of individual finger detectors spaced apart along an expected direction of finger motion.


An embodiment of image sensor 110 is shown in FIG. 4. Image sensor 110 includes capacitive image pickup plate 250 disposed generally orthogonally with respect to the expected direction of movement of the finger, and a plurality of image drive plates 252 in spaced relation to the image pickup plate 250 to define a plurality of capacitive sensor gaps 254 between respective image drive plates and the image pickup plate in a line generally orthogonally with respect to the expected direction of movement of the finger. Ridge peaks and ridge valleys of the fingerprint passing over this linear array of capacitive sensor gaps 254 produce a change in capacitance between respective image drive plates 252 and image pickup plate 254. The image drive plates 252 are energized sequentially with signal bursts supplied by image sensing circuit 124 (FIG. 2). The signal bursts are capacitively coupled to image pickup plate 250 and are detected by image sensing circuit 124 to provide a linear slice of the fingerprint image. Additional details regarding image sensors are disclosed in the aforementioned International Publication No. WO 02/47018. It will be understood that different image sensors may be utilized within the scope of the invention. For example, the image sensor may be a segmented image sensor that acquires several lines of a fingerprint image simultaneously.


As indicated above, a swiped fingerprint image sensor acquires a fingerprint image as the user swipes his or her finger across the image sensor. The swiped image sensor acquires lines of the fingerprint image and the finger position sensor senses finger position as the finger is swiped across the image sensor. The fingerprint image is constructed by combining the image lines using the sensed finger positions to determine finger speed and hence the required spacing between image lines. In order to acquire a good quality image, the user must position his or her finger at an appropriate initial position on the sensor and must keep the finger relatively flat on the sensor while swiping the finger at an acceptable rate of speed over the image sensor.


According to an aspect of the invention, the fingerprint sensing system provides assistance to the user in positioning and swiping the finger. The user's finger position is sensed by the finger position sensor 112, and information concerning finger placement is provided to the user. The information may be visual, audible, or both. In some embodiments, the system provides an indication of finger placement on a video display screen. The indication of finger placement may include an indication of an actual finger placement and a desired finger placement. When the actual finger placement is sufficiently close to the desired finger placement, the system may provide a cue that the finger may be swiped over the image sensor. The cue may be visual, such as a flashing indicator, audible, such as a tone, or both. If the finger is not suitably placed on the image sensor, the system may provide corrective assistance to the user. For example, the system may display an arrow showing the direction of finger movement toward the desired finger placement. In other embodiments, the system may provide a prompt in the form of a text message that indicates an action to be taken. In each case, the user receives feedback that assists in use of the fingerprint sensing system.


The finger position sensor shown in FIG. 3 and described above relies on finger contact with the position pickup plate and one or more of the position drive plates. Accordingly, the finger is substantially flat against the position sensor of FIG. 3 during position sensing. The last drive plate in contact with the finger indicates the position of the fingertip.


The finger position sensors disclosed in International Publication No. WO 02/47018 utilize individual finger detectors. A finger placed on the finger position sensor may be in contact with some or all of the finger detectors. The last finger detector in contact with the finger indicates the position of the fingertip. The number of finger detectors in contact with the finger indicates whether the finger is flat on the sensor or is tilted at an angle. A finger that is flat on the position sensor covers a larger number of finger detectors than a fingertip contacting the sensor. Thus, in position sensors which utilize individual finger detectors, the number of finger detectors in contact with the finger can be used to estimate whether the finger is flat against the position sensor or is tilted at an angle with respect to the position sensor. A large number of finger detectors in contact with the finger indicates that the finger is flat on the position sensor, whereas a small number of finger detectors in contact with the finger indicates that the finger is tilted at an angle with respect to the position sensor.


Examples of finger position displays which may be utilized to assist a user of the fingerprint sensing system are shown in FIGS. 5-11. The finger position displays may be generated by processor 22 (FIG. 1) in response to the sensed finger position from finger position sensor 112 and may be displayed on visual display device 24. The displays of FIGS. 5-11 are side views of sensor block 20 and a user's finger. It will be understood that these finger position displays are given by way of example only and are not limiting as to the scope of the invention.


The displays of FIGS. 5-11 indicate actual finger placement when the finger is partially lifted, or tilted at an angle, from the sensor block. The finger position sensors disclosed in International Publication No. WO 02/47018 provide information when the finger is partially lifted and thus are suitable for use in the embodiments of FIGS. 5-11.


