METHODS AND APPARATUS FOR ASSEMBLING TURBINE ENGINES

Information

  • Patent Application
  • 20080080968
  • Publication Number
    20080080968
  • Date Filed
    October 03, 2006
    18 years ago
  • Date Published
    April 03, 2008
    16 years ago
Abstract
A method for assembling a gas turbine engine is provided. The method includes providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge, and a body extending therebetween. At least one of the outer band and the inner band has at least one radial tab extending outward therefrom. The method also includes coupling at least one seal between at least one of the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band. The method also includes positioning at least one non-planar seal support against at least one portion of the seal.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an exemplary known turbine nozzle that may be used with a gas turbine engine;



FIG. 2 is a perspective view of the turbine nozzle shown in FIG. 1;



FIG. 3 is a schematic illustration of an exemplary gas turbine engine;



FIG. 4 is a schematic view of an exemplary pair of leaf seal assemblies used with the gas turbine engine shown in FIG. 3;



FIG. 5 is a schematic view of an alternative embodiment of a pair of leaf seal assemblies that can be used with the gas turbine engine shown in FIG. 3; and



FIG. 6 is a schematic view of another alternative embodiment of a pair of leaf seal assemblies that can be used with the gas turbine engine shown in FIG. 3.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 3 is a schematic illustration of an exemplary gas turbine engine 10 including a low pressure compressor 12, a high pressure compressor 14, and a combustor 16. Engine 10 also includes a high pressure turbine 18 and a low pressure turbine 20. Compressor 12 and turbine 20 are coupled by a first shaft 21, and compressor 14 and turbine 18 are coupled by a second shaft 22. In one embodiment, gas turbine engine 10 is an LM2500 engine commercially available from General Electric Aircraft Engines, Cincinnati, Ohio. In another embodiment, gas turbine engine 10 is a CFM engine commercially available from General Electric Company, Cincinnati, Ohio.


In operation, air flows through low pressure compressor 12 supplying compressed air from low pressure compressor 12 to high pressure compressor 14. The highly compressed air is delivered to combustor 16. Airflow from combustor 16 is channeled through a turbine nozzle (not shown in FIG. 1) to drive turbines 18 and 20, prior to exiting gas turbine engine 10 through an exhaust nozzle 24.



FIG. 4 is a schematic view of an exemplary pair of circumferentially-adjacent leaf seal assemblies 190 that each include a seal 170 and a seal support 200. Although seal support 200 is described with reference to seal 170, as will be appreciated by one skilled in the art, the description of seal support 200 also applies to seal 180. In the exemplary embodiment, each seal support 200 is coupled to a radial tab 110, via fastener 172. Each seal support 200 is non-planar, such that, in the exemplary embodiment, a mid portion 202 of each seal support 200 is positioned between a spring 176 and the radial tab, and such that both ends 204 of a first seal support 206 are coupled against a first seal 208, and both ends 210 of a second seal support 212 are coupled against a second seal 214.


In the exemplary embodiment, a first portion 216 of each seal 170 is coupled to, and supported by, a radial tab. Each seal first portion 216 is also at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 170 includes a second portion 218 that is not coupled against a radial tab or spring 176. Rather, in the exemplary embodiment, a first seal support end 204 is coupled against second portion 218 of first seal 208, and a second seal support end 210 is coupled against second portion 218 of second seal 214.


During operation, leaf seal assemblies 190 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 170 during operation are at least partially absorbed by springs 176; however portions of seals 170 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 200 facilitate further absorption of pressure induced upon seals 170. Accordingly, seal supports 200 facilitate reducing cracking and breakage along seals 170 to facilitate maintaining turbine efficiency and increasing turbine life-span.



FIG. 5 is a schematic view of an alternative pair of circumferentially-adjacent leaf seal assemblies 230 that each include a seal 170 and a seal support 232. Although seal support 232 is described with reference to seal 170, as will be appreciated by one skilled in the art, the description of seal support 232 also applies to seal 180. In the exemplary embodiment, each seal support 232 is coupled to a radial tab 110, via fastener 172. Each seal support 232 is non-planar, such that, in the exemplary embodiment, a mid portion 234 of each seal support 232 is positioned between a spring 176 and the radial tab, and such that a first end 236 of a first seal support 238 is coupled against a first seal 240, and a second end 242 of first seal support 238 is coupled against a second seal 244. Moreover, a first end 246 of a circumferentially-adjacent second seal support 248 is coupled against second seal 244, and a second end 250 of second seal support 248 is coupled against a third seal (not shown) that is circumferentially-adjacent to second seal support 248. In the exemplary embodiment seal support ends 236, 242, 246, and 250 each include a dimpled recess 252 extending inward from mid portion 234 towards seal 170. However, as will be appreciated by one skilled in the art, seal support ends 236, 242, 246, and 250 may have any suitable shape that enables seal supports 238 and 248 to function as described herein.


In the exemplary embodiment, a first portion 254 of each seal 170 is coupled to, and supported by, a radial tab. More specifically, each seal first portion 254 is at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 170 also includes a second portion 256 that is not coupled against or supported by any radial tabs or springs 176. Rather, in the exemplary embodiment, first seal support first end 236 is coupled against a second portion 256 of first seal 240, and second end 242 of first seal support 238 is positioned adjacent a second portion 256 of second seal 244. Moreover, second seal support first end 246 is coupled against a second portion 256 of second seal 244, and second seal support second end 250 is positioned adjacent a second portion 256 of the third seal.


