This invention pertains generally to methods and apparatus relating to pneumatic valves.
Pneumatic valves find uses in a variety of situations, such as, natural gas distribution systems, pneumatic tools, and controlling the flow of pressurized air to a paintball marker. Valves may benefit from a system that reduces the force that may be required to actuate the valve and a vent that may discharge the pneumatic fluid from the system when the fluid source is shut off.
An on-off controller, according to various aspects of the present invention, for controlling a pressurized fluid from a provided bottle, the bottle having a poppet valve biased in a closed position, wherein the pressurized fluid flows from the bottle when the poppet valve is open, the on-off controller includes a body, a seal, a rod, and a position mechanism. The body having a cavity, an inlet, an outlet, and a vent, the inlet and the outlet having continuous fluid communication with the cavity, the vent having sealable fluid communication with the cavity. The seal having a seal bore therethrough, the seal for sealing the vent. The rod having a first bore and a second bore, the first bore in continuous fluid communication with the second bore, the rod positioned in the seal bore. The position mechanism that moves the rod to: close the vent, wherein the first bore and the second bore are positioned on a same side of the seal and the rod sealably contacts the seal; and open the vent, wherein the first bore is positioned on a cavity side of the seal and the second bore is positioned on a vent side of the seal, the rod sealably contacts the seal, whereby the pressurized fluid in the cavity exits through the first bore and the second bore to the atmosphere.
An on-off controller, according to various aspects of the present invention, for controlling a pressurized fluid from a provided bottle, the bottle having a poppet valve biased in a closed position, wherein the pressurized fluid flows from the bottle when the poppet valve is open, the on-off controller includes a body, a seal, a rod, and a position mechanism. The body having a cavity, an inlet, an outlet, and a vent, the inlet and the outlet having continuous fluid communication with the cavity, the vent having sealable fluid communication with the cavity. The seal having a seal bore therethrough, the seal for sealing the vent. The rod having a first bore and a second bore, the first bore in continuous fluid communication with the second bore, the rod positioned in the seal bore. The position mechanism that moves the rod, wherein the position of the rod defines operating states comprising: an on-state, wherein the poppet valve is open, the first bore and the second bore are positioned on a same side of the seal, and the rod sealably contacts the seal, wherein the vent is closed and the pressurized fluid enters the inlet; an off-state, wherein the poppet valve is closed the first bore and the second bore are positioned on the same side of the seal, and the rod sealably contacts the seal, wherein the vent is closed and the cavity maintains the pressurized fluid; and a vent-state, wherein the poppet valve is closed, the first bore is positioned on a cavity side of the seal and the second bore is positioned on a vent side of the seal, the rod sealably contacts the seal, whereby the pressurized fluid in the cavity exits through the first bore and the second bore to the atmosphere.
An on-off pressurized fluid system, according to various aspects of the present invention, comprising a paintball marker, a bottle of pressurized fluid, and an on-off controller. The bottle of pressurized fluid having a poppet valve, wherein opening the poppet valve releases pressurized a pressurized fluid from the bottle, the poppet valve biased in a closed position. The on-off controller includes a body having a cavity, an inlet, an outlet, and a vent, the inlet and the outlet having continuous fluid communication with the cavity, the vent having sealable fluid communication with the cavity, the inlet couples to the bottle, and the outlet couples to the marker; a seal having a seal bore therethrough, the seal for sealing the vent; a rod having a first bore and a second bore, the first bore in continuous fluid communication with the second bore, the rod positioned in the seal bore; and a position mechanism that moves the rod to: close the vent, wherein the first bore and the second bore are positioned on a same side of the seal and the rod sealably contacts the seal; and open the vent, wherein the first bore is positioned on a cavity side of the seal and the second bore is positioned on a vent side of the seal, the rod sealably contacts the seal, whereby the pressurized fluid in the cavity exits through the first bore and the second bore to the atmosphere.