Referring to FIG. 5, a finger position display 300 shows sensor block 20 and a desired finger placement 310. The desired finger placement 310 is flat against sensor block 20, with the fingertip 312 located at the left side of sensor block 20. Desired finger placement 310 represents the initial finger placement to begin a swipe for fingerprint acquisition. Finger position display 300 may further include a simulated light or other indicator 320 which may be activated in response to correct finger placement. The finger position display 300 of FIG. 5 shows a desired finger placement but does not show the user's finger.



FIG. 6 shows finger position display 300 after a user has placed his or her finger on sensor block 20. An actual finger placement 330 is shown in the position display. Actual finger placement 330 is determined from the finger position sensor 112 as described above. Actual finger placement 330 illustrates finger placement in relation to sensor block 20 and desired finger placement 310. Position display 300 may further include an arrow 332 to indicate the required direction of finger movement toward the desired finger placement. In the display of FIG. 6, indicator 320 remains inactive.


Referring to FIG. 7, actual finger placement 330 is indicated by a finger nearly perpendicular to sensor block 20, with fingertip 334 in contact with sensor block 20 to the right of desired finger placement 310. As discussed above, the approximate angle of actual finger placement 330 may be determined from the number of finger detectors in contact with the user's finger. The display of FIG. 7 indicates that the user's finger must be placed flat against sensor block 20 and moved to the left in order to match desired finger placement 310.


Referring to FIG. 8, position display 300 shows an example of actual finger placement 330 at a small angle relative to sensor block 20 and to the right of desired finger placement 310. The small angle is determined from the fact that the user's finger is in contact with an intermediate number of finger detectors of the finger position sensor 112. As in the example of FIG. 7, the user's finger must be moved toward the left and placed flat against sensor block 20 in order to match desired finger placement 310.


Referring to FIG. 9, position display 300 shows an example of actual finger placement 330 at the correct position on sensor block 20, but the user's finger is tilted at an angle relative to sensor block 20. By placing the finger flat against sensor block 20, the user matches desired finger placement 310.


Referring to FIG. 10, position display 300 shows an example of actual finger placement 330 that matches desired finger placement 310, and the finger swipe for fingerprint acquisition can begin. In the example of FIG. 10, indicator 320 is activated, such as by a flashing indicator, and arrow 332 is reversed to indicate the direction of finger swipe over sensor block 20.


An example of the display following fingerprint acquisition is shown in FIG. 11. An acquired fingerprint 340 may be displayed below finger position display 300 to confirm successful fingerprint imaging.


A flow chart of a process for finger position sensing and display, and fingerprint acquisition in accordance with an embodiment of the invention is shown in FIGS. 12A and 12B. The process of FIGS. 12A and 12B may be executed by processor 22 shown in FIG. 1. The processor may execute instructions stored in a tangible machine readable medium such that the processor performs processes implementing methods as discussed in the present application, as an example as shown in the flow charts of FIGS. 12A and 12B.


The finger start and end positions are read from finger position sensor 112 in step 404. As discussed above, the finger start position indicates finger placement relative to sensor block 20 and the number of finger detectors in contact with the finger provides an estimate of finger angle. The finger angle is determined in step 410, and the finger position is determined in step 412. Then, the estimated actual finger position is overlaid on the finger position display 300 in step 420. The display of actual finger position corresponds to one of the examples of actual finger placement shown in FIGS. 6-10 and described above.


In step 422, a determination is made as to whether the finger is in the proper position for fingerprint acquisition. If the actual finger placement and the desired finger placement do not match, a corrective prompt may be displayed in step 424. In one example, arrow 332 shown in FIGS. 6-9 is a corrective prompt. Arrow 332 indicates the direction of finger movement toward the desired finger placement. In another example, the corrective prompt may be a text message on the visual display device 24. Examples of corrective prompts are given below. The process then returns to step 404 to read the finger start and end positions after adjustment.


If the finger is determined in step 422 to be properly positioned, a ready-to-scan indicator is displayed in step 430. As shown in FIG. 10, indicator 320 may be activated. In other examples, an audible tone may be generated by audio output device 26, or a text message may be displayed on visual display device 24. In step 434, a determination is made as to whether the user has started a finger swipe. The swipe may be determined from a change in finger position on position sensor 112. If the user has not started a finger swipe, the process returns to step 404 and finger position is determined again.


If the user has started a finger swipe, fingerprint acquisition is initiated. In step 440 (FIG. 12B), fingerprint data is acquired from image sensor 110 and is stored by processor 22. During transmission of fingerprint data, improper finger motion is detected in step 442. Improper finger motions may include reversal of the finger swipe, lifting of the finger from the sensor or a swipe that is not straight. If improper finger motion is detected in step 442, fingerprint data acquisition is stopped in step 444 and a corrective prompt is displayed in step 446. The corrective prompt may indicate to the user that fingerprint acquisition must be restarted. The process then returns to step 402.


