The present invention relates to disposable hygiene products and more specifically, to methods and apparatuses for processing disposable hygiene products. More specifically, the invention relates to cutting and applying segments of one web to attach to a disposable diaper.
The invention disclosed herein also relates to apparatus and methods for waste reduction. Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion. As in many manufacturing operations, waste minimization is a goal in web processing applications, as products having spliced raw materials cannot be sold to consumers. Indeed, due to the rate at which web processing machines run, even minimal waste can cause inefficiencies of scale.
In present systems, waste materials are recycled. However, the act of harvesting recyclable materials from defective product is intensive. That is, recyclable materials are harvested only after an identification of a reject product at or near the end of a process. The result is that recyclable materials are commingled, and harvesting requires the extra step of separating waste components. Therefore, it is beneficial to use up all of incoming rolls, so that a portion of the incoming rolls do not become waste. That objective is accomplished with the present invention
When manufacturing hygiene products, such as baby diapers, adult diapers, disposable undergarments, incontinence devices, sanitary napkins and the like, a common method of applying discrete pieces of one web to another is by use of a slip-and-cut applicator. A slip-and-cut applicator is typically comprised of a cylindrical rotating vacuum anvil, a rotating knife roll, and a transfer device. In typical applications, an incoming web is fed at a relatively low speed along the vacuum face of the rotating anvil, which is moving at a relatively higher surface speed and upon which the incoming web is allowed to “slip”. A knife-edge, mounted on the rotating knife roll, cuts a off a segment of the incoming web against the anvil face. This knife-edge is preferably moving at a surface velocity similar to that of the anvil's surface. Once cut, the web segment is held by vacuum drawn through holes on the anvil's face as it is carried at the anvil's speed downstream to the transfer point where the web segment is transferred to the traveling web.
Continual improvements and competitive pressures have incrementally increased the operational speeds of disposable diaper converters. As speeds increased, the mechanical integrity and operational capabilities of the applicators had to be improved accordingly.
The present invention allows for square, and non-square, and preferably trapezoidal, ear webs to be applied to a traveling web, with zero or minimized waste present in the incoming ear web. Zero material is wasted due to the geometry of the chosen ear pattern and its downstream processing.
An ear is a component of a diaper that is grasped and pulled around the waist of a wearer. Typically, ears are secured to the diaper at a first end, and a second free end is typically equipped with securing means, such as a pressure sensitive adhesive, or hook and loop material. As a user grasps an ear and pulls the ear, elasticity provided about the waist region of the diaper allows the free end to be snugly pulled about the waist of a wearer, and coupled to the diaper. Ears can be rectangular or made of irregular shapes.
The present invention provides a process wherein a rotary knife or die, with one or more cutting edges, turns against and in coordination with a corresponding cylinder to create preferably trapezoidal ears. Ear material is slit into two lanes, one for a left side of a diaper and the other for a right side of a diaper. Fastening tapes are applied to both the right and the left ear webs. The ear material is then die cut with a nested pattern on a synchronized vacuum anvil.
The resulting discrete ear pieces however, due to the trapezoidal pattern of the ears, alternate between a correct orientation and an incorrect (reversed) orientation. The reversed ear is required to be rotated 180° into the correct orientation such that the ears and associated tape present a left ear and a right ear on the diaper.
To accomplish the reversal of the ear pattern, discrete ear pieces are picked up at the nested ear pitch by an ear turner assembly that will expand to a pitch large enough for ears to be unnested and allow clearance for every other ear to be rotated. The rotated ears are then unnested and into the correct orientation.
Two ear turner assemblies can be provided, to rotate every other ear applied to the right side of the product, and every other ear applied to the left side of the product. In this manner, for a single product, one of the two ears will have been rotated 180°.
Ear application to a chassis web can be by a bump method (described later) with intermittent adhesive applied to the chassis web, or can be by vacuum transfer.
The present invention also allows for two side panel assemblies, including fastening mechanisms, to be attached to two ears, the side panel assemblies attached in a pre-folded condition. Two more ears can coupled to a chassis web to create a front panel to wear about the waist of a user.
The present invention also allows for chips of material to be removed from the ears to provide a diaper with contoured leg openings. In one embodiment, the chips may be removed from the ears before the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears after the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears and a portion of the chassis web removed after the ears are attached to the chassis web.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Referring to the drawings there is seen in
The surface of the anvil roll 14 can have vacuum holes 24 on its smooth surface. In a typical configuration of a slip-and-cut applicator, there is a pattern of vacuum holes 24 distributed to evenly draw the entering web onto the surface of anvil 14 and thence into the cut point where the knife edge 18 engages the anvil 14.
It can be seen from
Ear webs 16 can be comprised of two portions, 12a and 12b, as shown in
Alternatively, the ears can comprise a trapezoidal shape, as shown in
Referring now to
Still referring to
Referring now to
After slitting and application of the tape to the ear web 16, an ear die is used to cut the ear web 16 into the pattern shown in
Referring still to
Because the ear material 16 has already been slit into two lanes, one for a left side of a diaper and the other for a right side of a diaper, it is noted that two parallel ear dies 230 are used to produce the pattern shown in
The resulting discrete ear pieces however, due to the trapezoidal pattern of the ears shown in
To accomplish the reversal of the ear pattern, discrete ear pieces are picked up at the nested ear pitch by an ear turner assembly 200 (see
Referring to
It is noted that ear configurations can vary as shown in
Referring now back to
Because the ears 12 need to be sped up to match the speed of chassis web 10, the rotation of high vacuum drum 250 is quicker than that of vacuum drum 240. The higher vacuum in drum 250 relative to drum 240 allows the ears 12 to be snatched or grabbed at the higher rotational speed present in drum 250.
Referring now to
Referring now to
The ears 12 are then deposited onto chassis web 10 and bonded thereto, for instance by ultrasonic bonding ring 252, where the resulting product is sent downstream for further processing.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In this embodiment, the aggressive vacuum pattern 124 on high vacuum drum 250 will have withdrawn ears 12 from vacuum drum 240. This step follows the rotation of the “B” ears as described above. The chassis web 10 is fed in between the roller 260 and the high vacuum drum 250. The ultrasonic bonding ring 252 couples the ears 12 with the chassis web 10 (refer to
Referring now to
Referring generally to
One difficulty with adult-sized products is sheer size. The products are required to be quite large (for instance, 32″ wide in a non-stretched condition) in the waist section to fit about the waist of an adult. However, the adult-sized products are typically shipped in packages about 8″ wide, so the products require folding, particularly at the waist zone where the product is the widest, in order to be compactly packaged and shipped.
The prior art often employed a Z-fold of ears to get the waist band down to size. For instance, the ears 12 applied to web 10 shown in
The embodiments of
Referring now to
In a preferred embodiment ear portions 312 of the present invention will have side panel assembly receiving ear portion configurations 312a and 312d, and non-receiving ear portion configurations 312b and 312c as will be described later.
Referring to
Referring now to
To each of the discrete non-woven web portions 318a, 318b, 318c, and 318d, one or more fastening mechanisms 322 are applied. Fastening mechanisms 322 can be tape tabs, covered tape tabs, strips of hook and loop material, continuous hook and loop material, patches of hook and loop material, etc. The fastening mechanisms 322 will be unfastened and refastened about the waist of the user to tighten the disposable garment about the waist.
