Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN

Information

  • Patent Grant
  • 11477127
  • Patent Number
    11,477,127
  • Date Filed
    Friday, October 16, 2020
    3 years ago
  • Date Issued
    Tuesday, October 18, 2022
    a year ago
Abstract
Some embodiments provide a method for a software-defined wide area network (SD-WAN) connecting first and second sites, with the first site including an edge node and the second site including multiple forwarding hub nodes. At the edge node of the first site, the method receives a packet of a particular flow including a flow attribute. The method uses the flow attribute to identify a hub-selection rule from multiple hub-selection rules, each hub-selection rule identifying at least one forwarding hub node at the second site for receiving one or more flows from the first site, and at least one hub-selection rule identifying at least one forwarding hub node that is not identified by another hub-selection rule. The method uses the identified hub-selection rule to identify a forwarding hub node for the particular flow. The method then sends the packet from the edge node at the first site to the identified forwarding hub node at the second site.
Description
BACKGROUND

Today, single clusters of forwarding hub nodes in software-defined wide area networks (SD-WANs) are tied to fixed scale-out ratios. For example, an N node cluster would have a scale out factor of 1:N as a fixed ratio. If the first assigned cluster node is overloaded, the next node (i.e., second node) in the cluster takes over, and so on until the span reaches all available N nodes. The clustering services today are oblivious to application requirements and bind a rigid scheme for providing clustering services to multiple peering edge nodes (e.g., in a hub and spoke topology). In this manner, a high priority real time application traffic flow is treated the same way as that of a low priority (e.g., bulk) traffic flow with respect to the scale out ratio within the cluster. This can subsequently lead to sub-optimal performance for provisioning and load balancing traffic within the cluster, and, in some cases, under-utilization of cluster resources.


BRIEF SUMMARY

Some embodiments provide a software-defined wide area network (SD-WAN) that includes a first branch location (first branch) and a datacenter location (datacenter). The datacenter includes multiple forwarding hub nodes, while the branch site includes at least one edge forwarding node. The edge node of the branch site receives a packet of a particular flow, the packet having a flow attribute. The edge node uses the flow attribute of the packet to identify a hub-selection rule from multiple hub-selection rules, each of which identifies a set of one or more forwarding hub nodes of the datacenter for receiving one or more flows from the branch site. At least one hub-selection rule identifies at least one forwarding hub node that is unique to the hub-selection rule (i.e., not identified by another hub-selection rule). The edge node uses the identified hub-selection rule to identify a forwarding hub node for the particular flow, and sends the packet from the branch site to the identified forwarding hub node of the datacenter.


In some embodiments, the forwarding hub nodes serve as gateways of the SD-WAN that provide access from the first branch site to other branch sites or third-party datacenters. The third party datacenters, in some embodiments, include software as a service (SaaS) datacenters (e.g., datacenters for video conferencing SaaS providers, for middlebox (e.g., firewall) service providers, for storage service providers, etc.). In some embodiments, the branch sites and third party datacenters are topologically arranged around the datacenter in a hub and spoke topology such that traffic between two sites passes through the forwarding hub nodes at the datacenter (i.e., regardless of the geographic location of the sites).


Conjunctively, or alternatively, the forwarding hub nodes in some embodiments provide branch sites with access to compute, storage, and service resources of the datacenter. Examples of such resources include compute machines (e.g., virtual machines and/or containers providing server operations), storage machines (e.g., database servers), and middlebox service operations (e.g., firewall services, load balancing services, encryption services, etc.). In some embodiments, the connections between the first branch site and the datacenter hub nodes are secure encrypted connections that encrypt packets exchanged between the edge node of the first branch site and the datacenter hub nodes. Examples of secure encrypted connections used in some embodiments include VPN (virtual private network) connections, or secure IPsec (Internet Protocol security) connections.


In some embodiments, the branch edge node identifies a hub-selection rule for a received packet by matching flow attributes of the packet with match criteria of a hub-selection rule, which associates the match criteria with one or more identifiers of one or more forwarding hub nodes of the datacenter. The match criteria of the hub-selection rules are defined in terms of flow attributes, according to some embodiments. The flow attributes that are used for the match operation in some embodiments include the received packet's flow identifier (e.g., the received packets five tuple identifier, i.e., source and destination Internet Protocol (IP) addresses/port numbers and protocol).


Conjunctively, or alternatively, the flow identifier used for the match operation in some embodiments includes flow attributes other than layers 2-4 (L2-L4) header values, such as layer 7 (L7) attributes. Examples of L7 attributes include AppID (e.g., traffic type identifier), user identifier, group identifier (e.g., an activity directory (AD) identifier), threat level, and application name/version. To obtain the L7 attributes, some embodiments perform deep packet inspection (DPI) on the packet.


By using L7 attributes to define the match criteria of hub-selection rules, some embodiments allow flows to be forwarded to different forwarding hub nodes based on different contextual attributes associated with the flows (i.e., allocating different forwarding hub nodes for different categories of flows). For instance, in some embodiments, the hub-selection rules associate different sets of flows that contain different types of traffic (as identified by different AppIDs) with different sets of forwarding hub nodes. Allocating the forwarding hub nodes based on L7 attributes, in some embodiments, allows for certain categories of traffic to be prioritized over other categories of traffic. For example, a first category of flows that contains a first type of traffic determined to be a high priority type of traffic (e.g., VoIP) may be allocated more forwarding hub nodes than a second category of flows that contains a second type of traffic determined to be a low priority type of traffic.


As mentioned above, the match criteria of one or more hub-selection rules can be defined in terms of other L7 contextual attributes, such as user identifier, group identifier, threat level, and application name/version. For example, in some embodiments, the hub-selection rules associate sets of flows having user identifiers that correspond to executive staff or financial staff with a first set of forwarding hub nodes, while associating sets of flows having user identifiers other than those that correspond to executive staff or financial state with a second set of forwarding hub nodes.


The hub-selection rules, in some embodiments, each identify a different group of forwarding hub nodes available for selection (e.g., available for processing flows in the same category as the matching packet). Accordingly, in some embodiments, when a matching hub-selection rule is found, the edge node selects a forwarding hub node from the group of forwarding hub nodes identified by the hub-selection rule. In some embodiments, the edge node relies on load balancing criteria (e.g., weight values) along with load balancing policies (e.g., round robin, etc.) to select a forwarding hub node from the group.


In some embodiments, a controller for the SD-WAN provides the hub-selection rules to the branch edge node. The controller receives network traffic statistics from the forwarding hub nodes, aggregates the received statistics by flow category, and analyzes the statistics to identify flow categories that need additional, or fewer, forwarding hub nodes in their respective forwarding hub node groups. In some embodiments, the controller determines that additional or fewer forwarding hub nodes are needed for processing a particular category of flows when a volume of traffic associated with the particular category of flows is found to exceed a maximum threshold value for traffic or fall below a minimum threshold value for traffic. When the controller determines that additional forwarding hub nodes are needed for a particular flow category, the controller directs a manager (e.g., a server) of the datacenter to generate the additional forwarding hub nodes, according to some embodiments. Conversely, when the controller determines in some embodiments that fewer forwarding hub nodes are needed for a particular flow category, the controller may reallocate the excess forwarding hub nodes to other flow categories.


When the controller directs the manager of the datacenter to generate additional forwarding hub nodes, in some embodiments, the controller sends an updated list of forwarding hub node groups to the branch edge node. In some embodiments, the updated list is provided via updated hub-selection rules (e.g., with updates to the forwarding hub node groups specified for each hub-selection rule). The forwarding hub node groups specified for each hub-selection rule, in some embodiments, are identified by group identifiers. Thus, the controller in some embodiments simply provides updated group identifiers to the edge nodes. Conversely, or alternatively, the controller in some embodiments provides the updated group identifiers as updated hub-selection rules that reference the updated group identifiers.


The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, the Detailed Description, the Drawings, and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, the Detailed Description, and the Drawings.





BRIEF DESCRIPTION OF FIGURES

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.



FIG. 1 conceptually illustrates an example of an SD-WAN that includes multiple branch sites that connect to hubs of a datacenter, according to some embodiments.



FIG. 2 conceptually illustrates another example of an SD-WAN that includes a controller cluster for configuring the components of the SD-WAN, according to some embodiments.



FIG. 3 conceptually illustrates example components of an edge node of a branch site, according to some embodiments.



FIG. 4 illustrates a process for an edge node for selecting a hub to which to forward a packet, according to some embodiments.



FIG. 5 illustrates a process for a controller that manages the configuration of edge nodes and hubs of an SD-WAN, according to some embodiments.



FIG. 6 conceptually illustrates a computer system with which some embodiments of the invention are implemented.





DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.


Some embodiments provide a software-defined wide area network (SD-WAN) that includes one or more branch sites (branch locations) and a datacenter (datacenter location). The datacenter includes multiple forwarding hub nodes (referred to as “hubs” below), while each of the branch sites includes at least one edge node. In some embodiments, edge nodes are deployed at each of the branch sites in high-availability pairs such that each branch site includes an active edge node and a standby edge node in case of failure. The edge nodes of the branch sites receive packets of flows, the packets having flow attributes. The edge nodes use the flow attributes of the packets to identify hub-selection rules from multiple hub-selection rules, each of which identifies a set of one or more hubs of the datacenter for receiving one or more flows from the branch sites and includes match criteria defined in terms of flow attributes. In some embodiments, at least one hub-selection rule identifies at least one hub that is unique to the hub-selection rule (i.e., not identified by another hub-selection rule). The edge nodes use the identified hub-selection rules to identify hubs for the flows, and send the packets from the branch sites to the identified hubs of the datacenter (i.e., according to the identified hub-selection rules).



FIG. 1 conceptually illustrates an SD-WAN network (also referred to as a virtual network below) for connecting multiple branch sites to each other and to resources of a centralized datacenter. In this example, the SD-WAN 100 is created for connecting the branch sites 130-136 to each other and to resources 160 of the datacenter 105 (datacenter), as well as the SaaS datacenter 140, via the sets of hubs 112-116 (also referred to herein as forwarding hub nodes) of the hub cluster 110. The SD-WAN 100 is established by a controller cluster (not shown), the sets of hubs 112-116, and four edge nodes 120-126, one in each of the branch sites 130-136.


The edge nodes in some embodiments are edge machines (e.g., virtual machines (VMs), containers, programs executing on computers, etc.) and/or standalone appliances that operate at multi-computer locations of the particular entity (e.g., at an office or datacenter of the entity) to connect the computers at their respective locations to the hubs and other edge nodes (if so configured). In some embodiments, the edge nodes are clusters of edge nodes at each of the branch sites. In other embodiments, the edge nodes are deployed to each of the branch sites as high-availability pairs such that one edge node in the pair is the active edge node and the other edge node in the pair is the standby edge node that can take over as the active edge node in case of failover. Also, in this example, the sets of hubs 112-116 are deployed as machines (e.g., VMs or containers) in the same public datacenter 105. In other embodiments, the hubs may be deployed in different public datacenters.