If improper finger motion is not detected in step 442, a determination is made in step 450 as to whether sufficient fingerprint lines have been acquired. If sufficient fingerprint lines have not been acquired, the process returns to step 440 for transmission of additional fingerprint data. If sufficient fingerprint lines have been acquired, fingerprint data transmission is stopped in step 452.


A determination is made in step 460 as to whether the finger swipe was bad. For example, the finger swipe may be too fast, too slow, too short, or the fingerprint data may include dropped lines or may be too noisy. An acceptable range of finger swipe speed may be 2.5 to 14 centimeters per second, but the swipe speed is not limited to this range and may vary depending on the system configuration. If the finger swipe is determined to be bad, a corrective prompt is displayed in step 446, and the user is instructed to repeat the process. The process then returns to step 402. If the finger swipe is determined in step 460 to be acceptable, the fingerprint is displayed in step 462, as shown in FIG. 11. The fingerprint acquisition process is then complete.


As indicated above, the system may provide corrective prompts to the user in the form of text messages. Examples of corrective prompts are given in the following list. It will be understood that these corrective prompts are given by way of example only and are not limiting as to the scope of the invention. Additional or different corrective prompts may be utilized. In the following list, the meaning of the prompt is followed by the prompt itself (Meaning: Prompt).

    • 1. put the finger down: Put your fingertip at the top of the finger guide and swipe down in a smooth motion.
    • 2. the finger swipe is good: Good quality fingerprint
    • 3. Stiction: Your finger got stuck. Please try again, and try to swipe down in a smooth motion.
    • 4. Swipe too fast: You may have swiped too fast. Please try again and swipe a little slower.
    • 5. Swipe too slow: You may have swiped too slowly. Please try again, and try to swipe down a little faster.
    • 6. Fingerprint too short: The fingerprint is too short to use, please try again. Put your fingertip at the top of the finger guide. Also, swipe a little slower.
    • 7. Finger went backwards: Your finger went backwards. Please try again, and try to swipe down in a smooth motion.
    • 8. Finger lifted during swipe: You may have lifted your finger. Please try again, and try to swipe down without lifting it.
    • 9. Fingerprint too short: The fingerprint is too short, please try again. Put your fingertip at the top of the finger guide. Also, swipe a little slower.
    • 10. Too few features to use: The fingerprint has too few features. Please try again. Put your fingertip at the top of the finger guide. Also, swipe a little slower and with a smooth motion.
    • 11. Fingerprint was poor quality: Low-quality swipe detected. Please try again. Put your fingertip at the top of the finger guide. Also, swipe a little slower and with a smooth motion.
    • 12. Too many dropped lines: Too many lines were dropped to use this fingerprint. Please try again.
    • 13. Print too short to Enroll: This fingerprint is too small for enrollment. Please try again. Put your fingertip near the top and swipe slower.
    • 14. Some rate lines bad: Some rate sensor columns were bad. Your Validity fingerprint sensor may need to be replaced if this error persists.
    • 15. Some image lines bad: Some image sensor columns were bad. Your Validity fingerprint sensor may need to be replaced if this error persists.


A fingerprint sensing system 500 in accordance with a second embodiment of the present invention is shown in FIG. 13. Like elements in FIGS. 1 and 13 have the same reference numerals. The fingerprint sensing system 500 differs from the fingerprint sensing system 10 in that the visual display device 24 is implemented as display lights, such as light-emitting diodes 510, 512, 514, 516 and 518. The light-emitting diodes 510-518 may be positioned in a row adjacent to sensor block 20 and may provide an indication of finger placement. It will be understood that a larger number of light-emitting diodes may be utilized within the scope of the present invention. The embodiment utilizing display lights provides a low cost alternative to the computer monitor in the embodiment of FIG. 1.


The light-emitting diodes are amber next to areas where finger contact is desired, and then are switched to green as finger contact is detected. When finger contact is complete and the finger is properly positioned to begin a swipe, the light-emitting diodes begin to scan in a moving pattern, with all the light-emitting diodes brightly lit expect one at any given time. The scan sequence moves the position of the dark light-emitting diode in the direction of swipe at the desired finger swipe speed. It will be understood that other colors may be utilized within the scope of the present invention.