Next, the non-woven webs 318 carrying fastening mechanisms 322 are folded over, creating a folded web 318 and folded fastening mechanisms 322′. This causes the combination of the non-woven web 318 and the fastening mechanisms 322 to be narrower than the discrete non-woven web portions 318a, 318b, 318c, and 318d. It is noted that the folded fastening mechanisms 322′ of web portions 318a and 318b will have opposing fastening mechanisms 322′ as they will become the right and left hip waist fastening mechanisms, respectively, once placed about the waist of a user (shown later in the process).
In addition to the discrete non-woven web portions 318a, 318b, 318c, and 318d, a stretch laminate web 324 is also provided. This too is slit and spread into discrete stretch laminate web portions 324a, 324b, 324c, and 324d.
Next, the non-woven web portions 318a, 318b, 318c, and 318d, including their respective fastening mechanisms 322′, are bonded to stretch laminate web portions 324a, 324b, 324c, and 324d respectively, forming the side panel assemblies 320 in four different lanes, 318a+324a, 318b+324b, 318c+324c, and 318d+324d. The non-woven web portions 318a, 318b, 318c, and 318d can be bonded to the stretch laminate web portions 324a, 324b, 324c, and 324d in any fashion, such as by ultrasonic bonding using a mechanism such as shown in
The stretch laminate portions 324a, 324b, 324c, and 324d can also be folded if desired, or the stretch laminate portions 324a, 324b, 324c, and 324d in combination with the non-woven web portions 318a, 318b, 318c, and 318d can all be folded together and again.
Referring now to
Similarly, side-panel assembly 320, and particularly the panel 320 having configuration 318b+324b (from
In lane 316b, side-panel assembly 320, and particularly the panel 320 having configuration 318c+324c (from
Similarly, side-panel assembly 320, and particularly the panel 320 having configuration 318d+324d (from
The panels 320 can be coupled to the slit and spread ear tab forming material 316 in any fashion. Preferred methods may include ultrasonic bonding, adhesive bonding, heat, etc. Also, the coupling between the panels 320 and the ear tab forming material 316 could be contained in, or be a portion of a larger laminate involving other materials and bonds.
Next, referring now to
It is desirable to process the combination of the side-panel assemblies 320 temporarily staked to the ear tab forming material 316 together, so that components do not become entangled in the machinery during processing. It is also desirable so that packaging can be accomplished orderly and uniformly. Preferably, the side-panel assemblies 320 are temporarily staked to the ear tab forming material 316. The temporary staking can be done, for instance but not by way of limitation, by a light application of adhesive, by a light compression bond, by a light compression bond assisted by slight penetration of pins through the layers, by a weak ultrasonic bond, or by other types of temporary and light bonds may be employed.
Referring now to
In particular, the ear portion configurations 312c and 312d can be slip-cut together with a unit such as shown on
The 316a lane would be treated by one of the ear turner assemblies 200R (right) or 200L (left) of
As a result, and as shown on
Referring now to
Referring now to
Referring now to
Referring to
As shown in
In orientation 1012a, the tapes 1022 are on the top side, with the long side (opposite the top side) on the bottom side. In orientation 1012b, the tapes 1022 are on the bottom side, with the long side (opposite the bottom side) on the top side. Similar rotation and resulting orientations are shown with respect to 1012c and 1012d.
Referring to
As can be seen in
All of the ears are then folded down as shown in
In
Referring to
What can be seen in
Referring now to
Referring now to
Referring to
Next, the back ear web 610a, 610b (preferably non-woven) as shown being formed in
The side panel assemblies 501/501a, 502/501b, 503/501c, and 504/501d are then folded and preferably temporarily staked together as shown in
Next, the side panel assemblies side panel assemblies 501/510a, 502/510b, 503/510c, and 504/510d coupled with respective back ear web portions 610a1, 610a2, 610a3, and 610a4, and 610b1, 610b2, 610b3, and 610b4 are die cut, repitched and rotated according to
The front ear non-woven web 702/704, and particularly portions 702a, 702b, 702c, and 702d, and 704a, 704b, 704c, and 704d are shown being formed and slit in
As shown in
The front ear portions 702a, 702b, 702c, and 702d, and 704a, 704b, 704c, and 704d; and the back ear web portions 610a1, 610a2, 610a3, and 610a4; and 610b1, 610b2, 610b3, and 610b4; are all folded to conform with (slightly greater than, equal to, or slightly less than) the cross-machine directional width of the chassis 10 as shown in
A product is formed having the configuration shown in
It is contemplated that it may be desirable to provide a disposable product with a contoured or curved leg opening 1200 by trimming a portion of a combined web 1202 after wings 1042a-1042d,1044a-1044d have been placed on the chassis web 10 as shown in
Preferably, a portion of the ear carrying wings 1042a, 1042b, 1044a, 1044b and the non-ear carrying wings 1042c, 1042d, 1044c, 1044d on each side of the garment 1204 may be removed to create a contoured shape, as shown in
It is contemplated that any means known in the art may be utilized to remove the desired portions of the wings 1042a-1042d,1044a-1044d and, if desired, chassis web 10, to create the contoured leg opening 1200. For example, and not by way of limitation, a knife roll may be utilized to cut the garment leg opening 1200 to the desired contour. In such a system, a contoured knife roll, with a cutting edge sized and configured to cut the leg opening 1200 to the desired shape would be provided. It is contemplated that both the left 1200a and the right 1200b leg opening could be cut at the same time for example with a knife roll with two cutting surfaces, or that a pair of knife rolls, one for the left leg opening 1200a and one for the right leg opening 1200b may be utilized. Each knife roll is provided with an associated anvil, as is well known in the art. In use, the anvil and the knife roll each rotate, with the combined web 1202 to be cut between the surface of the knife roll and the anvil. As the knife roll rotates, the cutting edge cuts the combined web 1202 against the anvil.
It is further contemplated that a trim removal system 1210 such as shown in
An inner axle 1218 and an outer axle 1220 are coupled to the transfer roll 1214 (or hub 1222) and the trim shoes 1212, respectively. The inner axle 1218 and the outer axle 1220 are capable of being operated at different speeds in relation to one another by servo motor (not shown). This difference in speed allows the trim shoes 1212 to rotate faster or slower with respect to the transfer roll 1214 as desired. In use, as will be described later, this speed differential creates a ripping effect by first pulling the combined web 1202 away from the chip 30 as the transfer roll 1214 is rotating faster than the shoe 1212, then by pulling the chip 1230 away from the combined web 1202 as the shoe 1212 is rotating faster than the transfer roll 1214.
Referring now to
Referring now to
Referring now to
In this view, the trim shoe 1212 can be seen in an initial chip engaging position, aligned to receive the chip 1230 of the web 1202 onto the shoe 1212, which, as described previously, will be urged against the surface of the shoe 1212 by vacuum ports 1216. The trim shoe 1212 will be seen to be rotating about outer axis 1220. In this view, a discharge chute 1228 is shown for ultimately receiving waste chips 1230, and an outfeed conveyor 1240 is provided for receiving the web 1202 with the chip 1230 removed, for further processing and manufacturing steps in the composition of the disposable garments, as desired.