An example of an entity for which such a virtual network can be established includes a business entity (e.g., a corporation), a non-profit entity (e.g., a hospital, a research organization, etc.), and an education entity (e.g., a university, a college, etc.), or any other type of entity. Examples of public cloud providers include Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, etc., while examples of entities include a company (e.g., corporation, partnership, etc.), an organization (e.g., a school, a non-profit, a government entity, etc.), etc. In other embodiments, the hubs can also be deployed in private cloud datacenters of a virtual WAN provider that hosts hubs to establish SD-WANs for different entities.


In the example of FIG. 1, the hubs are multi-tenant forwarding elements that can be used to establish secure connection links (e.g., tunnels) with edge nodes at the particular entity's multi-computer sites, such as branch sites (branch offices), datacenters (e.g., third party datacenters), etc. For example, the sets of hubs 112-116 in the cluster 110 provide access from each of the branch sites 130-136 to each of the other branch sites 130-136, as well as to the SaaS datacenter 140, via the connection links 150, which terminate at the cluster 110 as shown. These multi-computer sites are often at different physical locations (e.g., different buildings, different cities, different states, etc.), according to some embodiments. In some embodiments the forwarding hub nodes can be deployed as physical nodes or virtual nodes. Additionally, the forwarding hub nodes can be deployed on the premises of a datacenter premises in some embodiments, while in other embodiments, the forwarding hub nodes can be deployed on a cloud (e.g., as a set of virtual edges configured as a cluster).


Additionally, the example of FIG. 1, the sets of hubs 112-116 also provide access to resources 160 (e.g., machines) of the datacenter 105. More specifically, the set of hubs 116 provides access to the resources 160. The resources in some embodiments include a set of one or more servers (e.g., web servers, database servers) within a microservices container (e.g., a pod). Conjunctively, or alternatively, some embodiments include multiple such microservices containers, each accessible through a different set of one or more hubs of the datacenter. The resources, as well as the hubs, are within the datacenter premises, according to some embodiments.


The edge nodes 120-126 are forwarding elements that exchange packets with one or more hubs and/or other edge nodes through one or more secure connection links, according to some embodiments. In this example, all secure connection links of the edge nodes are with the sets of hubs 112-116. FIG. 1 also illustrates that through the set of hubs 112, the SD-WAN 100 allows the edge nodes to connect to the SaaS datacenter 140. While not shown, some embodiments include multiple different SaaS datacenters, which may each be accessible via different sets of hubs, according to some embodiments. In some embodiments, the SaaS datacenters include datacenters for video conferencing SaaS providers, for middlebox (e.g., firewall) service providers, for storage service providers, etc. As shown, the branch sites 130-136 and SaaS datacenter 140 are topologically arranged around the datacenter 105 in a hub and spoke topology. Thus, traffic between any two sites must pass through the sets of hubs 112-116 at the datacenter 105 regardless of the geographic location of the sites.


The sets of hubs 112-116 in some embodiments provide the branch sites 130-136 with access to compute, storage, and service resources of the datacenter, such as the resources 160. Examples of such resources include compute machines (e.g., virtual machines and/or containers providing server operations), storage machines (e.g., database servers), and middlebox service operations (e.g., firewall services, load balancing services, encryption services, etc.). In some embodiments, the connections between the branch sites and the datacenter hubs are secure encrypted connections that encrypt packets exchanged between the edge nodes of the branch sites and the datacenter hubs. Examples of secure encrypted connections used in some embodiments include VPN (virtual private network) connections, or secure IPsec (Internet Protocol security) connections.


In some embodiments, multiple secure connection links (e.g., multiple secure tunnels) can be established between an edge node and a hub. When multiple such links are defined between an edge node and a hub, each secure connection link, in some embodiments, is associated with a different physical network link between the edge node and an external network. For instance, to access external networks in some embodiments, an edge node has one or more commercial broadband Internet links (e.g., a cable mode and a fiber optic link) to access the Internet, a wireless cellular link (e.g., a 5G LTE network), etc.


In some embodiments, each secure connection link between a hub and an edge node is formed as a VPN tunnel between the hub and the edge node. As illustrated in FIG. 1, the set of hubs 112 also connects the edge nodes to the SaaS datacenter 140. In some embodiments, these connections are through secure VPN tunnels. The collection of the edge nodes, hubs, and secure connections between the edge nodes, hubs, and SaaS datacenters forms the SD-WAN 100 for the particular entity.


As the sets of hubs 112-116 are multi-tenant hubs, they are used to define other virtual networks for other entities (e.g., other companies, organizations, etc.), according to some embodiments. Some such embodiments store tenant identifiers in tunnel headers that encapsulate packets that are to traverse the tunnels that are defined between a hub and branch sites, or other datacenters, to differentiate packet flows that it receives from edge nodes of one entity from packet flows that it receives along other tunnels of other entities. In other embodiments, the hubs are single tenant and are specifically deployed to be used by just one entity.


As mentioned above, the edge nodes of some embodiments forward packets to the hubs based on hub-selection rules that each identify a set of one or more hubs (e.g., the sets of hubs 112-116) of the datacenter for receiving one or more flows from the branch sites. In some embodiments, the edge nodes use flow attributes of received packets to identify hub-selection rules. The edge nodes identify hub-selection rules for received packets by matching flow attributes of the received packets with the match criteria of the hub-selection, which associate the match criteria with one or more identifiers of one or more forwarding hub nodes of the datacenter, according to some embodiments. For example, FIG. 1 depicts two flows 170 and 175 that both originate at the edge node 120 of the branch site 130. The first flow 170 is forwarded to the set of hubs 112, which provide access to the SaaS datacenter 140, while the second flow 175 is forwarded to the set of hubs 116 which provide access to the set of resource machines 160 of the datacenter 105.


The match criteria of the hub-selection rules in some embodiments are defined in terms of flow attributes. The flow attributes that are used for the match operation in some embodiments include the received packet's flow identifier (e.g., the received packets five tuple identifier, i.e., source and destination Internet Protocol (IP) addresses/port numbers and protocol). Conjunctively, or alternatively, the flow identifier used for the match operation in some embodiments includes flow attributes other than layers 2-4 (L2-L4) header values, such as layer 7 (L7) attributes. Examples of L7 attributes include AppID (e.g., traffic type identifier), user identifier, group identifier (e.g., an activity directory (AD) identifier), threat level, and application name/version. To obtain the L7 attributes, some embodiments perform deep packet inspection (DPI) on the packet. Alternatively, some embodiments may utilize a context engine to collect L7 attributes, as will be further described below.


By using L7 attributes to define the match criteria of hub-selection rules, some embodiments allow flows to be forwarded to different hubs based on different contextual attributes associated with the flows (i.e., allocating different hubs for different categories of flows). For instance, in some embodiments, the hub-selection rules associate different sets of flows that contain different types of traffic (i.e., as identified by different AppIDs) with different sets of hubs. Allocating the hubs based on L7 attributes, in some embodiments, allows for certain categories of traffic to be prioritized over other categories of traffic. For example, a first category of flows that contains a first type of traffic determined to be a high priority type of traffic (e.g., VoIP) may be allocated more hubs than a second category of flows that contains a second type of traffic determined to be a low priority type of traffic. Some embodiments also add attributes to traffic flows to signify that the traffic is of a higher priority for influencing hub-selection rules. For example, some embodiments include the location (e.g., latitude/longitude, geographic location) of the edge node as an additional attribute for influencing hub-selection rules.


As mentioned above, the match criteria of one or more hub-selection rules can be defined in terms of other L7 contextual attributes, such as user identifier, group identifier, threat level, and application name/version. For example, in some embodiments, the hub-selection rules associate sets of flows having user identifiers that correspond to executive staff or financial staff with a first set of forwarding hub nodes, while associating sets of flows having user identifiers other than those that correspond to executive staff or financial state with a second set of hubs. Doing so, in some embodiments, results in decreased congestion, and allows for easier prioritization of network traffic by allocating hubs based on attributes of flows such that certain flow categories requiring a greater number of hubs or resources can be provided with such.


In some embodiments, different hub-selection rules identify different groups of hubs that are available for selection for flows that match the rules. Accordingly, in some embodiments, when a matching hub-selection rule is identified for a received packet's flow, the edge node selects a hub from the group of hubs identified by the matched hub-selection rule. In some embodiments, the edge node performs a load balancing operation that based on a set of load balancing criteria (e.g., weight values) distributes the flows that match a hub-selection rule amongst the hubs specified by the rule.


For instance, the load balancing operation in some embodiments uses the weight values to distribute the flows that match a hub-selection rule amongst this rule's specified hubs in a round robin fashion (e.g., for three weight values of 2, 3, 3 for three hub, the load balancing operation would distribute the first two matching flows to the first hub, the next three matching flows to the second hub, the next three matching flows to the third hub, and then repeats by going back to the first hub for the next two flows).


The load-balancing weight values in some embodiments are adjusted dynamically based on packet processing statistics collected from the edge nodes and/or hubs in some embodiments. These statistics are collected and distributed in some embodiments by the controller cluster (not shown) of the SD-WAN. The controller cluster in some embodiments also distributes the hub-selection. The controller cluster and its operation will be described in further detail below.



FIG. 2 illustrates an SD-WAN network 200 for connecting multiple branch sites 230-236 to each other and to resources of a centralized datacenter 205. In this example, the SD-WAN 200 is established by the controller cluster 260 in the private datacenter 265, the hub clusters 212-216, and four edge nodes 220-226, one in each of the branch sites 230-236.


The controller cluster 260 severs as a central point for managing (e.g., defining and modifying) configuration data that is provided to the edge nodes and/or hubs to configure some or all of the operations. In some embodiments, the controller cluster has a set of manager servers that define and modify the configuration data, and a set of controller servers that distribute the configuration data to the edge nodes and/or hubs. In other embodiments, the controller cluster only has one set of servers that define, modify, and distribute the configuration data. The controller cluster, in some embodiments, directs edge nodes to use certain hubs for different categories of flows, as will be described in further detail below.


Although FIG. 2 illustrates the controller cluster 260 residing in one private datacenter 265, the controller cluster in some embodiments resides in one or more public cloud datacenters and/or private cloud datacenters. Also, some embodiments deploy one or more hubs in one or more private datacenters (e.g., datacenters of the entity that deploys the hubs and provides the controller cluster for configuring the hubs to implement the virtual network(s)).