In another embodiment, display lights are represented on the computer monitor adjacent to a visual representation of the finger swipe area. The display lights remain amber next to areas where finger contact is desired, and then are switched to green as finger contact is detected. When finger contact is complete and the finger is properly positioned to begin a swipe, the lights begin to scan in a moving pattern, with all the lights brightly lit except one at any given time. The scan sequence moves the position of the dark light in the direction of swipe at the desired finger swipe speed. Other colors and indicators may be utilized within the scope of the invention.


A further embodiment is described with reference to FIGS. 14-16. In the embodiment of FIGS. 14-16, a top view of the finger swipe area of the sensor as it appears to the user is generated on the computer monitor. As shown in FIG. 14, a finger position display 600 shows a representation of sensor block 20 overlaid by a finger having a desired finger placement 610 to begin a swipe of sensor block 20.


The embodiment of FIGS. 14-16 assumes that the user's finger is flat on the sensor block. Thus, this embodiment may utilize the finger position sensor shown in FIG. 3 and described above or the finger position sensors disclosed in International Publication No. WO 02/47018, but is not limited to these finger position sensors.


Referring to FIG. 15, an actual finger placement 612 is displayed in response to sensed finger position on sensor block 20. In the example of FIG. 15, the actual finger placement 612 is displaced from desired finger placement 610, and an arrow 614 indicates the direction of finger movement toward the desired finger placement 610.


Referring to FIG. 16, the finger position display 600 shows that the actual finger displacement 612 matches desired finger placement 610, and a downward arrow 620 provides a visual cue that the user may begin a finger swipe.


Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

Claims
  • 1. A method comprising: sensing, via a finger position sensing circuit, axially aligned to a direction of motion of a finger of a user during a swipe of the finger over a linear one-dimensional capacitive fingerprint image sensor array, a position of the finger of the user relative to the linear one-dimensional capacitive fingerprint image sensor array; andproviding to the user, in response to the position of the finger as sensed by the finger position sensing circuit, an indication whether the finger is properly positioned to begin a fingerprint image sensing swipe over the linear one-dimensional capacitive fingerprint image sensor array.
  • 2. The method as defined in claim 1, wherein providing the indication comprises providing a visual display of the position of the finger relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 3. The method as defined in claim 1, wherein providing the indication comprises displaying an actual finger placement and a desired finger placement.
  • 4. The method as defined in claim 1, wherein the finger position sensing circuit determines a tilt angle of the finger of the user.
  • 5. The method as defined in claim 4, wherein providing the indication includes displaying the tilt angle.
  • 6. The method as defined in claim 1, wherein providing the indication comprises providing an audible indication of finger movement needed to correctly position the finger relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 7. The method as defined in claim 1, wherein providing the indication comprises displaying an actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor on a computer monitor array.
  • 8. The method as defined in claim 7, further comprising displaying a user prompt on the computer monitor.
  • 9. The method as defined in claim 7, wherein displaying the actual finger placement on the computer monitor comprises displaying a side view of the actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 10. The method as defined in claim 7, wherein displaying the actual finger placement on the computer monitor comprises displaying a top view of the actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 11. The method as defined in claim 7, wherein displaying the actual finger placement on the computer monitor comprises displaying a visual cue to start the image sensing swipe.
  • 12. The method as defined in claim 1, wherein providing the indication comprises indicating with light-emitting devices a finger movement needed to correctly position the finger relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 13. The method as defined in claim 1, further comprising sensing the position of the finger of the user relative to the position of the linear one-dimensional capacitive fingerprint image sensor array multiple times during a swipe of the finger over the linear one-dimensional capacitive fingerprint image sensor array.