Inner axle 1218 is preferably operated at a first continuous speed, rotating hub 1222 and transfer roll 1214 at a continuous speed, consistent with the infeed speed of the web 1202. At this initial chip engaging position shown in
The position of the chip 1230 relative to the web 1202 is shown in
Referring now to
Referring now to
The outfeed conveyor 1240 is provided for receiving the web 1202 with the chip 1230 removed as shown in
Referring now to
The rotational speed of the shoes 1212 and outer axle 1220, which were first operated at a speed roughly equal to inner axle 1218, rotating hub 1222 and transfer roll 1214, initially decreased, or lagged as is shown by comparing
Next, the rotational speed of the shoes 1212 and outer axle 1220, increased, or surged relative to the inner axle 1218, rotating hub 1222 and transfer roll 1214.
In order to return to the initial chip engaging position, the rotational speed of the shoes 1212 and outer axle 1220, must again decrease, or lag relative to the inner axle 1218, rotating hub 1222 and transfer roll 1214. This lag is apparent by comparing
It is contemplated that the die of the die and anvil system 1226 in the above described trim removal apparatus may be replaced by a perforating apparatus. The perforating apparatus preferably forms the chips 1230 on the web 1202, but does not completely sever the chips 1230 from the web 1202. The perforated chips 1230 perforated could then be removed from the web 1202 in the same manner described above. The perforating apparatus may take any form known in the art including, but not limited to, a perforating die roll.
It is further contemplated that the chips may be removed from the wings 1042a-1042d,1044a-1044d prior to attaching the wings 1042a-1042d,1044a-1044d to the chassis web 10. The chips may be removed from the wings 1042a-1042d,1044a-1044d, using any means known in the art. For example, the wing web 1042,1044 may be fed between an anvil and knife roll, the knife roll having a cutting edge sized and configured to cut the desired chips from the wings 1042a-1042d,1044a-1044d.
Although the illustrated embodiments of
It is further contemplated that, if desired, chips could be removed from only the ear carrying wings 1042a, 1042b, 1044a, 1044b or the non-ear carrying wings 1042c, 1042d, 1044c, 1044d. For example,
It is further contemplated that chips may be removed from the wings 1042a-1042d,1044a-1044d and the chassis 10 in separate steps as shown in
Referring now to
Additionally, it is seen that extension panels 1012 can be applied or not, if desired (compare
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring now to
Referring now to
Referring now to
In
The apparatus provides for synchronized anvil/die combination 1110 to sever the incoming web 16 into desired preferably symmetrical ear shapes 12, such as those shown in
In a preferred embodiment of this apparatus, there is no axial rotation of ears 12 so that the shape of the ear 12 can be provided for symmetrical with respect to right and left ears, with zero incoming web wasted.
The rotational and spreading assemblies 1120R and 1120L are preferably provided with vacuum in order to maintain the ears 12 during rotation and then release the ears onto secondary right rotational assembly 1122R and secondary left rotational assembly 1122L which further spread the ears 12, and further speed up the ears 12 to a depositional velocity of the chassis web 10. Preferably, the secondary right rotational assembly 1122R and secondary left rotational assembly 1122L also rotate ears 12 about a rotational axis, but it is not required to rotate the ears about the axis of the ears. The secondary right rotational assembly 1122R and secondary left rotational assembly 1122L are also preferably vacuum assisted to control ears 12, and likewise contain pucks 1128R and 1128L, again similar to the pucks 234 of
The right rotational assembly 1120R will spread the right ears and speed up the right ears from the incoming velocity to a depositional velocity of the chassis web 10. The left rotational assembly 1120L will spread the left ears and speed up the left ears from the incoming velocity to a depositional velocity of the chassis web 10. It is noted that the left or right ears could be provided in a line vertically spaced from its intended deposition point, and then just one of the other of the left or right ears would require cross-machine direction displacement for deposition.
As can be seen from the side perspective view of
A small mismatch in speeds is preferred between the pucks 1128R and 1128L respectively is preferable to get the product pickup and placement to match.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application claims priority co-pending to U.S. Provisional Patent Application No. 61/500,519, filed 23 Jun. 2011, and U.S. Provisional Patent Application No. 61/509,438, filed 19 Jul. 2011, which are provisional continuation-in-part applications of U.S. patent application Ser. No. 12/925,033, filed 12 Oct. 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/798,520, filed 5 Apr. 2010, which is now U.S. Pat. No. 8,172,977, which in turn claims the benefit of U.S. Provisional Patent Application Ser. No. 61/212,011, filed 6 Apr. 2009, U.S. Provisional Patent Application Ser. No. 61/212,619, filed 14 Apr. 2009, and U.S. patent application Ser. No. 12/151,667, filed 8 May 2008, which is now U.S. Pat. No. 8,016,972, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/928,305, filed 9 May 2007, and is a continuation-in-part of U.S. patent application Ser. No. 12/806,891, filed 24 Aug. 2010, which is a continuation U.S. patent application Ser. No. 11/436,274, filed 18 May 2006, which is now U.S. Pat. No. 7,780,052.