Implementations of the present invention will now be further described with reference to the drawing, wherein like designations denote like elements, and:
The present invention is described partly in terms of functional components and various methods. Such functional components may be realized by any number of components configured to perform the specified functions and achieve the various results. For example, the present invention may be formed using a variety of materials, such as, aluminum, electroplated aluminum, steel, stainless steel, brass, titanium, iron, bronze alloy, plastic, composite materials, nanomaterials, and any other material that may be suitable for an application or environment. The present invention may be used to control the flow of any pneumatic fluid, for example, air, oxygen, natural gas, hydrogen, and so forth. The inlet may be configured to interface with any source of pressurized fluid, such as, a bottle of pressurized fluid, a fluid distribution hose, a pipe, and directly to a pneumatic compressor outlet. The outlet may be configured to interface with a device that may consume pressurized pneumatic fluid, such as pneumatic tools, a gas fireplace, and paintball markers. The outlet may connect directly to a pneumatic device or it may connect to a hose or other similar device that goes to a pneumatic device. The rod may be fashioned of any suitable material, for example, aluminum, electroplated aluminum, steel, brass, titanium, iron, composite materials, nanomaterials, and the like. The rod may be of any length and diameter suitable for a particular application or environment. The position mechanism may be formed of any suitable material and may connect to and/or move the rod in any manner appropriate for the application. For example, the position mechanism may be a lever, a crank, a knob, a screw, a magnetic device, and the like, which may carry out a variety of functions. The seals may be fashion of any suitable material, for example, plastic, Teflon, butyl, polymer, urethane, fluorocarbon polymer material, polycarbonate, polyethylene, polypropylene, polyvinylchloride, and the like. The seals may have any shape suitable for an application and may be mounted in any suitable manner. The seals may interact with the rod in any manner suitable for the operation of the on-off controller. The on-off controller may assume any operational state, for example, off, off-locked, on, on-locked, vent, vent-locked, and the like to achieve any suitable result.
In addition, the present invention may be practiced in conjunction with any number of applications and environments, and the systems described are merely exemplary applications of the invention. Further, the present invention may employ any number of conventional techniques for manufacture, testing, connecting, mounting, and repair.
Methods and apparatus according to various aspects of the present invention comprise an on-off controller configured to control the flow of pressurized pneumatic fluid. For example, a source of pressurized fluid may be a bottle having a poppet valve configured to release pressurized fluid from the bottle outlet when the poppet is depressed. An on-off controller inlet may connect to the bottle outlet. A rod, positioned in the valve body, may be configured to depress the bottle poppet valve to allow pressurized fluid from the bottle outlet to enter the on-off controller inlet, pass through the on-off controller body, and out an on-off controller outlet. A position mechanism may move and/or control the position of the rod. The on-off controller may be placed in an on-state by moving the rod such that it depresses the bottle poppet; thereby starting the flow of pressurized fluid. The on-off controller may be placed in an off-state by moving the rod away from the bottle poppet such that the poppet is no longer depressed; thereby stopping the flow of pressurized fluid. Moving the rod past the off-state position may place the on-off controller in a vent-state where pressurized fluid in the body and/or in any cavity connected to an on-off controller outlet exits to the atmosphere. In the vent-state, the on-off controller may be more easily removed from the bottle. The on-off controller method and apparatus may be used for any suitable purpose or combination of purposes, such as controlling the flow of pressurized fluid to a paintball marker, a spray painter, injection molding equipment, an air horn, a gas stove, or any other suitable application.
In particular, referring to
The on-state, referring to
The off-state, referring to
The vent-state, referring to
The body 12 may be of any material, shape, size, and configuration for an application or environment. The body 12 may use any material or combination of materials suitable for an application, for example, at least one of aluminum, electroplated aluminum, steel, stainless steel, brass, titanium, iron, copper, zinc, composite materials, and nanomaterials. The body 12 may be formed of a single piece of material or of multiple assembled pieces. In one implementation, referring to FIGS. 3, 8-10, a body 12 formed of multiple pieces may comprise an outer shell 30 having axial bores of different diameters, a rod mount 28 configured to position the rod 22 axially in the outer shell 30, and a seal ring 26 configured to hold seal 24 in position in rod mount 28 such that seal 24 may form sealable contact with rod 22. A rod bore 34 may be configured to moveable position rod 22 axially in body 12. Bleed hole 32 may be configured to allow the escape of pressurized fluid from body cavity 80 through rod bore 34 past seal 24, through vent passage 84, into vent cavity 82, and out vent 18 to the atmosphere when the rod 22 is in the vent-state position.