  • 14. The method as defined in claim 13, further comprising determining swipe speed during the swipe of the finger over the linear one-dimensional capacitive fingerprint image sensor array.
  • 15. The method as defined in claim 14, further comprising comparing the determined swipe speed with an allowable range of swipe speeds.
  • 16. The method as defined in claim 14, further comprising generating a corrective prompt to the user if the determined swipe speed does not meet a predetermined criteria.
  • 17. A fingerprint sensing system comprising: a linear one dimensional capacitive fingerprint image sensor array configured to sense ridge peaks and ridge valleys of a fingerprint on a finger swiping over the linear one-dimensional capacitive fingerprint image sensor array;a finger position sensing circuit configured to sense a position of the finger relative to the linear one-dimensional capacitive fingerprint image sensor array; anda processing apparatus configured to provide to a user, in response to a position of the finger as sensed by the position sensing circuit, an indication indicating a finger movement needed to correctly position the finger relative to the linear one-dimensional capacitive fingerprint image sensor array to begin a fingerprint image sensing swipe over the linear one-dimensional capacitive fingerprint image sensor array.
  • 18. The fingerprint sensing system as defined in claim 17, wherein the processing apparatus includes a visual display device and wherein the indication comprises a visual display of an actual finger placement relative to the position of the linear one-dimensional capacitive fingerprint image sensor array.
  • 19. The fingerprint sensing system as defined in claim 17, wherein the indication comprises a display of the actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array and a desired finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 20. The fingerprint sensing system as defined in claim 17, wherein the processing apparatus is configured to determine a tilt angle of the finger and to display the tilt angle.
  • 21. The fingerprint sensing system as defined in claim 17, wherein the processing apparatus comprises an audible output device configured to provide an audible indication of the finger movement needed to correctly position the finger relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 22. The fingerprint sensing system as defined in claim 17, wherein the processing apparatus includes a computer monitor configured to display the indication.
  • 23. The fingerprint sensing system as defined in claim 22, wherein the processing apparatus is configured to generate on the computer monitor a side view of an actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 24. The fingerprint sensing system as defined in claim 22, wherein the processing apparatus is configured to generate on the computer monitor a top view of an actual finger placement relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 25. The fingerprint sensing system as defined in claim 22, wherein the processing apparatus is configured to generate on the computer monitor a visual cue to start a swipe of the finger.
  • 26. The fingerprint sensing system as defined in claim 17, wherein the processing apparatus includes light-emitting devices configured to indicate the finger movement needed to correctly position the finger relative to the linear one-dimensional capacitive fingerprint image sensor array.
  • 27. A tangible machine readable medium storing instructions that, when executed by a computing device, cause the computing device to perform a method, the method comprising: determining, based on input from a finger position sensing circuit, axially aligned to a direction of motion of a finger of a user during a swipe of the finger over a linear one-dimensional capacitive fingerprint image sensor array, a position of the finger relative to the linear one-dimensional capacitive electronic fingerprint image sensor array; andproviding to the user, in response to the position of the finger as sensed by the finger position sensing circuit, an indication that the finger is properly positioned to begin a fingerprint image sensing swipe across the linear one-dimensional capacitive fingerprint image sensor array.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of Provisional Application Ser. No. 60/564,791, filed Apr. 23, 2004, which is hereby incorporated by reference in its entirety.