Number | Name | Date | Kind |
---|---|---|---|
135145 | Murphy | Jan 1873 | A |
293353 | Purvis | Feb 1884 | A |
312257 | Cotton et al. | Feb 1885 | A |
410123 | Stilwell | Aug 1889 | A |
432742 | Stanley | Jul 1890 | A |
643821 | Howlett | Feb 1900 | A |
1393524 | Grupe | Oct 1921 | A |
1431315 | Le Moine | Oct 1922 | A |
1605842 | Jones | Nov 1926 | A |
1686595 | Belluche | Oct 1928 | A |
1957651 | Joa | May 1934 | A |
2009857 | Potdevin | Jul 1935 | A |
2054832 | Potdevin | Sep 1936 | A |
2117432 | Linscott | May 1938 | A |
2128746 | Joa | Aug 1938 | A |
2131808 | Joa | Oct 1938 | A |
2164408 | Joa | Jul 1939 | A |
2167179 | Joa | Jul 1939 | A |
2171741 | Cohn et al. | Sep 1939 | A |
2213431 | Joa | Sep 1940 | A |
2254290 | Joa | Sep 1941 | A |
2254291 | Joa | Sep 1941 | A |
2282477 | Joa | May 1942 | A |
2286096 | Joa | Jun 1942 | A |
2296931 | Joa | Sep 1942 | A |
2304571 | Joa | Dec 1942 | A |
2324930 | Joa | Jul 1943 | A |
2345937 | Joa | Apr 1944 | A |
2466240 | Joa | Apr 1949 | A |
2481929 | Joa | Sep 1949 | A |
2510229 | Joa | Jun 1950 | A |
2540844 | Strauss | Feb 1951 | A |
2584002 | Elser et al. | Jan 1952 | A |
2591359 | Joa | Apr 1952 | A |
2618816 | Joa | Nov 1952 | A |
2627859 | Hargrave | Feb 1953 | A |
2695025 | Andrews | Nov 1954 | A |
2702406 | Reed | Feb 1955 | A |
2721554 | Joa | Oct 1955 | A |
2730144 | Joa | Jan 1956 | A |
2772611 | Heywood | Dec 1956 | A |
2780253 | Joa | Feb 1957 | A |
2785609 | Billeb | Mar 1957 | A |
2788786 | Dexter | Apr 1957 | A |
2811905 | Kennedy, Jr. | Nov 1957 | A |
2828745 | Deutz | Apr 1958 | A |
2839059 | Joa | Jun 1958 | A |
2842169 | Joa | Jul 1958 | A |
2851934 | Heywood | Sep 1958 | A |
2875724 | Joa | Mar 1959 | A |
2890700 | Lonberg-Holm | Jun 1959 | A |
2913862 | Sabee | Nov 1959 | A |
2939461 | Joa | Jun 1960 | A |
2939646 | Stone | Jun 1960 | A |
2960143 | Joa | Nov 1960 | A |
2990081 | De Neui et al. | Jun 1961 | A |
2991739 | Joa | Jul 1961 | A |
3016207 | Comstock, III | Jan 1962 | A |
3016582 | Joa | Jan 1962 | A |
3017795 | Joa | Jan 1962 | A |
3020687 | Joa | Feb 1962 | A |
3021135 | Joa | Feb 1962 | A |
3024957 | Pinto | Mar 1962 | A |
3053427 | Wasserman | Sep 1962 | A |
3054516 | Joa | Sep 1962 | A |
3069982 | Heywood et al. | Dec 1962 | A |
3086253 | Joa | Apr 1963 | A |
3087689 | Heim | Apr 1963 | A |
3089494 | Schwartz | May 1963 | A |
3091408 | Schoeneman | May 1963 | A |
3114994 | Joa | Dec 1963 | A |
3122293 | Joa | Feb 1964 | A |
3128206 | Dungler | Apr 1964 | A |
3203419 | Joa | Aug 1965 | A |
3230955 | Joa | Jan 1966 | A |
3268954 | Joa | Aug 1966 | A |
3289254 | Joa | Dec 1966 | A |
3291131 | Joa | Dec 1966 | A |
3301114 | Joa | Jan 1967 | A |
3318608 | Smrekar | May 1967 | A |
3322589 | Joa | May 1967 | A |
3336847 | Durat | Aug 1967 | A |
3342184 | Joa | Sep 1967 | A |
3356092 | Joa | Dec 1967 | A |
3360103 | Joa | Dec 1967 | A |
3391777 | Joa | Jul 1968 | A |
3454442 | Heller, Jr. | Jul 1969 | A |
3463413 | Smith | Aug 1969 | A |
3470848 | Dreher | Oct 1969 | A |
3484275 | Lewicki, Jr. | Dec 1969 | A |
3502322 | Cran | Mar 1970 | A |
3521639 | Joa | Jul 1970 | A |
3526563 | Schott, Jr. | Sep 1970 | A |
3538551 | Joa | Nov 1970 | A |
3540641 | Besnyo | Nov 1970 | A |
3575170 | Clark | Apr 1971 | A |
3607578 | Berg et al. | Sep 1971 | A |
3635462 | Joa | Jan 1972 | A |
3656741 | Macke et al. | Apr 1972 | A |
3666611 | Joa | May 1972 | A |
3673021 | Joa | Jun 1972 | A |
3685818 | Burger et al. | Aug 1972 | A |
3728191 | Wierzba et al. | Apr 1973 | A |
3751224 | Wackerle | Aug 1973 | A |
3758102 | Munn et al. | Sep 1973 | A |
3772120 | Radzins | Nov 1973 | A |
3776798 | Milano | Dec 1973 | A |
3796360 | Alexeff | Mar 1974 | A |
3811987 | Wilkinson et al. | May 1974 | A |
3816210 | Aoko et al. | Jun 1974 | A |
3847710 | Blomqvist et al. | Nov 1974 | A |
3854917 | McKinney et al. | Dec 1974 | A |
3883389 | Schott, Jr. | May 1975 | A |
3888400 | Wiig | Jun 1975 | A |
3901238 | Geller et al. | Aug 1975 | A |
3903768 | Amberg et al. | Sep 1975 | A |
3904147 | Taitel et al. | Sep 1975 | A |
3918968 | Coast | Nov 1975 | A |
3960646 | Wiedamann | Jun 1976 | A |
3988194 | Babcock et al. | Oct 1976 | A |
3991994 | Farish | Nov 1976 | A |
4002005 | Mueller et al. | Jan 1977 | A |
4003298 | Schott, Jr. | Jan 1977 | A |
4009814 | Singh | Mar 1977 | A |
4009815 | Ericson et al. | Mar 1977 | A |
4053150 | Lane | Oct 1977 | A |
4056919 | Hirsch | Nov 1977 | A |
4081301 | Buell | Mar 1978 | A |
4090516 | Schaar | May 1978 | A |
4094319 | Joa | Jun 1978 | A |
4103595 | Corse | Aug 1978 | A |
4106974 | Hirsch | Aug 1978 | A |
4108584 | Radzins et al. | Aug 1978 | A |
4136535 | Audas | Jan 1979 | A |
4141193 | Joa | Feb 1979 | A |
4141509 | Radzins | Feb 1979 | A |
4142626 | Bradley | Mar 1979 | A |
4157934 | Ryan et al. | Jun 1979 | A |
4165666 | Johnson et al. | Aug 1979 | A |
4168776 | Hoeboer | Sep 1979 | A |
4171239 | Hirsch et al. | Oct 1979 | A |
4205679 | Repke et al. | Jun 1980 | A |
4208230 | Magarian | Jun 1980 | A |
4213356 | Armitage | Jul 1980 | A |