A rod mount seal 36 may define the fluid boundary between the body cavity 80 and the vent cavity 82. Rod mount seal 36, outer shell 30, seal ring 26, and rod mount 28 cooperatively seal body cavity 80 such that pressurized fluid does not escape from body cavity 80 into vent cavity 82 except in the vent-state where seal 24 does not seal the vent passage 82. The rod mount seal 36 may additionally assist in securing rod mount 28 in outer shell 30. Outer shell 30, rod mount 28, and seal ring 26 may be made of the same or different materials. Body 12 may be configured to be connected to any suitable device in any manner suitable for the application. For example, the body 12 may connect to any suitable object by welding, bolting, clamping, gluing, and any other suitable manner. In one implementation, referring to
Inlet 14 may connect to a source pressurized fluid in any suitable manner. For example, inlet 14 may connect to a source using a quick connect coupler, a screw connection, a press fit connection, a clamp connection, and any other type of connector suitable for the application. In one implementation, the inlet 14 threadedly connects to a bottle of pressurized fluid. In another implementation, the inlet 14 threadedly connects to a bottle using a ½-14 NPSM thread. The inlet 14 may be positioned at any location on the body 12. In one implementation, the inlet 14 may be positioned axially to the rod 22 which may be mounted in rod mount 28, which is positioned axially in outer shell 30.
Body 12 may have at least one outlet 20. Each outlet 20 may be positioned at any location on body 12. In one implementation, at least one outlet 20 is positioned substantially perpendicular to the axis of body 12. Each outlet 20 may connect in any suitable manner to any type of device that uses pressurized fluid. For example, each outlet 20 may connect to a pneumatic device using at least one of a quick connect coupler, a screw connection, a press fit connection, a clamp connection, and any other type of connector suitable for an application.
In one implementation, each outlet 20 may connect to a hose fitting in a threaded manner. In another implementation, the hose fitting connects to each of the outlets 20 using a ⅛″ NPT thread and the hose connects to the fitting using a push-lock connection. Fluid communication between inlet 14 and each of the outlets 20 may be established in any manner. In one implementation, inlet 14 is in constant fluid communication with each outlet 20 through body cavity 80. In another implementation, inlet 14 has fluid communication with at least one outlet 20 only in the on-state. In another implementation, inlet 14 had fluid communication with at least one outlet 20 only in the on-state and the off-state.
Rod 22 may be of any length and material suitable for a particular application or environment. The rod 22 may be configured to activate and/or deactivate the flow of pressurized fluid into the inlet 14 in any suitable manner, for example, the rod 22 may control fluid flow through physical contact, magnetic activation, light activation, electrical activation, heat, vibration, and any other manner suitable for the configuration.
In one implementation, a bottle of pressurized fluid (not shown) connects to inlet 14. Fluid flow from the bottle is controlled by a poppet valve at the outlet of the bottle. Depressing the poppet enables pressurized fluid to flow from the bottle into the inlet 14. The poppet valve may be resiliently urged into a closed position where the poppet is in a non-depressed position. Decreasing the pressure the rod 22 exerts on the poppet may enable the poppet to move to the closed position; thereby stopping the flow of pressurized fluid from the bottle into the inlet 14. The movement of the poppet into the closed position may also move rod 22 into the off-state position. The position of rod 22 controls the poppet position and therefore the flow of pressurized air.
In one implementation, the rod 22 may be positioned axially to the poppet such that axial movement of rod 22 may depress or release the poppet thereby enabling or disabling, respectively, the flow of pressurized fluid from the bottle into outlet 14. In another implementation, the rod may be positioned to one side of the poppet and may be shaped in such a manner that movement of the rod 22 across the poppet causes the poppet to be depress and movement away from the poppet enables the poppet to return to its closed position.