FIG. 2 further illustrates a set of hub groups 212-216 in the datacenter 205. Each hub group 212-216, in some embodiments, is designated for processing a different category of flows based on configuration by the controller cluster 260. For example, the hub group 212 is designated as the hub group for receiving flows associated with the SaaS datacenter 240 as illustrated. In some embodiments, flow categories having a higher priority are allocated more hubs than flow categories having a lower priority. For example, each of the hub groups 212-216 includes a different number of hubs, with the hub group 216, having the highest number of hubs. In some embodiments, the number of hubs allocated for each flow category is based on input from a user (e.g., network administrator).


As mentioned above, in some embodiments, the controller cluster 260 (controller) for the SD-WAN provides hub-selection rules to the edge nodes 220-226 at the branch sites 230-236 for selecting hubs and/or hub groups to which to send packets of flows. The hubs of the hub groups, in some embodiments, are configured to provide network traffic statistics to the controller cluster collected from flows received by the hubs. In some embodiments, the configuration for the hubs specifies to provide the statistics periodically.


The controller cluster 260 receives network traffic statistics from the hubs of the hub groups 212-216, aggregates the received statistics by flow category (e.g., by AppID, user identifier, etc.), and analyzes the statistics to identify flow categories that require additional, or fewer, hubs in their respective hub groups. For example, in some embodiments, the controller cluster 260 determines that additional hubs are needed for processing a particular category of flows when a volume of traffic associated with the particular category of flows is found to exceed a maximum threshold value for traffic, or fall below a minimum threshold value for traffic. The maximum and minimum threshold values, in some embodiments, are defined by a user (e.g., network administrator).


When the controller cluster 260 determines that additional hubs are needed for a particular flow category, the controller directs a manager (not shown) of the datacenter to generate the additional hubs, according to some embodiments. Conversely, when the controller determines in some embodiments that fewer hubs are needed for a particular flow category, the controller may remove the excess hubs from the hub group designated for the particular flow category. In some embodiments, the controller may reallocate the excess hubs for other flow categories.


When the controller directs the manager of the datacenter to generate additional hubs, in some embodiments, the controller cluster 260 sends an updated list of hub groups to the edge nodes 220-226. In some embodiments, the updated list is provided via updated hub-selection rules (e.g., with updates to the hub groups specified for each hub-selection rule). The hub groups specified for each hub-selection rule, in some embodiments, are identified using group identifiers. Thus, the controller cluster in some embodiments simply provides updated group identifiers to the edge nodes. Conversely, or alternatively, the controller cluster in some embodiments provides the updated group identifiers as updated hub-selection rules that reference the updated group identifiers. The addition and removal of hubs will be further discussed below by reference to FIG. 5.



FIG. 3 conceptually illustrates example of an edge node 300 of some embodiments of the invention. As shown, the edge node 300 includes a packet processor 302, a load balancing hub selector 310, a flow classifier 320, and a connection tracker 350. In some embodiments, the components of the edge node operate on a single machine, while in other embodiments (e.g., when the edge node is a cluster of edge nodes) they operate on separate machines.


The packet processor 302 is the forwarding engine of the edge forwarding node of some embodiments. For a received packet of a flow, the packet processor 302 in some embodiments first determines whether the connection tracker 350 includes any records relating to the flow. The connection tracker stores records 360 for flows that have been previously processed by the edge node. In the example illustrated in FIG. 3, the stored records 360 of the connection tracker 350 include flow identifiers (e.g., five tuple identifiers), matched hub-selection rule for the flows, and the IP addresses of the selected hubs for the flows. While each of the flow IDs are illustrated as having one selected hub per flow, other embodiments may include a list of two or more hubs that have been selected for different packets of the same flow. In other words, in some embodiments, hubs are selected on a per flow basis, while in other embodiments, hubs are selected on a per packet basis. For example, in some embodiments, the records of the connection tracker 350 are updated as additional packets of the same flow are processed and forwarded by the edge node. The updated records in some embodiments include statistics regarding the number of packets in a flow forwarded to each hubs.


When the packet processor 302 determines that the connection tracker has a record that matches the received packet's flow (e.g., determines that the packet's five-tuple identifier matches the five-tuple identifier of a record in the connection tracker), the packet processor selects a hub for the packet by selecting a hub specified in the matching connection-tracking record. On the other hand, when the packet processor 302 determines that the connection tracker does not store any record relating to the received packet's flow, the packet processor 302 in some embodiments uses the flow classifier 320 to identify a hub-selection rule that specifies one or more hubs to use for the received packet's flow.


The flow classifier 320, in some embodiments, matches attributes of flows with match criteria of hub-selection rules 340 stored in the storage 330. As illustrated, the hub-selection rules 340 include a match criteria and a corresponding list of available hubs. Match attributes in some embodiments are defined in terms of (1) five-tuple header values (i.e., source IP address, source port address, destination IP address, destination port address, and protocol) of the packet flows, and/or (2) contextual attributes associated with the packet flows. In this example, the match criteria are defined in terms of both five-tuple identifiers and traffic types. In some embodiments, some or all of the five-tuple header values can be specified as wildcard values.


Also, in this example, each rule specifies its list of hubs by specifying a hub group identifier (GID), with each hub group's GID being an index into another data store that specifies the identifiers (e.g., IP addresses) of the hubs in that group. For example, rule 1 of the hub-selection rules 340 (1) matches flows that header values that match 5-tuple ID1 and carrying audio streaming content, and (2) specifies the corresponding hub group GID 5. Thus, flows with matching five-tuple identifiers and having an AppID identifying audio-streaming as the traffic type of the flow are to be forwarded to the hubs of hub group 5. Conjunctively, or alternatively, some embodiments list available hubs in each hub group by listing their individual network addresses (i.e., IP addresses) in the hub-selection rule, instead of providing the group D. Similarly, the match criteria of some embodiments may use a different contextual attribute for match criteria other than traffic type, or a combination of two or more contextual attributes.


In some embodiments, to select a hub from the available hubs indicated by the matched hub-selection rule, the packet processor 302 uses the load balancing hub selector 310. The load balancing hub selector 310, in some embodiments, performs load balancing operations to identify and select hubs to which to forward packets. In some embodiments, the load balancing hub selector 310 uses the load balancing criteria stored in storage 315 to perform its load balancing and hub-selection operations.


The edge node performs its load balancing operations in order to distribute the flows that match a hub-selection rule amongst the hubs specified by the rule. For instance, the load balancing operation in some embodiments uses the weight values to distribute the flows that match a hub-selection rule amongst this rule's specified hubs in a round robin fashion (e.g., for three weight values of 2, 3, 3 for three hub, the load balancing operation would distribute the first two matching flows to the first hub, the next three matching flows to the second hub, the next three matching flows to the third hub, and then repeats by going back to the first hub for the next two flows). The weight values in some embodiments are periodically adjusted based on statistics regarding the packets processed by the hubs.



FIG. 4 illustrates a process 400 for an edge node that receives a packet of a particular flow. As shown, the process 400 starts at 410 by receiving a packet that has a flow identifier associated with a particular packet flow. In some embodiments, the received packet may be the first packet of the flow, while in other embodiments, the packet may be a subsequent packet of the flow.


After receiving the packet at 410, the process 400 determines, at 420, whether a record associated with the particular flow is stored in a connection tracker. As described above for FIG. 3, the connection tracker (e.g., connection tracker 350), in some embodiments, stores records for flows that have been processed by the edge node. These stored records include the flow's identifier, an identified hub-selection rule for the flow, and one or more hubs to which packets of a flow have been forwarded, according to some embodiments, as described above. When a record associated with the particular flow is identified in the connection tracker, the process transitions to 430, where it identifies the hub previously selected for the flow from the connection-tracker record. The process then transitions to 480 to forward the packet to the selected hub.


Otherwise, when no records associated with the particular flow are stored in the connection tracker, the process transitions to 440 to identify contextual attributes of the packet flow. In some embodiments, the contextual attributes include AppID (e.g., traffic type identifier), user identifier, group identifier (e.g., an activity directory (AD) identifier), threat level, and application name/version. To identify the contextual attributes of received packets, some embodiments perform deep packet inspection (DPI) on the received packets. Alternatively, some embodiments utilize context engine that collects contextual attributes on the edge node through one or more guest introspection (GI) agents executing on the edge node. In some such embodiments, the context engine provides the collected contextual attributes to, e.g., a flow classifier such as flow classifier 320 of FIG. 3.


After identifying the contextual attributes of the received packet, the process 400 matches, at 450, the identified contextual attributes of the flow with match criteria of a hub-selection rule. As described above, the match criteria in some embodiments is defined in terms of flow attributes (e.g., contextual attributes). For instance, in the example of the edge node 300, the flow classifier 320 accesses the hub-selection rules from the storage 330 to match the identified contextual attributes with the match criteria listed for the hub-selection rules 340. In some embodiments, the hub-selection rules are received from a controller of the SD-WAN (e.g., the controller cluster 260) and each associate the match criteria with one or more identifiers of one or more hubs, or hub groups, of the datacenter as described above. The match criteria of the hub-selection rules, in some embodiments, are defined in terms of flow attributes.


Next, at 460, the process selects a hub from a hub group identified as available by the matching hub-selection rule. Some embodiments utilize group identifiers associated with the hub groups to identify available hub groups for each of the hub-selection rules, such as in the example embodiment of FIG. 3. In some embodiments, the controller (e.g., controller cluster 260) may provide, to the edge nodes (e.g., edge nodes 220-226), a mapping of the group identifiers to their respective hub groups for the edge nodes to use to identify particular hubs of the hub groups to which to send packets.


In some embodiments, such as FIG. 3, the load balancing hub selector of the edge node (e.g., the load balancing hub selector 310) is responsible for selecting the hub. For instance, as described above, the load balancing operation in some embodiments uses periodically adjusted weight values to distribute the flows that match a hub-selection rule amongst this rule's specified hubs in a round robin fashion.


In some embodiments, for packets belonging to flows having corresponding records stored by the connection tracker, the same hub may be selected for the current packet of the flow. However, as will be described in further detail below, the available hubs in each hub group are dynamically assigned, and thus may change between the processing of different packets of a flow. Accordingly, in some embodiments, a hub selected for one packet of a flow may no longer be available for selection for a subsequent packet of the flow. In some such embodiments, the load balancing hub selector may select a next available hub from the available hubs identified by the matched hub selection rule for the flow.


After selecting a hub, the process proceeds to 470 to create a record in the connection-tracking storage 360 to identify the hub selected for the flow. For example, in some embodiments, the created connection-tracking record includes the flow's identifier, the matched hub-selection rule, and the hub(s) selected for the flow. Each time the process 400 matches a packet with a connection-tracking record, the process in some embodiments updates the connection tracker with other information regarding the particular flow. For example, in some embodiments, the process updates the existing record to reflect the hub selected for the received packet (i.e., if the selected hub is a hub other than those already reflected in the record).