4215827 | Roberts et al. | Aug 1980 | A |
4220237 | Mohn | Sep 1980 | A |
4222533 | Pongracz | Sep 1980 | A |
4223822 | Clitheroe | Sep 1980 | A |
4231129 | Winch | Nov 1980 | A |
4234157 | Hodgeman et al. | Nov 1980 | A |
4236955 | Prittie | Dec 1980 | A |
4275510 | George | Jun 1981 | A |
4284454 | Joa | Aug 1981 | A |
4307800 | Joa | Dec 1981 | A |
4316756 | Wilson | Feb 1982 | A |
4325519 | McLean | Apr 1982 | A |
4342206 | Rommel | Aug 1982 | A |
4364787 | Radzins | Dec 1982 | A |
4374576 | Ryan | Feb 1983 | A |
4379008 | Gross et al. | Apr 1983 | A |
4394898 | Campbell | Jul 1983 | A |
4411721 | Wishart | Oct 1983 | A |
4452597 | Achelpohl | Jun 1984 | A |
4479836 | Dickover et al. | Oct 1984 | A |
4492608 | Hirsch et al. | Jan 1985 | A |
4501098 | Gregory | Feb 1985 | A |
4508528 | Hirsch et al. | Apr 1985 | A |
4522853 | Szonn et al. | Jun 1985 | A |
4543152 | Nozaka | Sep 1985 | A |
4551191 | Kock et al. | Nov 1985 | A |
4586199 | Birring | May 1986 | A |
4589945 | Polit | May 1986 | A |
4603800 | Focke et al. | Aug 1986 | A |
4608115 | Schroth et al. | Aug 1986 | A |
4610681 | Strohbeen et al. | Sep 1986 | A |
4610682 | Kopp | Sep 1986 | A |
4614076 | Rathemacher | Sep 1986 | A |
4619357 | Radzins et al. | Oct 1986 | A |
4634482 | Lammers | Jan 1987 | A |
4641381 | Heran et al. | Feb 1987 | A |
4642150 | Stemmler | Feb 1987 | A |
4642839 | Urban | Feb 1987 | A |
4650530 | Mahoney et al. | Mar 1987 | A |
4663220 | Wisneski et al. | May 1987 | A |
4672705 | Bors et al. | Jun 1987 | A |
4675016 | Meuli et al. | Jun 1987 | A |
4675062 | Instance | Jun 1987 | A |
4675068 | Lundmark | Jun 1987 | A |
4686136 | Homonoff et al. | Aug 1987 | A |
4693056 | Raszewski | Sep 1987 | A |
4701239 | Craig | Oct 1987 | A |
4720415 | Vander Wielen et al. | Jan 1988 | A |
4723698 | Schoonderbeek | Feb 1988 | A |
4726874 | Van Vliet | Feb 1988 | A |
4726876 | Tomsovic, Jr. | Feb 1988 | A |
4743241 | Igaue et al. | May 1988 | A |
4751997 | Hirsch | Jun 1988 | A |
4753429 | Irvine et al. | Jun 1988 | A |
4756141 | Hirsch et al. | Jul 1988 | A |
4764325 | Angstadt | Aug 1988 | A |
4765780 | Angstadt | Aug 1988 | A |
4776920 | Ryan | Oct 1988 | A |
4777513 | Nelson | Oct 1988 | A |
4782647 | Williams et al. | Nov 1988 | A |
4785986 | Daane et al. | Nov 1988 | A |
4795451 | Buckley | Jan 1989 | A |
4795510 | Wittrock et al. | Jan 1989 | A |
4798353 | Peugh | Jan 1989 | A |
4801345 | Dussaud et al. | Jan 1989 | A |
4802570 | Hirsch et al. | Feb 1989 | A |
4826499 | Ahr | May 1989 | A |
4840609 | Jones et al. | Jun 1989 | A |
4845964 | Bors et al. | Jul 1989 | A |
4864802 | D'Angelo | Sep 1989 | A |
4880102 | Indrebo | Nov 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4892536 | Des Marais et al. | Jan 1990 | A |
4904440 | Angstadt | Feb 1990 | A |
4908175 | Angstadt | Mar 1990 | A |
4909019 | Delacretaz et al. | Mar 1990 | A |
4915767 | Rajala et al. | Apr 1990 | A |
4917746 | Kons | Apr 1990 | A |
4925520 | Beaudoin et al. | May 1990 | A |
4927322 | Schweizer et al. | May 1990 | A |
4927486 | Fattal et al. | May 1990 | A |
4927582 | Bryson | May 1990 | A |
4937887 | Schreiner | Jul 1990 | A |
4963072 | Miley et al. | Oct 1990 | A |
4987940 | Straub et al. | Jan 1991 | A |
4994010 | Doderer-Winkler | Feb 1991 | A |
5000806 | Merkatoris et al. | Mar 1991 | A |
5021111 | Swenson | Jun 1991 | A |
5025910 | Lasure et al. | Jun 1991 | A |
5045039 | Bay | Sep 1991 | A |
5062597 | Martin et al. | Nov 1991 | A |
5064179 | Martin | Nov 1991 | A |
5064492 | Friesch | Nov 1991 | A |
5080741 | Nomura et al. | Jan 1992 | A |
5094658 | Smithe et al. | Mar 1992 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5108017 | Adamski, Jr. et al. | Apr 1992 | A |
5109767 | Nyfeler et al. | May 1992 | A |
5110403 | Ehlert | May 1992 | A |
5127981 | Straub et al. | Jul 1992 | A |
5131525 | Musschoot | Jul 1992 | A |
5131901 | Moll | Jul 1992 | A |
5133511 | Mack | Jul 1992 | A |
5147487 | Nomura et al. | Sep 1992 | A |
5163594 | Meyer | Nov 1992 | A |
5171239 | Igaue et al. | Dec 1992 | A |
5176244 | Radzins et al. | Jan 1993 | A |
5183252 | Wolber et al. | Feb 1993 | A |
5188627 | Igaue et al. | Feb 1993 | A |
5190234 | Ezekiel | Mar 1993 | A |
5195684 | Radzins | Mar 1993 | A |
5203043 | Riedel | Apr 1993 | A |
5213645 | Nomura et al. | May 1993 | A |
5222422 | Benner, Jr. et al. | Jun 1993 | A |
5223069 | Tokuno et al. | Jun 1993 | A |
5226992 | Morman | Jul 1993 | A |
5246433 | Hasse et al. | Sep 1993 | A |
5252228 | Stokes | Oct 1993 | A |
5267933 | Precoma | Dec 1993 | A |
5273228 | Yoshida | Dec 1993 | A |
5275676 | Rooyakkers et al. | Jan 1994 | A |
5308345 | Herrin | May 1994 | A |
5328438 | Crowley | Jul 1994 | A |
5334446 | Quantrille et al. | Aug 1994 | A |
5340424 | Matsushita | Aug 1994 | A |
5353909 | Mukai | Oct 1994 | A |
5368893 | Sommer et al. | Nov 1994 | A |
5389173 | Merkotoris et al. | Feb 1995 | A |
5393360 | Bridges et al. | Feb 1995 | A |
5407507 | Ball | Apr 1995 | A |
5407513 | Hayden et al. | Apr 1995 | A |
5415649 | Watanabe et al. | May 1995 | A |
5421924 | Ziegelhoffer et al. | Jun 1995 | A |
5424025 | Hanschen et al. | Jun 1995 | A |
5429576 | Doderer-Winkler | Jul 1995 | A |
5435802 | Kober | Jul 1995 | A |
5435971 | Dyckman | Jul 1995 | A |
5449353 | Watanabe et al. | Sep 1995 | A |
5464401 | Hasse et al. | Nov 1995 | A |
5486253 | Otruba | Jan 1996 | A |
5494622 | Heath et al. | Feb 1996 | A |