US Referenced Citations (287)
Number Name Date Kind
4151512 Riganati et al. Apr 1979 A
4310827 Asi Jan 1982 A
4353056 Tsikos Oct 1982 A
4405829 Rivest et al. Sep 1983 A
4525859 Bowles et al. Jun 1985 A
4550221 Mabusth Oct 1985 A
4580790 Doose Apr 1986 A
4758622 Gosselin Jul 1988 A
4817183 Sparrow Mar 1989 A
5076566 Kriegel Dec 1991 A
5109427 Yang Apr 1992 A
5140642 Hau et al. Aug 1992 A
5305017 Gerpheide Apr 1994 A
5319323 Fong Jun 1994 A
5325442 Knapp Jun 1994 A
5420936 Fitzpatrick et al. May 1995 A
5422807 Mitra et al. Jun 1995 A
5543591 Gillespie et al. Aug 1996 A
5569901 Bridgelall et al. Oct 1996 A
5623552 Lane Apr 1997 A
5627316 De Winter et al. May 1997 A
5650842 Maase et al. Jul 1997 A
5717777 Wong et al. Feb 1998 A
5781651 Hsiao et al. Jul 1998 A
5801681 Sayag Sep 1998 A
5818956 Tuli Oct 1998 A
5838306 O'Connor Nov 1998 A
5852670 Setlak et al. Dec 1998 A
5887343 Salatino et al. Mar 1999 A
5892824 Beatson et al. Apr 1999 A
5903225 Schmitt et al. May 1999 A
5915757 Tsuyama et al. Jun 1999 A
5920384 Borza Jul 1999 A
5920640 Salatino et al. Jul 1999 A
5940526 Setlak et al. Aug 1999 A
5999637 Toyoda et al. Dec 1999 A
6002815 Immega et al. Dec 1999 A
6016355 Dickinson et al. Jan 2000 A
6052475 Upton Apr 2000 A
6067368 Setlak et al. May 2000 A
6073343 Petrick et al. Jun 2000 A
6076566 Lowe Jun 2000 A
6088585 Schmitt et al. Jul 2000 A
6098175 Lee Aug 2000 A
6134340 Hsu et al. Oct 2000 A
6157722 Lerner et al. Dec 2000 A
6161213 Lofstrom Dec 2000 A
6182076 Yu et al. Jan 2001 B1
6182892 Angelo et al. Feb 2001 B1
6185318 Jain et al. Feb 2001 B1
6241288 Bergenek et al. Jun 2001 B1
6259108 Antonelli et al. Jul 2001 B1
6289114 Mainguet Sep 2001 B1
6317508 Kramer et al. Nov 2001 B1
6320394 Tartagni Nov 2001 B1
6332193 Glass et al. Dec 2001 B1
6333989 Borza Dec 2001 B1
6346739 Lepert et al. Feb 2002 B1
6347040 Fries et al. Feb 2002 B1
6362633 Tartagni Mar 2002 B1
6392636 Ferrari et al. May 2002 B1
6400836 Senior Jun 2002 B2
6408087 Kramer Jun 2002 B1
6473072 Comiskey et al. Oct 2002 B1
6509501 Eicken et al. Jan 2003 B2
6539101 Black Mar 2003 B1
6580816 Kramer et al. Jun 2003 B2
6597289 Sabatini Jul 2003 B2
6643389 Raynal et al. Nov 2003 B1
6672174 Deconde et al. Jan 2004 B2
6738050 Comiskey et al. May 2004 B2
6741729 Bjorn et al. May 2004 B2
6757002 Oross et al. Jun 2004 B1
6766040 Catalano et al. Jul 2004 B1
6785407 Tschudi et al. Aug 2004 B1
6838905 Doyle Jan 2005 B1
6886104 McClurg et al. Apr 2005 B1
6897002 Teraoka et al. May 2005 B2
6898299 Brooks May 2005 B1
6937748 Schneider et al. Aug 2005 B1
6941001 Bolle et al. Sep 2005 B1
6941810 Okada Sep 2005 B2
6950540 Higuchi Sep 2005 B2
6959874 Bardwell Nov 2005 B2
6963626 Shaeffer et al. Nov 2005 B1
6970584 O'Gorman et al. Nov 2005 B2
6980672 Saito et al. Dec 2005 B2
6983882 Cassone Jan 2006 B2
7020591 Wei et al. Mar 2006 B1
7030860 Hsu et al. Apr 2006 B1
7042535 Katoh et al. May 2006 B2
7046230 Zadesky et al. May 2006 B2
7064743 Nishikawa Jun 2006 B2
7099496 Benkley Aug 2006 B2
7110577 Tschud Sep 2006 B1
7113622 Hamid Sep 2006 B2
7126389 McRae et al. Oct 2006 B1
7129926 Mathiassen et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7146024 Benkley, III Dec 2006 B2
7146029 Manansala Dec 2006 B2
7194392 Tuken et al. Mar 2007 B2
7197168 Russo Mar 2007 B2
7200250 Chou Apr 2007 B2
7251351 Mathiassen et al. Jul 2007 B2
7258279 Schneider et al. Aug 2007 B2
7260246 Fujii Aug 2007 B2
7290323 Deconde et al. Nov 2007 B2
7308122 McClurg et al. Dec 2007 B2
7321672 Sasaki et al. Jan 2008 B2
7360688 Harris Apr 2008 B1
7379569 Chikazawa et al. May 2008 B2
7403644 Bohn et al. Jul 2008 B2
7409876 Ganapathi et al. Aug 2008 B2
7412083 Takahashi Aug 2008 B2
7424618 Roy et al. Sep 2008 B2