After creating the connection-tracking record, the process forwards (at 480) the packet to the selected hub. As described above, the edge nodes in some embodiments forward packets to selected hubs using direct tunnels established between the edge nodes and the hubs and/or hub groups. In some embodiments, multiple secure connection links (e.g., multiple secure tunnels) can be established between an edge node and a hub. When multiple such links are defined between an edge node and a hub, each secure connection link, in some embodiments, is associated with a different physical network link between the edge node and an external network. For instance, to access external networks in some embodiments, an edge node has one or more commercial broadband Internet links (e.g., a cable mode and a fiber optic link) to access the Internet, a wireless cellular link (e.g., a 5G LTE network), etc. In some embodiments, each secure connection link between a hub and an edge node is formed as a VPN tunnel between the hub and the edge node. The process 400 then ends.



FIG. 5 illustrates a process 500 for a controller of an SD-WAN (e.g., controller cluster 260 of the SD-WAN 200). The process 500 starts, at 505, by receiving network traffic statistics from the hubs/hub groups of the datacenter (e.g., hub groups 212-216 of the datacenter 205). As described above, the hubs/hub groups are configured to provide network traffic statistics to the controller/controller cluster, according to some embodiments.


At 510, the process aggregates the received network traffic statistics by flow category. In some embodiments, the flows are categorized by traffic type (e.g., as identified by the AppID of packets). In some such embodiments, each traffic type has a designated priority level (e.g., high priority, low priority, etc.) that corresponds to the number of hubs that may be allocated for receiving flows of the traffic type. For example, in some embodiments, a first type of traffic designated as high priority may be allocated 70% of the hubs of the datacenter while a second type of traffic designated as low priority may be allocated the other 30% of the hubs of the datacenter. The number of hubs allocated for a particular traffic type is defined by a user (e.g., network administrator), according to some embodiments.


Once the received network traffic statistics have been aggregated, the process 500 selects, at 515, a flow category for analysis. Examples of flow categories can include categories based on AppID (e.g., traffic type), user identifiers (e.g., administrators, low-level employees, etc.), threat level (e.g., high, low, neutral, etc.), etc. In some embodiments, the flow categories are each assigned a priority level as described above. For example, some embodiments in which flows are categorized by traffic type may assign a high priority level to, e.g., VoIP traffic, while assigning a lower priority level to, e.g., peer-to-peer e-mail traffic.


Next, the process 500 determines, at 520, whether the amount of traffic associated with the selected flow category has exceeded a maximum threshold value specified for the flow category for a minimum duration of time (e.g., hours, days, weeks, etc.). The maximum threshold value and the minimum duration of time, in some embodiments, are each specified by a user (e.g., network administrator). In some embodiments, the maximum threshold value and the minimum duration of time specified may vary between each of the flow categories, while in other embodiments, they are consistent for each flow category.


When the process determines that the amount of traffic has not exceeded the maximum threshold value for the minimum specified duration of time, the process transitions to 525 to determine whether the amount of traffic has fallen below a minimum threshold for a minimum duration of time. In some embodiments, the minimum duration of time specified for the maximum threshold value and the minimum duration of time specified for the minimum threshold value are equal, while in other embodiments the specified minimum durations of time are different.


When the process determines, at 525, that the amount of traffic associated with the flow has fallen below the minimum threshold value for the minimum duration of time, the process transitions to 530 to remove the excess hubs from the group of hubs designated for the selected flow category. In some embodiments, removing the excess hubs includes reallocating the excess hubs for other flow categories (e.g., other flow categories that may require additional hubs). Otherwise, the process transitions to 540 to determine if there are additional flow categories to analyze.


Alternatively, when the process determines at 520 that the amount of traffic associated with the selected flow category has exceeded the maximum threshold value for the minimum duration of time, the process transitions to 535 to direct a manager of the datacenter (e.g., VeloCloud Orchestrator) to generate additional hubs to be added to the hub group allocated for servicing the selected flow category. In some embodiments, when a particular category of flows is found to have excess hubs as described above, those excess hubs may be allocated to a flow category determined to require additional hubs in conjunction with the newly generated hubs, or as an alternative to generating the new hubs.


Next, at 540, the process determines whether there are additional flow categories to analyze. When the process determines that there are additional flow categories, to analyze, the process transitions back to 515 to select a flow category for analysis. Otherwise, the process transitions to 545 to send updated hub-selection rules to the edge nodes of the branch sites, the updated hub-selection rules identifying any changes (e.g., additions, removals) to the hub groups. The process 500 then ends.


Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (also referred to as computer readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.


In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.



FIG. 6 conceptually illustrates a computer system 600 with which some embodiments of the invention are implemented. The computer system 600 can be used to implement any of the above-described hosts, controllers, hub and edge forwarding elements. As such, it can be used to execute any of the above described processes. This computer system includes various types of non-transitory machine readable media and interfaces for various other types of machine readable media. Computer system 600 includes a bus 605, processing unit(s) 610, a system memory 625, a read-only memory 630, a permanent storage device 635, input devices 640, and output devices 645.


The bus 605 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 600. For instance, the bus 605 communicatively connects the processing unit(s) 610 with the read-only memory 630, the system memory 625, and the permanent storage device 635.


From these various memory units, the processing unit(s) 610 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 630 stores static data and instructions that are needed by the processing unit(s) 610 and other modules of the computer system. The permanent storage device 635, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the computer system 600 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 635.


Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 635, the system memory 625 is a read-and-write memory device. However, unlike storage device 635, the system memory is a volatile read-and-write memory, such as random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 625, the permanent storage device 635, and/or the read-only memory 630. From these various memory units, the processing unit(s) 610 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.


The bus 605 also connects to the input and output devices 640 and 645. The input devices enable the user to communicate information and select commands to the computer system. The input devices 640 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 645 display images generated by the computer system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as touchscreens that function as both input and output devices.


Finally, as shown in FIG. 6, bus 605 also couples computer system 600 to a network 665 through a network adapter (not shown). In this manner, the computer can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet), or a network of networks (such as the Internet). Any or all components of computer system 600 may be used in conjunction with the invention.


Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.


While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.


As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms “display” or “displaying” mean displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.