5500075 | Herrmann | Mar 1996 | A |
5516392 | Bridges et al. | May 1996 | A |
5518566 | Bridges et al. | May 1996 | A |
5525175 | Blenke et al. | Jun 1996 | A |
5531850 | Herrmann | Jul 1996 | A |
5540647 | Weiermann et al. | Jul 1996 | A |
5540796 | Fries | Jul 1996 | A |
5545275 | Herrin et al. | Aug 1996 | A |
5545285 | Johnson | Aug 1996 | A |
5552013 | Ehlert et al. | Sep 1996 | A |
5556360 | Kober et al. | Sep 1996 | A |
5556504 | Rajala et al. | Sep 1996 | A |
5560793 | Ruscher et al. | Oct 1996 | A |
3288037 | Burnett | Nov 1996 | A |
5575187 | Dieterlen | Nov 1996 | A |
5586964 | Chase | Dec 1996 | A |
5602747 | Rajala | Feb 1997 | A |
5603794 | Thomas | Feb 1997 | A |
5624420 | Bridges et al. | Apr 1997 | A |
5624428 | Sauer | Apr 1997 | A |
5628738 | Suekane | May 1997 | A |
5634917 | Fujioka et al. | Jun 1997 | A |
5643165 | Klekamp | Jul 1997 | A |
5643396 | Rajala et al. | Jul 1997 | A |
5645543 | Nomura et al. | Jul 1997 | A |
5656111 | Dilnik et al. | Aug 1997 | A |
5659229 | Rajala | Aug 1997 | A |
5660657 | Rajala et al. | Aug 1997 | A |
5660665 | Jalonen | Aug 1997 | A |
5683376 | Kato et al. | Nov 1997 | A |
5683531 | Roessler et al. | Nov 1997 | A |
5685873 | Bruemmer | Nov 1997 | A |
RE35687 | Igaue et al. | Dec 1997 | E |
5693165 | Schmitz | Dec 1997 | A |
5699653 | Hartman et al. | Dec 1997 | A |
5705013 | Nease | Jan 1998 | A |
5707470 | Rajala et al. | Jan 1998 | A |
5711832 | Glaug et al. | Jan 1998 | A |
5725518 | Coates | Mar 1998 | A |
5725714 | Fujioka | Mar 1998 | A |
5743994 | Roessler et al. | Apr 1998 | A |
5745922 | Rajala et al. | May 1998 | A |
5746869 | Hayden et al. | May 1998 | A |
5749989 | Linman et al. | May 1998 | A |
5759340 | Boothe et al. | Jun 1998 | A |
5766389 | Brandon et al. | Jun 1998 | A |
5779689 | Pfeifer et al. | Jul 1998 | A |
5788797 | Herrin et al. | Aug 1998 | A |
5817199 | Brennecke et al. | Oct 1998 | A |
5827259 | Laux et al. | Oct 1998 | A |
5829164 | Kotischke | Nov 1998 | A |
5836931 | Toyoda et al. | Nov 1998 | A |
5858012 | Yamaki et al. | Jan 1999 | A |
5865393 | Kreft et al. | Feb 1999 | A |
5868727 | Barr et al. | Feb 1999 | A |
5876027 | Fukui et al. | Mar 1999 | A |
5876792 | Caldwell | Mar 1999 | A |
5879500 | Herrin et al. | Mar 1999 | A |
5902431 | Wilkinson et al. | May 1999 | A |
5904675 | Laux et al. | May 1999 | A |
5932039 | Popp et al. | Aug 1999 | A |
5938193 | Bluemle et al. | Aug 1999 | A |
5938652 | Sauer | Aug 1999 | A |
5964390 | Borresen et al. | Oct 1999 | A |
5964970 | Woolwine et al. | Oct 1999 | A |
5971134 | Trefz et al. | Oct 1999 | A |
6022443 | Rajala et al. | Feb 2000 | A |
6036805 | McNichols | Mar 2000 | A |
6043836 | Kerr et al. | Mar 2000 | A |
6050517 | Dobrescu et al. | Apr 2000 | A |
6074110 | Verlinden et al. | Jun 2000 | A |
6076442 | Arterburn et al. | Jun 2000 | A |
6098249 | Toney et al. | Aug 2000 | A |
6123792 | Samida et al. | Sep 2000 | A |
6171432 | Brisebois | Jan 2001 | B1 |
6183576 | Couillard et al. | Feb 2001 | B1 |
6193054 | Henson et al. | Feb 2001 | B1 |
6193702 | Spencer | Feb 2001 | B1 |
6195850 | Melbye | Mar 2001 | B1 |
6210386 | Inoue | Apr 2001 | B1 |
6212859 | Bielik, Jr. et al. | Apr 2001 | B1 |
6214147 | Mortellite et al. | Apr 2001 | B1 |
6250048 | Linkiewicz | Jun 2001 | B1 |
6264639 | Sauer | Jul 2001 | B1 |
6264784 | Menard et al. | Jul 2001 | B1 |
6276421 | Valenti et al. | Aug 2001 | B1 |
6276587 | Boerresen | Aug 2001 | B1 |
6284081 | Vogt et al. | Sep 2001 | B1 |
6287287 | Elsberg | Sep 2001 | B1 |
6287409 | Stephany | Sep 2001 | B1 |
6306122 | Narawa et al. | Oct 2001 | B1 |
6309336 | Muessig et al. | Oct 2001 | B1 |
6312420 | Sasaki et al. | Nov 2001 | B1 |
6314333 | Rajala et al. | Nov 2001 | B1 |
6315022 | Herrin et al. | Nov 2001 | B1 |
6319347 | Rajala | Nov 2001 | B1 |
6336921 | Kato et al. | Jan 2002 | B1 |
6336922 | VanGompel et al. | Jan 2002 | B1 |
6336923 | Fujioka et al. | Jan 2002 | B1 |
6358350 | Glaug et al. | Mar 2002 | B1 |
6369291 | Uchimoto et al. | Apr 2002 | B1 |
6375769 | Quereshi et al. | Apr 2002 | B1 |
6391013 | Suzuki et al. | May 2002 | B1 |
6416697 | Venturino et al. | Jul 2002 | B1 |
6431038 | Couturier | Aug 2002 | B2 |
6440246 | Vogt et al. | Aug 2002 | B1 |
6443389 | Palone | Sep 2002 | B1 |
6446795 | Allen et al. | Sep 2002 | B1 |
6473669 | Rajala et al. | Oct 2002 | B2 |
6475325 | Parrish et al. | Nov 2002 | B1 |
6478786 | Glaug et al. | Nov 2002 | B1 |
6482278 | McCabe et al. | Nov 2002 | B1 |
6494244 | Parrish et al. | Dec 2002 | B2 |
6514233 | Glaug | Feb 2003 | B1 |
6521320 | McCabe et al. | Feb 2003 | B2 |
6523595 | Milner et al. | Feb 2003 | B1 |
6524423 | Hilt et al. | Feb 2003 | B1 |
6533879 | Quereshi et al. | Mar 2003 | B2 |
6540857 | Coenen et al. | Apr 2003 | B1 |
6544375 | Schmitz | Apr 2003 | B1 |
6547909 | Butterworth | Apr 2003 | B1 |
6551228 | Richards | Apr 2003 | B1 |
6551430 | Glaug et al. | Apr 2003 | B1 |
6554815 | Umebayashi | Apr 2003 | B1 |
6569275 | Popp et al. | May 2003 | B1 |
6572520 | Blumle | Jun 2003 | B2 |
6581517 | Becker et al. | Jun 2003 | B1 |
6585841 | Popp et al. | Jul 2003 | B1 |
6589149 | VanEperen et al. | Jul 2003 | B1 |
6596107 | Stopher | Jul 2003 | B2 |
6596108 | McCabe | Jul 2003 | B2 |
6605172 | Anderson et al. | Aug 2003 | B1 |
6605173 | Glaug et al. | Aug 2003 | B2 |
6637583 | Anderson | Oct 2003 | B1 |
6648122 | Hirsch et al. | Nov 2003 | B1 |