Rod 22 may have any shape and/or diameter suitable for a particular application or environment. For example, the rod 22 may be cylindrical with substantially equal diameter along its length, substantially cylindrical with varying diameter along its length, and substantially rectangular. In one implementation, the diameter of rod 22 is substantially similar at each end and may decrease at a distance away from each end. In one implementation, the rod 22 diameter gradually decreases from a larger diameter at each end to a smaller diameter substantially nearer the middle.
The decrease in diameter from one end may be substantially symmetrical to the decrease from the other end. A symmetrical decrease in diameter may decrease the force required to move the rod from one position to another position when pressurized fluid is in the body 12. Referring to
In one implementation, the rod 22 diameter at the ends is configured to be the diameter best suited to depress a poppet on a bottle of pressurized fluid. The diameter of the rod 22 away from the ends is decreased symmetrically to reduce and/or equalize the amount of force exerted by the pressurized fluid on the surface of the rod and to break the seal between seal 24 and the larger diameter of the rod 22 when the rod 22 is in the vent-state position as shown in
In another implementation, the rod 22 may have a constant diameter its entire length, but be hollow at certain points and have holes in the rod 22 that lead to the hollow sections to allow venting. In one implementation of the rod 22, referring to
In another implementation, referring to
The position mechanism 16 may use any material or combination of materials suitable for the particular application, for example, at least one of aluminum, electroplated aluminum, steel, stainless steel, brass, titanium, iron, copper, zinc, plastic, composite materials, and nanomaterials. The position mechanism 16 may be of any configuration for a particular application or environment suitable for moving rod 22. For example, the position mechanism 16 may be a lever, a screw, a threaded knob, a solenoid, a magnetic device, a stepping motor, a servo motor, and any other suitable device. The position mechanism 16 may be formed of a single piece of material or several assembled pieces.
In one implementation, referring to
In one implementation, the rod 22 end that interfaces with knob connector 44 may be rounded and/or have a loose fit to decrease friction between rod 22 and knob connector 44; thereby decreasing the likelihood that rod 22 will rotate with the knob connector 44. Reducing the amount rod 22 rotates may reduce wear and may increase reliability. Detent 46 may secure knob 42 and knob connector 44 in position when knob 42 is substantially close to outer shell 30. In one implementation, referring to
Seal 24 and rod mount seal 36 may be of any material, size, and configuration for a particular application or environment. Seal 24 and rod mount seal 36 may use any material suitable for the purpose of sealing, for example, plastic, hemp, Teflon, butyl, polymer, plastic, polycarbonate, polyethylene, polypropylene, polyvinylchloride, and metal. Seal 24 and rod mount seal 36 may be any shape suitable for a particular configuration or environment, for example, round, annular, spherical, and a strip. In one implementation, seal 24 is a butyl o-ring configured to sealably contact rod 22. Rod mount seal 36 is a butyl o-ring configured to sealably contact outer shell 30.
Controlling the flow of pressurized liquid through on-off controller 10 may be accomplished in any manner, using any suitable apparatus, using any suitable body 12, rod 22, position mechanism 16, and seal 24. The position of the rod 22 may define any number of operating states in which the flow of pressurized fluid may be controlled in any manner. In one implementation, the position of the rod 22 defines three operating states: an on-state, an off-state, and a vent-state. The position of the rod 22 and the detent 46 may define a fourth on-locked-state. In another implementation, the position of the rod 22 defines four operating states: an on-state, an off-state, a seal-outlets-state, and a vent-state. For this implementation, the seal-outlets-state pneumatically isolates the outlets such that venting pressurized fluid from the body cavity 80 does not vent pressurized fluid from the outlets or any cavity in fluid communication with an outlet.
Placing the on-off controller 10 in an on-state may be accomplished in any manner. In an exemplary implementation, referring to
Placing the on-off controller 10 in an on-locked-state may be accomplished in any manner. In an exemplary implementation, referring to
Placing the on-off controller 10 in an off-state may be accomplished in any manner. In an exemplary implementation, referring to
Placing the on-off controller 10 in a vent-state may be accomplished in any manner. In an exemplary implementation, referring to
This application is a divisional of and claims priority to U.S. application Ser. No. 11/032,934 by Carpenter et al. filed Jan. 11, 2005, incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11032934 | Jan 2005 | US |
Child | 11758284 | Jun 2007 | US |