While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For instance, several of the above-described embodiments deploy hubs in public cloud datacenters. However, in other embodiments, the hubs are deployed in a third party's private cloud datacenters (e.g., datacenters that the third party uses to deploy cloud hubs for different entities in order to deploy virtual networks for these entities). Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims
  • 1. For a software-defined wide area network (SD-WAN) connecting first, second and third sites, the first and second sites being branch sites and respectively comprising first and second forwarding edges and the third site being a datacenter and comprising a plurality of forwarding hubs, a method comprising: at the forwarding edge of the first branch site, receiving a packet of a particular flow, the packet originating from the first branch site and addressed to a destination at the second branch site, the flow associated with a flow attribute;using the flow attribute to identify a hub-selection rule from a plurality of hub selection rules, each hub-selection rule identifying at least one particular forwarding hub at the datacenter third site for receiving one or more flows from the first branch site, and directing the received flow to the particular forwarding hub to forward to the second branch site, the datacenter third site comprising a plurality of server machines accessible to the first and second sites through the hubs, the plurality of hub-selection rules comprising at least one hub-selection rule identifying at least one forwarding hub that is not identified by another hub-selection rule;using the identified hub-selection rule to identify a forwarding hub for the particular flow; andsending the packet from the forwarding edge at the first branch site to the identified forwarding hub at the datacenter third site.
  • 2. The method of claim 1, wherein the flow attribute comprises a five tuple identifier of the packet.
  • 3. The method of claim 1, wherein the flow attribute comprises attributes other than layers 2-4 header values.
  • 4. The method of claim 3 further comprising performing deep packet inspection (DPI) on the packet to identify the flow attribute, wherein the flow attribute comprises a layer 7 (L7) attribute of the packet.
  • 5. The method of claim 4, wherein the L7 attribute identifies a traffic type of the particular flow.
  • 6. The method of claim 1, wherein each hub-selection rule in the plurality of hub-selection rules specifies a different set of forwarding hubs for receiving flows of a particular flow category.
  • 7. The method of claim 1, wherein each hub-selection rule in the plurality of hub-selection rules comprises match criteria defined in terms of flow attributes.
  • 8. The method of claim 7, wherein using the flow attribute to identify a hub-selection rule comprises comparing the flow attribute to match criteria of the plurality of hub selection rules to identify a matching hub-selection rule.
  • 9. The method of claim 1, wherein at least two hub-selection rules identify a same group of forwarding hubs for receiving flows of first and second categories from the first site.
  • 10. The method of claim 1, wherein each forwarding hub in the plurality of forwarding hubs is associated with a different network address, wherein sending the packet from the forwarding edge at the first site to the identified hub at the datacenter third site comprises sending the packet from the forwarding edge at the first site to a network address associated with the identified hub at the datacenter third site.
  • 11. The method of claim 1, wherein the plurality of forwarding hubs act as gateways for accessing the resources at other branch sites or at a third party datacenter, including the second site.
  • 12. The method of claim 11, wherein the plurality of forwarding hubs also provide access to resources of the datacenter.
  • 13. The method of claim 11, wherein the plurality of branch sites are arranged topologically around the datacenter in a hub and spoke topology.
  • 14. The method of claim 1, wherein the plurality of hub selection rules are received from a controller of the SD-WAN.
  • 15. The method of claim 14 further comprising receiving an updated set of hub selection rules from the controller, wherein the updated set of hub selection rules comprise at least one hub selection rule identifying at least one additional forwarding hub for receiving a particular category of flows from the first site.
  • 16. The method of claim 15, wherein the controller generates the updated set of hub selection rules based on an analysis of network traffic statistics from the plurality of forwarding hubs.
  • 17. The method of claim 16, wherein the controller analyzes the network traffic statistics to identify groups of forwarding hubs that need additional or fewer forwarding hubs for receiving flows from the first site.
  • 18. The method of claim 1, wherein sending the packet to the identified forwarding hub comprising sending the packet via any one of fiber, cable, 5G, and Digital Subscriber Line (DSL).
  • 19. The method of claim 11, wherein the plurality of branch sites connect to the plurality of forwarding hubs at the datacenter through one of a virtual private network (VPN) domain and an IPSec domain, wherein packets are encrypted at forwarding edges of the plurality of branch sites and decrypted by the plurality of forwarding hubs.
  • 20. The method of claim 1, wherein at least one hub-selection rule identifies a first forwarding hub group for first and second different sets of flow, the method further comprising receiving a new hub-selection rule identifying a second forwarding hub group to which to send the second set of flows.
  • 21. The method of claim 1, wherein the forwarding edge of the first site is a first forwarding edge of a high-availability pair of forwarding edges of the first site, wherein the first forwarding edge is an active edge of the first site and a second forwarding edge of the high-availability pair of forwarding edges is a standby forwarding edge of the first site.
Priority Claims (1)
Number Date Country Kind
202041028276 Jul 2020 IN national
US Referenced Citations (768)
Number Name Date Kind
5652751 Sharony Jul 1997 A
5909553 Campbell et al. Jun 1999 A
6154465 Pickett Nov 2000 A
6157648 Voit et al. Dec 2000 A
6201810 Masuda et al. Mar 2001 B1
6363378 Conklin et al. Mar 2002 B1
6445682 Weitz Sep 2002 B1
6744775 Beshai et al. Jun 2004 B1
6976087 Westfall et al. Dec 2005 B1
7003481 Banka et al. Feb 2006 B2
7280476 Anderson Oct 2007 B2
7313629 Nucci et al. Dec 2007 B1
7320017 Kurapati et al. Jan 2008 B1
7373660 Guichard et al. May 2008 B1
7581022 Griffin et al. Aug 2009 B1
7680925 Sathyanarayana et al. Mar 2010 B2
7681236 Tamura et al. Mar 2010 B2
7962458 Holenstein et al. Jun 2011 B2
8094575 Vadlakonda et al. Jan 2012 B1
8094659 Arad Jan 2012 B1
8111692 Ray Feb 2012 B2
8141156 Mao et al. Mar 2012 B1
8224971 Miller et al. Jul 2012 B1
8228928 Parandekar et al. Jul 2012 B2
8243589 Trost et al. Aug 2012 B1
8259566 Chen et al. Sep 2012 B2
8274891 Averi et al. Sep 2012 B2
8301749 Finklestein et al. Oct 2012 B1
8385227 Downey Feb 2013 B1
8566452 Goodwin et al. Oct 2013 B1
8630291 Shaffer et al. Jan 2014 B2
8661295 Khanna et al. Feb 2014 B1
8724456 Hong et al. May 2014 B1
8724503 Johnsson et al. May 2014 B2
8745177 Kazerani et al. Jun 2014 B1
8799504 Capone et al. Aug 2014 B2
8804745 Sinn Aug 2014 B1
8806482 Nagargadde et al. Aug 2014 B1
8855071 Sankaran et al. Oct 2014 B1
8856339 Mestery et al. Oct 2014 B2
8964548 Keralapura et al. Feb 2015 B1
8989199 Sella et al. Mar 2015 B1
9009217 Nagargadde et al. Apr 2015 B1
9055000 Ghosh et al. Jun 2015 B1
9060025 Xu Jun 2015 B2
9071607 Twitchell, Jr. Jun 2015 B2
9075771 Gawali et al. Jul 2015 B1
9135037 Petrescu-Prahova et al. Sep 2015 B1
9137334 Zhou Sep 2015 B2
9154327 Marino et al. Oct 2015 B1
9203764 Shirazipour et al. Dec 2015 B2
9306949 Richard et al. Apr 2016 B1
9323561 Ayala et al. Apr 2016 B2
9336040 Dong et al. May 2016 B2
9354983 Yenamandra et al. May 2016 B1
9356943 Lopilato et al. May 2016 B1
9379981 Zhou et al. Jun 2016 B1
9413724 Ku Aug 2016 B2
9419878 Hsiao et al. Aug 2016 B2
9432245 Sorenson et al. Aug 2016 B1
9438566 Zhang et al. Sep 2016 B2
9450817 Bahadur et al. Sep 2016 B1
9450852 Chen et al. Sep 2016 B1
9462010 Stevenson Oct 2016 B1
9467478 Khan et al. Oct 2016 B1
9485163 Fries et al. Nov 2016 B1
9521067 Michael et al. Dec 2016 B2
9525564 Lee Dec 2016 B2
9559951 Sajassi et al. Jan 2017 B1
9563423 Pittman Feb 2017 B1
9602389 Maveli et al. Mar 2017 B1
9608917 Anderson et al. Mar 2017 B1
9608962 Chang Mar 2017 B1
9621460 Mehta et al. Apr 2017 B2
9641551 Kariyanahalli May 2017 B1
9648547 Hart et al. May 2017 B1
9665432 Kruse et al. May 2017 B2
9686127 Ramachandran et al. Jun 2017 B2
9715401 Devine et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9722815 Mukundan et al. Aug 2017 B2
9747249 Cherian et al. Aug 2017 B2
9755965 Yadav et al. Sep 2017 B1
9787559 Schroeder Oct 2017 B1
9807004 Koley et al. Oct 2017 B2
9819540 Bahadur et al. Nov 2017 B1
9819565 Djukic et al. Nov 2017 B2
9825822 Holland Nov 2017 B1
9825911 Brandwine Nov 2017 B1
9825992 Xu Nov 2017 B2
9832128 Ashner et al. Nov 2017 B1
9832205 Santhi et al. Nov 2017 B2
9875355 Williams Jan 2018 B1
9906401 Rao Feb 2018 B1
9930011 Clemons, Jr. et al. Mar 2018 B1
9935829 Miller et al. Apr 2018 B1
9942787 Tillotson Apr 2018 B1
10038601 Becker et al. Jul 2018 B1
10057183 Salle et al. Aug 2018 B2
10057294 Xu Aug 2018 B2
10135789 Mayya et al. Nov 2018 B2
10142226 Wu et al. Nov 2018 B1
10178032 Freitas Jan 2019 B1
10187289 Chen et al. Jan 2019 B1
10200264 Menon et al. Feb 2019 B2
10229017 Zou et al. Mar 2019 B1
10237123 Dubey et al. Mar 2019 B2
10250498 Bales et al. Apr 2019 B1
10263832 Ghosh Apr 2019 B1
10320664 Nainar et al. Jun 2019 B2
10320691 Matthews et al. Jun 2019 B1
10326830 Singh Jun 2019 B1
10348767 Lee et al. Jul 2019 B1