6649010 | Parrish et al. | Nov 2003 | B2 |
6656309 | Parker et al. | Dec 2003 | B1 |
6659150 | Perkins et al. | Dec 2003 | B1 |
6659991 | Suckane | Dec 2003 | B2 |
6675552 | Kunz et al. | Jan 2004 | B2 |
6682626 | Mlinar et al. | Jan 2004 | B2 |
6684925 | Nagate et al. | Feb 2004 | B2 |
6722494 | Nakakado | Apr 2004 | B2 |
6730189 | Franzmann | May 2004 | B1 |
6743324 | Hargett et al. | Jun 2004 | B2 |
6750466 | Song | Jun 2004 | B2 |
6758109 | Nakakado | Jul 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6808582 | Popp et al. | Oct 2004 | B2 |
D497991 | Otsubo et al. | Nov 2004 | S |
6811019 | Christian et al. | Nov 2004 | B2 |
6814217 | Blumenthal et al. | Nov 2004 | B2 |
6820671 | Calvert | Nov 2004 | B2 |
6837840 | Yonekawa et al. | Jan 2005 | B2 |
6840616 | Summers | Jan 2005 | B2 |
6869494 | Roessler et al. | Mar 2005 | B2 |
6875202 | Kumasaka et al. | Apr 2005 | B2 |
6884310 | Roessler et al. | Apr 2005 | B2 |
6893528 | Middelstadt et al. | May 2005 | B2 |
6913718 | Ducker | Jul 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6852186 | Matsuda et al. | Dec 2005 | B1 |
6976521 | Mlinar | Dec 2005 | B2 |
6978486 | Zhou et al. | Dec 2005 | B2 |
7017321 | Salvoni | Mar 2006 | B2 |
7017820 | Brunner | Mar 2006 | B1 |
7045031 | Popp et al. | May 2006 | B2 |
7047852 | Franklin et al. | May 2006 | B2 |
7066586 | da Silva | Jun 2006 | B2 |
7069970 | Tomsovic et al. | Jul 2006 | B2 |
7077393 | Ishida | Jul 2006 | B2 |
7130710 | Shechtman | Oct 2006 | B2 |
7172666 | Groves et al. | Feb 2007 | B2 |
7175584 | Maxton et al. | Feb 2007 | B2 |
7195684 | Satoh | Mar 2007 | B2 |
7201345 | Werner | Apr 2007 | B2 |
7214174 | Allen et al. | May 2007 | B2 |
7214287 | Akihisa | May 2007 | B2 |
7220335 | Van Gompel et al. | May 2007 | B2 |
7247219 | O'Dowd | Jul 2007 | B2 |
7252730 | Hoffman et al. | Aug 2007 | B2 |
7264686 | Thorson et al. | Sep 2007 | B2 |
7303708 | Andrews et al. | Dec 2007 | B2 |
7326311 | Krueger et al. | Feb 2008 | B2 |
7332459 | Collins et al. | Feb 2008 | B2 |
7374627 | McCabe | May 2008 | B2 |
7380213 | Pesin | May 2008 | B2 |
7398870 | McCabe | Jul 2008 | B2 |
7449084 | Nakakado | Nov 2008 | B2 |
7452436 | Andrews | Nov 2008 | B2 |
7533709 | Meyer | May 2009 | B2 |
7537215 | Beaudoin et al. | May 2009 | B2 |
7587966 | Nakakado et al. | Sep 2009 | B2 |
7618513 | Meyer | Nov 2009 | B2 |
7638014 | Coose et al. | Dec 2009 | B2 |
7640962 | Meyer et al. | Jan 2010 | B2 |
7695464 | Fletcher et al. | Apr 2010 | B2 |
7703599 | Meyer | Apr 2010 | B2 |
7708849 | McCabe | May 2010 | B2 |
7770712 | McCabe | Aug 2010 | B2 |
7771407 | Umebayashi | Aug 2010 | B2 |
7780052 | McCabe | Aug 2010 | B2 |
7793772 | Schafer | Sep 2010 | B2 |
7811403 | Andrews | Oct 2010 | B2 |
7861756 | Jenquin et al. | Jan 2011 | B2 |
7871400 | Sablone et al. | Jan 2011 | B2 |
7909956 | Coose et al. | Mar 2011 | B2 |
7922983 | Prokash et al. | Apr 2011 | B2 |
7935296 | Koele et al. | May 2011 | B2 |
7975584 | McCabe | Jul 2011 | B2 |
7987964 | McCabe | Aug 2011 | B2 |
8007484 | McCabe et al. | Aug 2011 | B2 |
8007623 | Andrews | Aug 2011 | B2 |
8011493 | Giuliani et al. | Sep 2011 | B2 |
8016972 | Andrews et al. | Sep 2011 | B2 |
8062459 | Nakakado et al. | Nov 2011 | B2 |
8172977 | Andrews et al. | May 2012 | B2 |
8176573 | Popp et al. | May 2012 | B2 |
8182624 | Handziak | May 2012 | B2 |
8293056 | McCabe | Oct 2012 | B2 |
20010012813 | Bluemle | Aug 2001 | A1 |
20010017181 | Otruba et al. | Aug 2001 | A1 |
20010035332 | Zeitler | Nov 2001 | A1 |
20010042591 | Milner et al. | Nov 2001 | A1 |
20020002358 | Durrance et al. | Jan 2002 | A1 |
20020046802 | Tachibana et al. | Apr 2002 | A1 |
20020059013 | Rajala et al. | May 2002 | A1 |
20020096241 | Instance | Jul 2002 | A1 |
20020125105 | Nakakado | Sep 2002 | A1 |
20020138064 | Datta | Sep 2002 | A1 |
20020162776 | Hergeth | Nov 2002 | A1 |
20030000620 | Herrin et al. | Jan 2003 | A1 |
20030015209 | Gingras et al. | Jan 2003 | A1 |
20030115660 | Hopkins | Jan 2003 | A1 |
20030051802 | Hargett et al. | Mar 2003 | A1 |
20030052148 | Rajala et al. | Mar 2003 | A1 |
20030066585 | McCabe | Apr 2003 | A1 |
20030083638 | Molee | May 2003 | A1 |
20030084984 | Glaug et al. | May 2003 | A1 |
20030089447 | Molee et al. | May 2003 | A1 |
20030121244 | Abba | Jul 2003 | A1 |
20030121614 | Tabor et al. | Jul 2003 | A1 |
20030135189 | Umebayashi | Jul 2003 | A1 |
20040007328 | Popp et al. | Jan 2004 | A1 |
20040016500 | Tachibana et al. | Jan 2004 | A1 |
20040030318 | Karlsson | Feb 2004 | A1 |
20040044325 | Corneliusson | Mar 2004 | A1 |
20040082931 | Tani | Apr 2004 | A1 |
20040087425 | Ng et al. | May 2004 | A1 |
20040098791 | Faulks | May 2004 | A1 |
20040112517 | Groves et al. | Jun 2004 | A1 |
20040164482 | Edinger | Aug 2004 | A1 |
20040167493 | Jarpenberg et al. | Aug 2004 | A1 |
20040182213 | Wagner et al. | Sep 2004 | A1 |
20040182497 | Lowrey | Sep 2004 | A1 |
20040216830 | Van Eperen | Nov 2004 | A1 |
20050000628 | Norrby | Jan 2005 | A1 |
20050022476 | Hamer | Feb 2005 | A1 |
20050056678 | Nomura | Mar 2005 | A1 |
20050077418 | Werner et al. | Apr 2005 | A1 |
20050196538 | Sommer et al. | Sep 2005 | A1 |
20050230056 | Meyer et al. | Oct 2005 | A1 |
20050230449 | Meyer et al. | Oct 2005 | A1 |
20050233881 | Meyer | Oct 2005 | A1 |
20050234412 | Andrews et al. | Oct 2005 | A1 |
20050257881 | Coose et al. | Nov 2005 | A1 |
20050275148 | Beaudoin et al. | Dec 2005 | A1 |