7447911 Chou et al. Nov 2008 B2
7460697 Erhart et al. Dec 2008 B2
7463756 Benkley Dec 2008 B2
7505611 Fyke Mar 2009 B2
7505613 Russo Mar 2009 B2
7574022 Russo Aug 2009 B2
7643950 Getzin et al. Jan 2010 B1
7646897 Fyke Jan 2010 B2
7681232 Nordentoft et al. Mar 2010 B2
7751601 Benkley Jul 2010 B2
7754022 Barnhill et al. Jul 2010 B2
7843438 Onoda Nov 2010 B2
7953258 Dean et al. May 2011 B2
20010026636 Mainget Oct 2001 A1
20010030644 Allport Oct 2001 A1
20010036299 Senior Nov 2001 A1
20010043728 Kramer et al. Nov 2001 A1
20020025062 Black Feb 2002 A1
20020061125 Fujii May 2002 A1
20020067845 Griffis Jun 2002 A1
20020073046 David Jun 2002 A1
20020089410 Janiak et al. Jul 2002 A1
20020122026 Bergstrom Sep 2002 A1
20020126516 Jeon Sep 2002 A1
20020133725 Roy et al. Sep 2002 A1
20020181749 Matsumoto et al. Dec 2002 A1
20030002717 Hamid Jan 2003 A1
20030002719 Hamid et al. Jan 2003 A1
20030021495 Cheng Jan 2003 A1
20030035570 Benkley, III Feb 2003 A1
20030068072 Hamid Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030095096 Robbin et al. May 2003 A1
20030102874 Lane et al. Jun 2003 A1
20030123714 O'Gorman et al. Jul 2003 A1
20030141959 Keogh et al. Jul 2003 A1
20030147015 Katoh et al. Aug 2003 A1
20030161512 Mathiassen et al. Aug 2003 A1
20030169228 Mathiassen et al. Sep 2003 A1
20030174871 Yoshioka et al. Sep 2003 A1
20030186157 Teraoka et al. Oct 2003 A1
20030209293 Sako et al. Nov 2003 A1
20030224553 Manansala Dec 2003 A1
20040012773 Puttkammer Jan 2004 A1
20040022001 Chu et al. Feb 2004 A1
20040042642 Bolle et al. Mar 2004 A1
20040050930 Rowe Mar 2004 A1
20040066613 Leitao Apr 2004 A1
20040076314 Cheng Apr 2004 A1
20040081339 Benkley Apr 2004 A1
20040096086 Miyasaka et al. May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040120400 Linzer Jun 2004 A1
20040125993 Zhao et al. Jul 2004 A1
20040129787 Saito Jul 2004 A1
20040136612 Meister et al. Jul 2004 A1
20040172339 Snelgrove et al. Sep 2004 A1
20040179718 Chou Sep 2004 A1
20040184641 Nagasaka et al. Sep 2004 A1
20040190761 Lee Sep 2004 A1
20040208346 Baharav et al. Oct 2004 A1
20040208347 Baharav et al. Oct 2004 A1
20040208348 Baharav et al. Oct 2004 A1
20040213441 Tschudi Oct 2004 A1
20040215689 Dooley et al. Oct 2004 A1
20040228505 Sugimoto Nov 2004 A1
20040228508 Shigeta Nov 2004 A1
20040240712 Rowe et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050036665 Higuchi Feb 2005 A1
20050047485 Khayrallah et al. Mar 2005 A1
20050100196 Scott et al. May 2005 A1
20050109835 Jacoby et al. May 2005 A1
20050110103 Setlak May 2005 A1
20050136200 Durell et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050162402 Watanachote Jul 2005 A1
20050169503 Howell et al. Aug 2005 A1
20050210271 Chou et al. Sep 2005 A1
20050219200 Weng Oct 2005 A1
20050231213 Chou et al. Oct 2005 A1
20050238212 Du et al. Oct 2005 A1
20050244038 Benkley Nov 2005 A1
20050244039 Geoffroy et al. Nov 2005 A1
20050249386 Juh Nov 2005 A1
20050259852 Russo Nov 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060006224 Modi Jan 2006 A1
20060055500 Burke et al. Mar 2006 A1
20060066572 Yumoto et al. Mar 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060083411 Benkley Apr 2006 A1
20060110537 Huang et al. May 2006 A1
20060140461 Kim et al. Jun 2006 A1
20060144953 Takao Jul 2006 A1
20060170528 Fukushige et al. Aug 2006 A1
20060187200 Martin Aug 2006 A1
20060210082 Devadas et al. Sep 2006 A1
20060214512 Iwata Sep 2006 A1
20060239514 Watanabe et al. Oct 2006 A1
20060249008 Luther Nov 2006 A1
20060259873 Mister Nov 2006 A1
20060261174 Zellner et al. Nov 2006 A1
20060271793 Devadas et al. Nov 2006 A1
20060287963 Steeves et al. Dec 2006 A1
20070031011 Erhart et al. Feb 2007 A1