10355989 Panchal et al. Jul 2019 B1
10425382 Mayya et al. Sep 2019 B2
10454708 Mibu Oct 2019 B2
10454714 Mayya et al. Oct 2019 B2
10461993 Turabi et al. Oct 2019 B2
10498652 Mayya et al. Dec 2019 B2
10511546 Singarayan et al. Dec 2019 B2
10523539 Mayya et al. Dec 2019 B2
10550093 Ojima et al. Feb 2020 B2
10554538 Spohn et al. Feb 2020 B2
10560431 Chen et al. Feb 2020 B1
10565464 Han et al. Feb 2020 B2
10567519 Mukhopadhyaya et al. Feb 2020 B1
10574528 Mayya et al. Feb 2020 B2
10594516 Cidon et al. Mar 2020 B2
10594659 El-Moussa et al. Mar 2020 B2
10608844 Cidon et al. Mar 2020 B2
10637889 Ermagan et al. Apr 2020 B2
10666460 Cidon et al. May 2020 B2
10686625 Cidon et al. Jun 2020 B2
10693739 Naseri et al. Jun 2020 B1
10749711 Mukundan et al. Aug 2020 B2
10778466 Cidon et al. Sep 2020 B2
10778528 Mayya et al. Sep 2020 B2
10778557 Ganichev et al. Sep 2020 B2
10805114 Cidon et al. Oct 2020 B2
10805272 Mayya et al. Oct 2020 B2
10819564 Turabi et al. Oct 2020 B2
10826775 Moreno et al. Nov 2020 B1
10841131 Cidon et al. Nov 2020 B2
10911374 Kumar et al. Feb 2021 B1
10938693 Mayya et al. Mar 2021 B2
10951529 Duan et al. Mar 2021 B2
10958479 Cidon et al. Mar 2021 B2
10959098 Cidon et al. Mar 2021 B2
10992558 Silva et al. Apr 2021 B1
10992568 Michael et al. Apr 2021 B2
10999100 Cidon et al. May 2021 B2
10999137 Cidon et al. May 2021 B2
10999165 Cidon et al. May 2021 B2
10999197 Hooda et al. May 2021 B2
11005684 Cidon May 2021 B2
11018995 Cidon et al. May 2021 B2
11044190 Ramaswamy et al. Jun 2021 B2
11050588 Mayya et al. Jun 2021 B2
11050644 Hegde et al. Jun 2021 B2
11071005 Shen et al. Jul 2021 B2
11089111 Markuze et al. Aug 2021 B2
11095612 Oswal et al. Aug 2021 B1
11102032 Cidon et al. Aug 2021 B2
11108851 Kurmala et al. Aug 2021 B1
11115347 Gupta et al. Sep 2021 B2
11115426 Pazhyannur et al. Sep 2021 B1
11115480 Markuze et al. Sep 2021 B2
11121962 Michael et al. Sep 2021 B2
11121985 Cidon et al. Sep 2021 B2
11128492 Sethi et al. Sep 2021 B2
11153230 Cidon et al. Oct 2021 B2
11171885 Cidon et al. Nov 2021 B2
11212140 Mukundan et al. Dec 2021 B2
11212238 Cidon et al. Dec 2021 B2
11223514 Mayya et al. Jan 2022 B2
11245641 Ramaswamy et al. Feb 2022 B2
11252079 Michael et al. Feb 2022 B2
11252105 Cidon et al. Feb 2022 B2
11252106 Cidon et al. Feb 2022 B2
11258728 Cidon et al. Feb 2022 B2
11310170 Cidon et al. Apr 2022 B2
11323307 Mayya et al. May 2022 B2
11381474 Kumar et al. Jul 2022 B1
20020085488 Kobayashi Jul 2002 A1
20020087716 Mustafa Jul 2002 A1
20020198840 Banka et al. Dec 2002 A1
20030061269 Hathaway et al. Mar 2003 A1
20030088697 Matsuhira May 2003 A1
20030112766 Riedel et al. Jun 2003 A1
20030112808 Solomon Jun 2003 A1
20030126468 Markham Jul 2003 A1
20030161313 Jinmei et al. Aug 2003 A1
20030189919 Gupta et al. Oct 2003 A1
20030202506 Perkins et al. Oct 2003 A1
20030219030 Gubbi Nov 2003 A1
20040059831 Chu et al. Mar 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040165601 Liu et al. Aug 2004 A1
20040224771 Chen et al. Nov 2004 A1
20050078690 DeLangis Apr 2005 A1
20050149604 Navada Jul 2005 A1
20050154790 Nagata et al. Jul 2005 A1
20050172161 Cruz et al. Aug 2005 A1
20050195754 Nosella Sep 2005 A1
20050265255 Kodialam et al. Dec 2005 A1
20060002291 Alicherry et al. Jan 2006 A1
20060114838 Mandavilli et al. Jun 2006 A1
20060171365 Borella Aug 2006 A1
20060182034 Klinker et al. Aug 2006 A1
20060182035 Vasseur Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060193252 Naseh et al. Aug 2006 A1
20070064604 Chen et al. Mar 2007 A1
20070064702 Bates et al. Mar 2007 A1
20070083727 Johnston et al. Apr 2007 A1
20070091794 Filsfils et al. Apr 2007 A1
20070103548 Carter May 2007 A1
20070115812 Hughes May 2007 A1
20070121486 Guichard et al. May 2007 A1
20070130325 Lesser Jun 2007 A1
20070162639 Chu et al. Jul 2007 A1
20070177511 Das et al. Aug 2007 A1
20070237081 Kodialam et al. Oct 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070268882 Breslau et al. Nov 2007 A1
20080002670 Bugenhagen et al. Jan 2008 A1
20080049621 McGuire et al. Feb 2008 A1
20080055241 Goldenberg et al. Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080095187 Jung et al. Apr 2008 A1
20080117930 Chakareski et al. May 2008 A1
20080144532 Chamarajanagar et al. Jun 2008 A1
20080181116 Kavanaugh et al. Jul 2008 A1
20080219276 Shah Sep 2008 A1
20080240121 Xiong et al. Oct 2008 A1
20090013210 McIntosh et al. Jan 2009 A1
20090125617 Klessig et al. May 2009 A1
20090141642 Sun Jun 2009 A1
20090154463 Hines et al. Jun 2009 A1
20090247204 Sennett et al. Oct 2009 A1
20090268605 Campbell et al. Oct 2009 A1
20090274045 Meier et al. Nov 2009 A1
20090276657 Wetmore et al. Nov 2009 A1
20090303880 Maltz et al. Dec 2009 A1
20100008361 Guichard et al. Jan 2010 A1
20100017802 Lojewski Jan 2010 A1
20100046532 Okita Feb 2010 A1
20100061379 Parandekar et al. Mar 2010 A1
20100080129 Strahan et al. Apr 2010 A1
20100088440 Banks et al. Apr 2010 A1
20100091823 Retana et al. Apr 2010 A1
20100107162 Edwards et al. Apr 2010 A1
20100118727 Draves et al. May 2010 A1
20100118886 Saavedra May 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191884 Holenstein et al. Jul 2010 A1
20100223621 Joshi et al. Sep 2010 A1
20100226246 Proulx Sep 2010 A1
20100290422 Haigh et al. Nov 2010 A1
20100309841 Conte Dec 2010 A1
20100309912 Mehta et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100332657 Elyashev et al. Dec 2010 A1
20110007752 Silva et al. Jan 2011 A1
20110032939 Nozaki et al. Feb 2011 A1
20110040814 Higgins Feb 2011 A1
20110075674 Li et al. Mar 2011 A1
20110107139 Middlecamp et al. May 2011 A1
20110110370 Moreno et al. May 2011 A1
20110141877 Xu et al. Jun 2011 A1
20110142041 Imai Jun 2011 A1
20110153909 Dong Jun 2011 A1
20110235509 Szymanski Sep 2011 A1
20110255397 Kadakia et al. Oct 2011 A1
20120008630 Ould-Brahim Jan 2012 A1
20120027013 Napierala Feb 2012 A1
20120136697 Peles et al. May 2012 A1
20120157068 Eichen et al. Jun 2012 A1
20120173694 Yan et al. Jul 2012 A1
20120173919 Patel et al. Jul 2012 A1
20120182940 Taleb et al. Jul 2012 A1
20120221955 Raleigh et al. Aug 2012 A1
20120227093 Shalzkamer et al. Sep 2012 A1
20120250682 Vincent et al. Oct 2012 A1
20120250686 Vincent et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120287818 Corti et al. Nov 2012 A1
20120300615 Kempf et al. Nov 2012 A1
20120307659 Yamada Dec 2012 A1
20120317270 Vrbaski et al. Dec 2012 A1
20120317291 Wolfe Dec 2012 A1
20130019005 Hui et al. Jan 2013 A1
20130021968 Reznik et al. Jan 2013 A1
20130044764 Casado et al. Feb 2013 A1
20130051237 Ong Feb 2013 A1
20130051399 Zhang et al. Feb 2013 A1
20130054763 Merwe et al. Feb 2013 A1
20130086267 Gelenbe et al. Apr 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130124718 Griffith et al. May 2013 A1
20130124911 Griffith et al. May 2013 A1
20130124912 Griffith et al. May 2013 A1
20130128889 Mathur et al. May 2013 A1
20130142201 Kim et al. Jun 2013 A1
20130170354 Takashima et al. Jul 2013 A1
20130173788 Song Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130191688 Agarwal et al. Jul 2013 A1
20130238782 Zhao et al. Sep 2013 A1
20130242718 Zhang Sep 2013 A1
20130254599 Katkar et al. Sep 2013 A1
20130258839 Wang et al. Oct 2013 A1
20130258847 Zhang et al. Oct 2013 A1
20130266015 Qu et al. Oct 2013 A1
20130266019 Qu et al. Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130286846 Atlas et al. Oct 2013 A1
20130297611 Moritz et al. Nov 2013 A1
20130297770 Zhang Nov 2013 A1
20130301469 Suga Nov 2013 A1
20130301642 Radhakrishnan et al. Nov 2013 A1
20130308444 Sem-Jacobsen et al. Nov 2013 A1
20130315242 Wang et al. Nov 2013 A1
20130315243 Huang et al. Nov 2013 A1
20130329548 Nakil et al. Dec 2013 A1
20130329601 Yin et al. Dec 2013 A1
20130329734 Chesla et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20140019604 Twitchell, Jr. Jan 2014 A1
20140019750 Dodgson et al. Jan 2014 A1
20140040975 Raleigh et al. Feb 2014 A1
20140064283 Balus et al. Mar 2014 A1
20140071832 Johnsson et al. Mar 2014 A1
20140092907 Sridhar et al. Apr 2014 A1
20140108665 Arora et al. Apr 2014 A1
20140112171 Pasdar Apr 2014 A1
20140115584 Mudigonda et al. Apr 2014 A1
20140123135 Huang et al. May 2014 A1
20140126418 Brendel et al. May 2014 A1
20140156818 Hunt Jun 2014 A1
20140156823 Liu et al. Jun 2014 A1
20140164560 Ko et al. Jun 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140173113 Vemuri et al. Jun 2014 A1
20140173331 Martin et al. Jun 2014 A1
20140181824 Saund et al. Jun 2014 A1
20140208317 Nakagawa Jul 2014 A1
20140219135 Li et al. Aug 2014 A1
20140223507 Xu Aug 2014 A1
20140229210 Sharifian et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140258535 Zhang Sep 2014 A1
20140269690 Tu Sep 2014 A1
20140279862 Dietz et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140317440 Biermayr et al. Oct 2014 A1
20140321277 Lynn, Jr. et al. Oct 2014 A1
20140337500 Lee Nov 2014 A1
20140341109 Cartmell et al. Nov 2014 A1
20140372582 Ghanwani et al. Dec 2014 A1
20150003240 Drwiega et al. Jan 2015 A1
20150016249 Mukundan et al. Jan 2015 A1
20150029864 Raileanu et al. Jan 2015 A1
20150039744 Niazi et al. Feb 2015 A1
20150046572 Cheng et al. Feb 2015 A1
20150052247 Threefoot et al. Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150056960 Egner et al. Feb 2015 A1
20150058917 Xu Feb 2015 A1
20150088942 Shah Mar 2015 A1
20150089628 Lang Mar 2015 A1
20150092603 Aguayo et al. Apr 2015 A1
20150096011 Watt Apr 2015 A1
20150124603 Ketheesan et al. May 2015 A1
20150134777 Onoue May 2015 A1
20150139238 Pourzandi et al. May 2015 A1
20150146539 Mehta et al. May 2015 A1
20150163152 Li Jun 2015 A1
20150169340 Haddad et al. Jun 2015 A1
20150172121 Farkas et al. Jun 2015 A1
20150172169 DeCusatis et al. Jun 2015 A1
20150188823 Williams et al. Jul 2015 A1
20150189009 Bemmel Jul 2015 A1
20150195178 Bhattacharya et al. Jul 2015 A1
20150201036 Nishiki et al. Jul 2015 A1
20150222543 Song Aug 2015 A1
20150222638 Morley Aug 2015 A1
20150236945 Michael et al. Aug 2015 A1
20150236962 Veres et al. Aug 2015 A1
20150244617 Nakil et al. Aug 2015 A1
20150249644 Xu Sep 2015 A1
20150257081 Ramanujan et al. Sep 2015 A1