20060021300 | Tada et al. | Feb 2006 | A1 |
20060137298 | Oshita et al. | Jun 2006 | A1 |
20060201619 | Andrews | Sep 2006 | A1 |
20060224137 | McCabe et al. | Oct 2006 | A1 |
20060265867 | Schaap | Nov 2006 | A1 |
20070074953 | McCabe | Apr 2007 | A1 |
20070131343 | Nordang | Jun 2007 | A1 |
20070131817 | Fromm | Jun 2007 | A1 |
20070142808 | Wada et al. | Jun 2007 | A1 |
20080210067 | Schlinz et al. | Sep 2008 | A1 |
20080223537 | Wiedmann | Sep 2008 | A1 |
20080262461 | de Dier et al. | Oct 2008 | A1 |
20090020211 | Andrews et al. | Jan 2009 | A1 |
20090126864 | Tachibana et al. | May 2009 | A1 |
20090198205 | Malowaniec et al. | Aug 2009 | A1 |
20090312736 | Schroer, Jr. | Dec 2009 | A1 |
20100193155 | Nakatani | Jan 2010 | A1 |
20100078119 | Yamamoto | Apr 2010 | A1 |
20100078120 | Otsubo | Apr 2010 | A1 |
20100078127 | Yamamoto | Apr 2010 | A1 |
20100193135 | Eckstein et al. | Aug 2010 | A1 |
20100193138 | Eckstein | Aug 2010 | A1 |
20110106042 | Sablone et al. | May 2011 | A1 |
20120123377 | Back | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1007854 | Nov 1995 | BE |
1146129 | May 1983 | CA |
1153345 | Sep 1983 | CA |
1190078 | Jul 1985 | CA |
1210744 | Sep 1986 | CA |
1212132 | Sep 1986 | CA |
1236056 | May 1988 | CA |
1249102 | Jan 1989 | CA |
1292201 | Nov 1991 | CA |
1307244 | Sep 1992 | CA |
1308015 | Sep 1992 | CA |
1310342 | Nov 1992 | CA |
2023816 | Mar 1994 | CA |
2330679 | Sep 1999 | CA |
2404154 | Oct 2001 | CA |
2541194 | Oct 2006 | CA |
2559517 | Apr 2007 | CA |
2337700 | Aug 2008 | CA |
2407867 | Jun 2010 | CA |
2699136 | Oct 2010 | CA |
60123502 | Oct 2006 | DE |
60216550 | Dec 2006 | DE |
102005048868 | Apr 2007 | DE |
102006047280 | Apr 2007 | DE |
0044206 | Jan 1982 | EP |
0048011 | Mar 1982 | EP |
0089106 | Sep 1983 | EP |
0099732 | Feb 1984 | EP |
0206208 | Dec 1986 | EP |
0304140 | Feb 1989 | EP |
0439897 | Aug 1991 | EP |
0455231 | Nov 1991 | EP |
510251 | Oct 1992 | EP |
0652175 | May 1995 | EP |
0811473 | Dec 1997 | EP |
0901780 | Mar 1999 | EP |
0990588 | Apr 2000 | EP |
1132325 | Sep 2001 | EP |
1035818 | Apr 2002 | EP |
1199057 | Apr 2002 | EP |
1366734 | Dec 2003 | EP |
1433731 | Jun 2004 | EP |
1189564 | Mar 2005 | EP |
1571249 | Sep 2005 | EP |
1619008 | Jan 2006 | EP |
1707168 | Oct 2006 | EP |
1726414 | Nov 2006 | EP |
1302424 | Dec 2006 | EP |
1801045 | Jun 2007 | EP |
1941853 | Jul 2008 | EP |
1941853 | Sep 2008 | EP |
1994919 | Nov 2008 | EP |
2103427 | Sep 2009 | EP |
2233116 | Sep 2010 | EP |
2238955 | Oct 2010 | EP |
1175880 | May 2012 | EP |
1868821 | Jan 2013 | EP |
509706 | Nov 1982 | ES |
520559 | Dec 1983 | ES |
296211 | Dec 1987 | ES |
200601373 | Jul 2009 | ES |
2311349 | Sep 2009 | ES |
2177355 | Nov 1973 | FR |
2255961 | Jul 1975 | FR |
1132325 | Oct 2006 | FR |
2891811 | Apr 2007 | FR |
191101501 | Jan 1912 | GB |
439897 | Dec 1935 | GB |
856389 | Dec 1960 | GB |
941073 | Nov 1963 | GB |
1096373 | Dec 1967 | GB |
1126539 | Sep 1968 | GB |
1346329 | Feb 1974 | GB |
1412812 | Nov 1975 | GB |
1467470 | Mar 1977 | GB |
2045298 | Oct 1980 | GB |
2115775 | Sep 1983 | GB |
2288316 | Oct 1995 | GB |
1374910 | May 2010 | IT |
1374911 | May 2010 | IT |
428364 | Jan 1992 | JP |
542180 | Feb 1993 | JP |
576566 | Mar 1993 | JP |
626160 | Feb 1994 | JP |
626161 | Feb 1994 | JP |
6197925 | Jul 1994 | JP |
9299398 | Nov 1997 | JP |
10035621 | Feb 1998 | JP |
10-277091 | Oct 1998 | JP |
2007-44374 | Feb 2007 | JP |
2008-161300 | Jul 2008 | JP |
0602047 | May 2007 | SE |
0601003-7 | Jun 2007 | SE |
0601145-6 | Oct 2009 | SE |
WO08155618 | Dec 1988 | WO |
WO9315248 | Aug 1993 | WO |
WO9403301 | Feb 1994 | WO |
WO9723398 | Jul 1997 | WO |
WO9732552 | Sep 1997 | WO |
WO9747265 | Dec 1997 | WO |
WO9747810 | Dec 1997 | WO |
WO9821134 | May 1998 | WO |
WO9855298 | Dec 1998 | WO |
WO9907319 | Feb 1999 | WO |
WO9913813 | Mar 1999 | WO |
WO9932385 | Jul 1999 | WO |
WO9965437 | Dec 1999 | WO |
WO0143682 | Jun 2001 | WO |
WO0172237 | Oct 2001 | WO |
WO2003031177 | Apr 2003 | WO |
WO04007329 | Jan 2004 | WO |
WO05075163 | Aug 2005 | WO |
WO2006038946 | Apr 2006 | WO |
WO07029115 | Mar 2007 | WO |
WO07039800 | Apr 2007 | WO |
WO2007126347 | Nov 2007 | WO |
WO08001209 | Jan 2008 | WO |
WO2008015594 | Feb 2008 | WO |
WO2008037281 | Apr 2008 | WO |
WO2008123348 | Oct 2008 | WO |
WO2010028786 | Mar 2010 | WO |
WO2011101773 | Aug 2011 | WO |
Entry |
---|
Third Party Observations regarding EP08251662.6, dated Nov. 11, 2014, 9 pages. |
European Search Report for Appln. No. 12188581.8, 6 pages, dated Sep. 12, 2014. |
International Search Report dated Mar. 9, 2012 regarding EP Application No. 11184738.0, 6 pages. |
International Search Report dated Oct. 4, 2013 regarding EP Application No. 12173311.7, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130035222 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61500519 | Jun 2011 | US | |
61509438 | Jul 2011 | US | |
61212011 | Apr 2009 | US | |
61212619 | Apr 2009 | US | |
60928305 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11436274 | May 2006 | US |
Child | 12806891 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12925033 | Oct 2010 | US |
Child | 13529270 | US | |
Parent | 12798520 | Apr 2010 | US |
Child | 12925033 | US | |
Parent | 13529270 | US | |
Child | 12925033 | US | |
Parent | 12151667 | May 2008 | US |
Child | 13529270 | US | |
Parent | 12806891 | Aug 2010 | US |
Child | 12151667 | US |