20070036400 Watanabe et al. Feb 2007 A1
20070057763 Blattner et al. Mar 2007 A1
20070067828 Bychkov Mar 2007 A1
20070076926 Schneider et al. Apr 2007 A1
20070076951 Tanaka et al. Apr 2007 A1
20070086634 Setlak et al. Apr 2007 A1
20070090312 Stallinga et al. Apr 2007 A1
20070138299 Mitra Jun 2007 A1
20070198141 Moore Aug 2007 A1
20070198435 Siegal et al. Aug 2007 A1
20070228154 Tran Oct 2007 A1
20070237366 Maletsky Oct 2007 A1
20070248249 Stoianov Oct 2007 A1
20080002867 Mathiassen et al. Jan 2008 A1
20080013805 Sengupta et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080049987 Champagne et al. Feb 2008 A1
20080049989 Iseri et al. Feb 2008 A1
20080063245 Benkley et al. Mar 2008 A1
20080126260 Cox et al. May 2008 A1
20080169345 Keane et al. Jul 2008 A1
20080170695 Adler et al. Jul 2008 A1
20080175450 Scott et al. Jul 2008 A1
20080178008 Takahashi et al. Jul 2008 A1
20080179112 Qin et al. Jul 2008 A1
20080185429 Saville Aug 2008 A1
20080205714 Benkley et al. Aug 2008 A1
20080219521 Benkley et al. Sep 2008 A1
20080222049 Loomis et al. Sep 2008 A1
20080223925 Saito et al. Sep 2008 A1
20080226132 Gardner Sep 2008 A1
20080240523 Benkley et al. Oct 2008 A1
20080244277 Orsini et al. Oct 2008 A1
20080267462 Nelson et al. Oct 2008 A1
20080279373 Erhart et al. Nov 2008 A1
20090130369 Huang et al. May 2009 A1
20090153297 Gardner Jun 2009 A1
20090154779 Satyan et al. Jun 2009 A1
20090155456 Benkley et al. Jun 2009 A1
20090169071 Bond et al. Jul 2009 A1
20090174974 Huang et al. Jul 2009 A1
20090252384 Dean et al. Oct 2009 A1
20090252385 Dean et al. Oct 2009 A1
20090252386 Dean et al. Oct 2009 A1
20090319435 Little et al. Dec 2009 A1
20090324028 Russo Dec 2009 A1
20100026451 Erhart et al. Feb 2010 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100083000 Kesanupalli et al. Apr 2010 A1
20100119124 Satyan May 2010 A1
20100123675 Ippel May 2010 A1
20100127366 Bond et al. May 2010 A1
20100176823 Thompson et al. Jul 2010 A1
20100176892 Thompson et al. Jul 2010 A1
20100177940 Thompson et al. Jul 2010 A1
20100180136 Thompson et al. Jul 2010 A1
20100189314 Benkley et al. Jul 2010 A1
20100208953 Gardner et al. Aug 2010 A1
20100244166 Shibuta et al. Sep 2010 A1
20100272329 Benkley Oct 2010 A1
20100284565 Benkley et al. Nov 2010 A1
20110002461 Erhart et al. Jan 2011 A1
20110102567 Erhart May 2011 A1
20110102569 Erhart May 2011 A1
Foreign Referenced Citations (47)
Number Date Country
2213813 Oct 1973 DE
1018697 Jul 2000 EP
1 139 301 Oct 2001 EP
1 531 419 May 2005 EP
1533759 May 2005 EP
1538548 Jun 2005 EP
1624399 Feb 2006 EP
1939788 Jul 2008 EP
2 331 613 May 1999 GB
04158434 Jun 1992 JP
WO 9003620 Apr 1990 WO
WO 9858342 Dec 1998 WO
WO 9928701 Jun 1999 WO
WO 9943258 Sep 1999 WO
WO 0122349 Mar 2001 WO
WO 0194902 Dec 2001 WO
WO 0194902 Dec 2001 WO
WO 0247018 Jun 2002 WO
WO 0247018 Jun 2002 WO
WO 02061668 Aug 2002 WO
WO 02077907 Oct 2002 WO
WO 03063054 Jul 2003 WO
WO 03075210 Sep 2003 WO
WO 2004066194 May 2004 WO
WO 2004066194 Aug 2004 WO
WO 2004066693 Aug 2004 WO
WO 2005106774 Apr 2005 WO
WO 20050104012 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2006041780 Apr 2006 WO
WO 2007011607 Jan 2007 WO
WO 2008033264 Mar 2008 WO
WO 2008033264 Mar 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008137287 Nov 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009029257 Jun 2009 WO
WO 2009079219 Jun 2009 WO
WO 2009079221 Jun 2009 WO
WO 2009079262 Jun 2009 WO
WO 2010034036 Mar 2010 WO
WO 2010036445 Apr 2010 WO
WO 2010143597 Dec 2010 WO
WO 2011053797 May 2011 WO
Related Publications (1)
Number Date Country
20050244039 A1 Nov 2005 US
Provisional Applications (1)
Number Date Country
60564791 Apr 2004 US