20150271056 Chunduri et al. Sep 2015 A1
20150271104 Chikkamath et al. Sep 2015 A1
20150271303 Neginhal et al. Sep 2015 A1
20150281004 Kakadia et al. Oct 2015 A1
20150312142 Barabash et al. Oct 2015 A1
20150312760 O'Toole Oct 2015 A1
20150317169 Sinha et al. Nov 2015 A1
20150334025 Rader Nov 2015 A1
20150334696 Gu et al. Nov 2015 A1
20150341271 Gomez Nov 2015 A1
20150349978 Wu et al. Dec 2015 A1
20150350907 Timariu et al. Dec 2015 A1
20150358236 Roach et al. Dec 2015 A1
20150363221 Terayama et al. Dec 2015 A1
20150363733 Brown Dec 2015 A1
20150365323 Duminuco et al. Dec 2015 A1
20150372943 Hasan et al. Dec 2015 A1
20150372982 Herle et al. Dec 2015 A1
20150381407 Wang et al. Dec 2015 A1
20150381493 Bansal et al. Dec 2015 A1
20160020844 Hart et al. Jan 2016 A1
20160021597 Hart et al. Jan 2016 A1
20160035183 Buchholz et al. Feb 2016 A1
20160036924 Koppolu et al. Feb 2016 A1
20160036938 Aviles et al. Feb 2016 A1
20160037434 Gopal et al. Feb 2016 A1
20160072669 Saavedra Mar 2016 A1
20160072684 Manuguri et al. Mar 2016 A1
20160080502 Yadav et al. Mar 2016 A1
20160105353 Cociglio Apr 2016 A1
20160105392 Thakkar et al. Apr 2016 A1
20160105471 Nunes et al. Apr 2016 A1
20160105488 Thakkar et al. Apr 2016 A1
20160117185 Fang et al. Apr 2016 A1
20160134461 Sampath et al. May 2016 A1
20160134528 Lin et al. May 2016 A1
20160134591 Liao et al. May 2016 A1
20160142373 Ossipov May 2016 A1
20160150055 Choi May 2016 A1
20160164832 Bellagamba et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160173338 Wolting Jun 2016 A1
20160191363 Haraszti et al. Jun 2016 A1
20160191374 Singh et al. Jun 2016 A1
20160192403 Gupta et al. Jun 2016 A1
20160197834 Luft Jul 2016 A1
20160197835 Luft Jul 2016 A1
20160198003 Luft Jul 2016 A1
20160210209 Verkaik et al. Jul 2016 A1
20160212773 Kanderholm et al. Jul 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160218951 Vasseur et al. Jul 2016 A1
20160255169 Kovvuri et al. Sep 2016 A1
20160261493 Li Sep 2016 A1
20160261495 Xia et al. Sep 2016 A1
20160261506 Hegde et al. Sep 2016 A1
20160261639 Xu Sep 2016 A1
20160269298 Li et al. Sep 2016 A1
20160269926 Sundaram Sep 2016 A1
20160285736 Gu Sep 2016 A1
20160308762 Teng et al. Oct 2016 A1
20160315912 Mayya et al. Oct 2016 A1
20160323377 Einkauf et al. Nov 2016 A1
20160328159 Coddington et al. Nov 2016 A1
20160330111 Manghirmalani et al. Nov 2016 A1
20160352588 Subbarayan et al. Dec 2016 A1
20160353268 Senarath et al. Dec 2016 A1
20160359738 Sullenberger et al. Dec 2016 A1
20160366187 Kamble Dec 2016 A1
20160371153 Dornemann Dec 2016 A1
20160378527 Zamir Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20160380906 Hodique et al. Dec 2016 A1
20170005986 Bansal et al. Jan 2017 A1
20170006499 Hampel et al. Jan 2017 A1
20170012870 Blair et al. Jan 2017 A1
20170019428 Cohn Jan 2017 A1
20170026283 Williams et al. Jan 2017 A1
20170026355 Mathaiyan et al. Jan 2017 A1
20170034046 Cai et al. Feb 2017 A1
20170034052 Chanda et al. Feb 2017 A1
20170034129 Sawant et al. Feb 2017 A1
20170048296 Ramalho et al. Feb 2017 A1
20170053258 Carney et al. Feb 2017 A1
20170055131 Kong et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170063782 Jain et al. Mar 2017 A1
20170063794 Jain et al. Mar 2017 A1
20170064005 Lee Mar 2017 A1
20170093625 Pera et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170104653 Badea et al. Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170109212 Gaurav et al. Apr 2017 A1
20170118173 Arramreddy et al. Apr 2017 A1
20170123939 Maheshwari et al. May 2017 A1
20170126516 Tiagi et al. May 2017 A1
20170126564 Mayya et al. May 2017 A1
20170134186 Mukundan et al. May 2017 A1
20170134520 Abbasi et al. May 2017 A1
20170139789 Fries et al. May 2017 A1
20170142000 Cai et al. May 2017 A1
20170149637 Banikazemi et al. May 2017 A1
20170155557 Desai et al. Jun 2017 A1
20170163473 Sadana et al. Jun 2017 A1
20170171310 Gardner Jun 2017 A1
20170181210 Nadella et al. Jun 2017 A1
20170195161 Ruel et al. Jul 2017 A1
20170195169 Mills et al. Jul 2017 A1
20170201585 Doraiswamy et al. Jul 2017 A1
20170207976 Rovner et al. Jul 2017 A1
20170214545 Cheng et al. Jul 2017 A1
20170214701 Hasan Jul 2017 A1
20170223117 Messerli et al. Aug 2017 A1
20170237710 Mayya et al. Aug 2017 A1
20170257260 Govindan et al. Sep 2017 A1
20170257309 Appanna Sep 2017 A1
20170264496 Ao et al. Sep 2017 A1
20170279717 Bethers et al. Sep 2017 A1
20170279803 Desai et al. Sep 2017 A1
20170280474 Vesterinen et al. Sep 2017 A1
20170288987 Pasupathy et al. Oct 2017 A1
20170289002 Ganguli et al. Oct 2017 A1
20170289027 Ratnasingham Oct 2017 A1
20170295264 Touitou et al. Oct 2017 A1
20170302565 Ghobadi et al. Oct 2017 A1
20170310641 Jiang et al. Oct 2017 A1
20170310691 Vasseur et al. Oct 2017 A1
20170317954 Masurekar et al. Nov 2017 A1
20170317969 Masurekar et al. Nov 2017 A1
20170317974 Masurekar et al. Nov 2017 A1
20170337086 Zhu et al. Nov 2017 A1
20170339054 Yadav et al. Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20170364419 Lo Dec 2017 A1
20170366445 Nemirovsky et al. Dec 2017 A1
20170366467 Martin et al. Dec 2017 A1
20170373950 Szilagyi et al. Dec 2017 A1
20170374174 Evens et al. Dec 2017 A1
20180006995 Bickhart et al. Jan 2018 A1
20180007005 Chanda et al. Jan 2018 A1
20180007123 Cheng et al. Jan 2018 A1
20180013636 Seetharamaiah et al. Jan 2018 A1
20180014051 Phillips et al. Jan 2018 A1
20180020035 Boggia et al. Jan 2018 A1
20180034668 Mayya et al. Feb 2018 A1
20180041425 Zhang Feb 2018 A1
20180062875 Tumuluru Mar 2018 A1
20180062914 Boutros et al. Mar 2018 A1
20180062917 Chandrashekhar et al. Mar 2018 A1
20180063036 Chandrashekhar et al. Mar 2018 A1
20180063193 Chandrashekhar et al. Mar 2018 A1
20180063233 Park Mar 2018 A1
20180063743 Tumuluru et al. Mar 2018 A1
20180069924 Tumuluru et al. Mar 2018 A1
20180074909 Bishop et al. Mar 2018 A1
20180077081 Lauer et al. Mar 2018 A1
20180077202 Xu Mar 2018 A1
20180084081 Kuchibhotla et al. Mar 2018 A1
20180097725 Wood et al. Apr 2018 A1
20180114569 Strachan et al. Apr 2018 A1
20180123910 Fitzgibbon May 2018 A1
20180131608 Jiang et al. May 2018 A1
20180131615 Zhang May 2018 A1
20180131720 Hobson et al. May 2018 A1
20180145899 Rao May 2018 A1
20180159796 Wang et al. Jun 2018 A1
20180159856 Gujarathi Jun 2018 A1
20180167378 Kostyukov et al. Jun 2018 A1
20180176073 Dubey et al. Jun 2018 A1
20180176082 Katz et al. Jun 2018 A1
20180176130 Banerjee et al. Jun 2018 A1
20180213472 Ishii et al. Jul 2018 A1
20180219765 Michael et al. Aug 2018 A1
20180219766 Michael et al. Aug 2018 A1
20180234300 Mayya et al. Aug 2018 A1
20180248790 Tan et al. Aug 2018 A1
20180260125 Botes et al. Sep 2018 A1
20180262468 Kumar et al. Sep 2018 A1
20180270104 Zheng et al. Sep 2018 A1
20180278541 Wu et al. Sep 2018 A1
20180287907 Kulshreshtha et al. Oct 2018 A1
20180295101 Gehrmann Oct 2018 A1
20180295529 Jen et al. Oct 2018 A1
20180302286 Mayya et al. Oct 2018 A1
20180302321 Manthiramoorthy et al. Oct 2018 A1
20180307851 Lewis Oct 2018 A1
20180316606 Sung et al. Nov 2018 A1
20180351855 Sood et al. Dec 2018 A1
20180351862 Jeganathan et al. Dec 2018 A1
20180351863 Vairavakkalai et al. Dec 2018 A1
20180351882 Jeganathan et al. Dec 2018 A1
20180367445 Bajaj Dec 2018 A1
20180373558 Chang et al. Dec 2018 A1
20180375744 Mayya et al. Dec 2018 A1
20180375824 Mayya et al. Dec 2018 A1
20180375967 Pithawala et al. Dec 2018 A1
20190013883 Vargas et al. Jan 2019 A1
20190014038 Ritchie Jan 2019 A1
20190020588 Twitchell, Jr. Jan 2019 A1
20190020627 Yuan Jan 2019 A1
20190028378 Houjyo et al. Jan 2019 A1
20190028552 Johnson et al. Jan 2019 A1
20190036808 Shenoy et al. Jan 2019 A1
20190036810 Michael et al. Jan 2019 A1
20190036813 Shenoy et al. Jan 2019 A1
20190046056 Khachaturian et al. Feb 2019 A1
20190058657 Chunduri et al. Feb 2019 A1
20190058709 Kempf et al. Feb 2019 A1
20190068470 Mirsky Feb 2019 A1
20190068493 Ram et al. Feb 2019 A1
20190068500 Hira Feb 2019 A1
20190075083 Mayya et al. Mar 2019 A1
20190103990 Cidon et al. Apr 2019 A1
20190103991 Cidon et al. Apr 2019 A1
20190103992 Cidon et al. Apr 2019 A1
20190103993 Cidon et al. Apr 2019 A1
20190104035 Cidon et al. Apr 2019 A1
20190104049 Cidon et al. Apr 2019 A1
20190104050 Cidon et al. Apr 2019 A1
20190104051 Cidon et al. Apr 2019 A1
20190104052 Cidon et al. Apr 2019 A1
20190104053 Cidon et al. Apr 2019 A1
20190104063 Cidon et al. Apr 2019 A1
20190104064 Cidon et al. Apr 2019 A1
20190104109 Cidon et al. Apr 2019 A1
20190104111 Cidon et al. Apr 2019 A1
20190104413 Cidon et al. Apr 2019 A1
20190109769 Jain et al. Apr 2019 A1
20190132221 Boutros et al. May 2019 A1
20190140889 Mayya et al. May 2019 A1
20190140890 Mayya May 2019 A1
20190158371 Dillon et al. May 2019 A1
20190158605 Markuze et al. May 2019 A1
20190199539 Deng et al. Jun 2019 A1
20190220703 Prakash et al. Jul 2019 A1
20190238364 Boutros et al. Aug 2019 A1
20190238446 Barzik et al. Aug 2019 A1
20190238449 Michael et al. Aug 2019 A1
20190238450 Michael et al. Aug 2019 A1
20190238483 Marichetty et al. Aug 2019 A1
20190268421 Markuze Aug 2019 A1
20190268973 Bull et al. Aug 2019 A1
20190280962 Michael et al. Sep 2019 A1
20190280963 Michael et al. Sep 2019 A1
20190280964 Michael et al. Sep 2019 A1
20190306197 Degioanni Oct 2019 A1
20190313907 Khachaturian et al. Oct 2019 A1
20190319847 Nahar et al. Oct 2019 A1
20190334813 Raj et al. Oct 2019 A1
20190334820 Zhao Oct 2019 A1
20190342219 Liu et al. Nov 2019 A1
20190356736 Narayanaswamy et al. Nov 2019 A1
20190364099 Thakkar et al. Nov 2019 A1
20190364456 Yu Nov 2019 A1
20190372888 Michael et al. Dec 2019 A1
20190372889 Michael et al. Dec 2019 A1
20190372890 Michael et al. Dec 2019 A1
20200014609 Hockett et al. Jan 2020 A1
20200014615 Michael et al. Jan 2020 A1
20200014616 Michael et al. Jan 2020 A1
20200014661 Mayya et al. Jan 2020 A1
20200014663 Chen et al. Jan 2020 A1
20200021514 Michael et al. Jan 2020 A1
20200021515 Michael et al. Jan 2020 A1
20200036624 Michael et al. Jan 2020 A1
20200044943 Bor-Yaliniz et al. Feb 2020 A1
20200059420 Abraham Feb 2020 A1
20200059457 Raza et al. Feb 2020 A1
20200059459 Abraham et al. Feb 2020 A1
20200092207 Sipra et al. Mar 2020 A1
20200097327 Beyer et al. Mar 2020 A1
20200099659 Cometto et al. Mar 2020 A1
20200106696 Michael et al. Apr 2020 A1
20200106706 Mayya et al. Apr 2020 A1
20200119952 Mayya et al. Apr 2020 A1
20200127905 Mayya et al. Apr 2020 A1
20200127911 Gilson et al. Apr 2020 A1
20200153701 Mohan et al. May 2020 A1
20200153736 Liebherr et al. May 2020 A1
20200162407 Tillotson May 2020 A1
20200169473 Rimar et al. May 2020 A1
20200177503 Hooda et al. Jun 2020 A1
20200177550 Vallur et al. Jun 2020 A1
20200177629 Hooda et al. Jun 2020 A1
20200186471 Shen et al. Jun 2020 A1
20200195557 Duan et al. Jun 2020 A1
20200204460 Schneider et al. Jun 2020 A1
20200213212 Dillon et al. Jul 2020 A1
20200213224 Cheng et al. Jul 2020 A1
20200218558 Sreenath et al. Jul 2020 A1
20200235990 Janakiraman et al. Jul 2020 A1
20200235999 Mayya et al. Jul 2020 A1
20200236046 Jain et al. Jul 2020 A1
20200244721 S et al. Jul 2020 A1
20200252234 Ramamoorthi et al. Aug 2020 A1
20200259700 Bhalla et al. Aug 2020 A1
20200267184 Vera-Schockner Aug 2020 A1
20200280587 Janakiraman et al. Sep 2020 A1
20200287819 Theogaraj et al. Sep 2020 A1
20200287976 Theogaraj et al. Sep 2020 A1
20200296011 Jain et al. Sep 2020 A1
20200296026 Michael et al. Sep 2020 A1
20200314006 Mackie et al. Oct 2020 A1
20200314614 Moustafa et al. Oct 2020 A1
20200322230 Natal et al. Oct 2020 A1
20200336336 Sethi et al. Oct 2020 A1
20200344143 Faseela et al. Oct 2020 A1
20200344163 Gupta et al. Oct 2020 A1
20200351188 Arora et al. Nov 2020 A1
20200358878 Bansal et al. Nov 2020 A1
20200366530 Mukundan et al. Nov 2020 A1
20200366562 Mayya et al. Nov 2020 A1
20200382345 Zhao et al. Dec 2020 A1
20200382387 Pasupathy et al. Dec 2020 A1
20200412576 Kondapavuluru et al. Dec 2020 A1
20200413283 Shen et al. Dec 2020 A1
20210006482 Hwang et al. Jan 2021 A1
20210006490 Michael et al. Jan 2021 A1
20210029019 Kottapalli Jan 2021 A1
20210029088 Mayya et al. Jan 2021 A1
20210036888 Makkalla et al. Feb 2021 A1
20210036987 Mishra et al. Feb 2021 A1
20210067372 Cidon et al. Mar 2021 A1
20210067373 Cidon et al. Mar 2021 A1
20210067374 Cidon et al. Mar 2021 A1
20210067375 Cidon et al. Mar 2021 A1
20210067407 Cidon et al. Mar 2021 A1
20210067427 Cidon et al. Mar 2021 A1
20210067442 Sundararajan et al. Mar 2021 A1
20210067461 Cidon et al. Mar 2021 A1
20210067464 Cidon et al. Mar 2021 A1
20210067467 Cidon et al. Mar 2021 A1
20210067468 Cidon et al. Mar 2021 A1
20210105199 H et al. Apr 2021 A1
20210112034 Sundararajan Apr 2021 A1
20210126830 R. et al. Apr 2021 A1
20210126853 Ramaswamy et al. Apr 2021 A1
20210126854 Guo et al. Apr 2021 A1
20210126860 Ramaswamy et al. Apr 2021 A1
20210144091 H et al. May 2021 A1
20210160169 Shen et al. May 2021 A1
20210160813 Gupta et al. May 2021 A1
20210184952 Mayya et al. Jun 2021 A1
20210184966 Ramaswamy et al. Jun 2021 A1
20210184983 Ramaswamy et al. Jun 2021 A1
20210194814 Roux et al. Jun 2021 A1
20210226880 Ramamoorthy et al. Jul 2021 A1
20210234728 Cidon et al. Jul 2021 A1
20210234775 Devadoss et al. Jul 2021 A1
20210234786 Devadoss et al. Jul 2021 A1
20210234804 Devadoss et al. Jul 2021 A1
20210234805 Devadoss et al. Jul 2021 A1
20210235312 Devadoss et al. Jul 2021 A1
20210235313 Devadoss et al. Jul 2021 A1
20210266262 Subramanian et al. Aug 2021 A1
20210279069 Salgaonkar et al. Sep 2021 A1
20210314289 Chandrashekhar et al. Oct 2021 A1
20210328835 Mayya et al. Oct 2021 A1
20210336880 Gupta et al. Oct 2021 A1
20210377109 Shrivastava et al. Dec 2021 A1
20210377156 Michael et al. Dec 2021 A1
20210392060 Silva et al. Dec 2021 A1
20210392070 Tootaghaj et al. Dec 2021 A1
20210399920 Sundararajan et al. Dec 2021 A1
20210399978 Michael et al. Dec 2021 A9
20210400113 Markuze et al. Dec 2021 A1
20220006726 Michael et al. Jan 2022 A1
20220006756 Ramaswamy et al. Jan 2022 A1
20220035673 Markuze et al. Feb 2022 A1
20220038370 Vasseur et al. Feb 2022 A1
20220038557 Markuze et al. Feb 2022 A1
20220094644 Cidon et al. Mar 2022 A1
20220123961 Mukundan et al. Apr 2022 A1
20220131740 Mayya et al. Apr 2022 A1
20220131807 Srinivas et al. Apr 2022 A1
Foreign Referenced Citations (30)
Number Date Country
1926809 Mar 2007 CN
102577270 Jul 2012 CN
102811165 Dec 2012 CN
104956329 Sep 2015 CN
106656847 May 2017 CN
110447209 Nov 2019 CN
111198764 May 2020 CN
1912381 Apr 2008 EP
3041178 Jul 2016 EP
3509256 Jul 2019 EP
2010233126 Oct 2010 JP
2017059991 Mar 2017 JP
2574350 Feb 2016 RU
03073701 Sep 2003 WO
2007016834 Feb 2007 WO
2012167184 Dec 2012 WO
2016061546 Apr 2016 WO
2017083975 May 2017 WO
2019070611 Apr 2019 WO
2019094522 May 2019 WO
2020012491 Jan 2020 WO
2020018704 Jan 2020 WO
2020091777 May 2020 WO
2020101922 May 2020 WO
2020112345 Jun 2020 WO
2021040934 Mar 2021 WO
2021118717 Jun 2021 WO
2021150465 Jul 2021 WO
2021211906 Oct 2021 WO
2022005607 Jan 2022 WO
Non-Patent Literature Citations (64)
Entry
Non-Published Commonly Owned Related International Patent Application PCT/US2021/031454 with similar specification, filed May 8, 2021, 35 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/233,427, filed Apr. 16, 2021, 124 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/361,292, filed Jun. 28, 2021, 35 pages, Nicira, Inc.
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt.
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN) Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE.
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE.
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel.
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK.
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE.
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA.
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada.
Non-Published Commonly Owned U.S. Appl. No. 16/662,363, filed Oct. 24, 2019, 129 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,379, filed Oct. 24, 2019, 123 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,402, filed Oct. 24, 2019, 128 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,427, filed Oct. 24, 2019, 165 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,489, filed Oct. 24, 2019, 165 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,510, filed Oct. 24, 2019, 165 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,531, filed Oct. 24, 2019, 135 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,570, filed Oct. 24, 2019, 141 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,587, filed Oct. 24, 2019, 145 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/662,591, filed Oct. 24, 2019, 130 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/721,964, filed Dec. 20, 2019, 39 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/721,965, filed Dec. 20, 2019, 39 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/792,908, filed Feb. 18, 2020, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/792,909, filed Feb. 18, 2020, 49 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,294, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,301, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,308, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,314, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,323, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 16/851,397, filed Apr. 17, 2020, 59 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/068,603, filed Oct. 12, 2020, 37 pages, Nicira, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/072,774 with similar specification, filed Oct. 16, 2020, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group.
Non-Published Commonly Owned U.S. Appl. No. 16/216,235, filed Dec. 11, 2018, 19 pages, The Mode Group.
Non-Published Commonly Owned U.S. Appl. No. 16/818,862, filed Mar. 13, 2020, 198 pages, The Mode Group.
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons.
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium an Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA.
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global ntemet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA.
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Surveys and Tutorials, Apr. 20, 2016, vol. 18, No. 4, 27 pages, IEEE.
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF.
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE.
Non-Published Commonly Owned U.S. Appl. No. 17/240,890, filed Apr. 26, 2021, 325 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/240,906, filed Apr. 26, 2021, 18 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/467,378, filed Sep. 6, 2021, 157 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/474,034, filed Sep. 13, 2021, 349 pages, VMware, Inc.
Guo, Xiangyi, et al., (U.S. Appl. No. 62/925,193) filed Oct. 23, 2019, 26 pages.
Non-Published Commonly Owned U.S. Appl. No. 17/542,413, filed Dec. 4, 2021, 173 pages, VMware, Inc.
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland.
Non-published Commonly Owned U.S. Appl. No. 17/187,913, filed Mar. 1, 2021, 27 pages, Nicira, Inc.
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain.
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Cisco, Barcelona, Spain, retrieved from https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf.
Barozei, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/.
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482.
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages, vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287.
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA.
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia.
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China.
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada.
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036.
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China.
Non-Published Commonly Owned U.S. Appl. No. 17/562,890, filed Dec. 27, 2021, 36 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/572,583, filed Jan. 10, 2022, 33 pages, Nicira, Inc.
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India.
Related Publications (1)
Number Date Country
20220006751 A1 Jan 2022 US