During operation, leaf seal assemblies 230 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 170 during operation are at least partially absorbed by springs 176; however portions of seals 170 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 232 facilitate further absorption of pressure induced upon seals 170. Accordingly, seal supports 232 facilitate reducing cracking and breakage along seals 170 to facilitate maintaining turbine efficiency and increasing turbine life-span.



FIG. 6 is a schematic view of another alternative pair of circumferentially-adjacent leaf seal assemblies 268 that each include a seal 270 including a seal support 272 extending therefrom. In the exemplary embodiment, seal 270 is an alternative embodiment of seals 170 and 180 (shown in FIGS. 2 and 3). Specifically, in the exemplary embodiment, each seal support 272 extends from a first end 274 of a respective seal 270 and is coupled against an circumferentially-adjacent seal 270. More specifically, a first seal support 276 extending from a first seal 278 is coupled against a second seal 280, and a second seal support 282 extending from a circumferentially-adjacent third seal (not shown) is coupled against first seal 278. In the exemplary embodiment seal supports 276 and 282 include a dimpled recessed extending towards seal 270. However, as will be appreciated by one skilled in the art, seal supports 276 and 282 may have any suitable shape that enables seal supports 276 and 282 to function as described herein.


In the exemplary embodiment, each seal 270 includes first portion 290 that is supported by, and coupled to a radial tab 160, via fastener 172. More specifically, each seal first portion 290 is also at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 270 includes a second portion 292 that is not coupled against or supported by any radial tabs or springs 176. In the exemplary embodiment, first seal support 276 is coupled against second seal second portion 292, and a second seal support 282 is coupled against first seal second portion 292.


During operation, leaf seal assemblies 268 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 270 during operation are at least partially absorbed by springs 176; however portions of seals 270 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 272 facilitate further absorption of pressure induced upon seals 270. Accordingly, seal supports 272 facilitate reducing cracking and breakage along seals 270 to facilitate maintaining turbine efficiency and increasing turbine life-span.


In one embodiment, a method for assembling a gas turbine engine is provided. The method includes providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge, and a body extending therebetween. At least one of the outer band and the inner band has at least one radial tab extending outward therefrom. The method also includes coupling at least one seal between at least one of the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band. The method also includes positioning at least one non-planar seal support against at least one portion of the seal.


The above-described methods and apparatus provide a nozzle assembly seal support that facilitates reducing cracking and breakage in the nozzle assembly seals. Specifically, the seal support provides support for portions of the seal that are not coupled to or supported by the radial tabs or springs of the nozzle assembly. As such, these portions of the seal are enabled to withstand pressure increases and vibrations caused by operation of the turbine. Accordingly, the seal supports facilitate reducing cracking and breakage along the seals to facilitate maintaining turbine efficiency and increasing turbine life-span.


As used herein, an element or step recited in the singular and proceeded with the word a or should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.


Although the methods and systems described herein are described in the context of nozzle assemblies for a gas turbine engine, it is understood that the nozzle assembly methods and systems described herein are not limited to gas turbine engines. Likewise, the nozzle assembly components illustrated are not limited to the specific embodiments described herein, but rather, components of the nozzle assembly can be utilized independently and separately from other components described herein.


While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims
  • 1. A method for assembling a gas turbine engine, said method comprising: providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge and a body extending therebetween, wherein at least one of the outer band and the inner band has at least radial tab extending outward therefrom;coupling at least one seal between at least one or the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band; andcoupling at least one non-planar seal support against at least one portion of the seal using a single fastener.
  • 2. A method in accordance with claim 1 wherein coupling at least one seal further comprises: positioning the seal such that a first portion of the seal is supported by the at least one radial tab and such that a second portion of the seal is unsupported by the at least one radial tab; andpositioning an end of the seal support against the second portion of the seal.
  • 3. A method in accordance with (claim 1 wherein coupling at least one seal further comprises: positioning the seal such that a first portion of the seal is supported by the at least one radial tab and such that a second portion of the seal is unsupported by the at least one radial tab;positioning a first end of the seal support against the second portion; and positioning a second end of the seal support against a second portion of a circumferentially-adjacent seal.
  • 4. A method in accordance with Claim 1 further comprising: extending the seal support from an end the seal; andpositioning the seal support against a circumferentially-adjacent seal.
  • 5. A method in accordance 1 with claim 1 further comprising coupling a spring between the seal and the at least one radial tab.
  • 6. A method in accordance with claim 1 further comprising positioning the seal support against the seal to facilitate preventing breakage of the seal due to vibration.
  • 7. A method in accordance claim 1 with where in positioning at least one seal support further comprises positioning at least one seal support having at least one dimpled end.
  • 8. A turbine engine nozzle assembly comprising: an outer band comprising a leading edge, a trailing edge, and a body extending therebetweenan inner band comprising a leading edge, a trailing edge, and a body extending therebetween, at least one of said inner band and said outer band further comprises at least one radial tab extending outward therefromat least one vane extending between said outer and inner bands;at least one seal coupled between at least one radial tab and one of said band leading edges; andat least one non-planar seal support coupled to at least one portion of said seal using a single fastener.
  • 9. A turbine engine nozzle assembly in accordance with claim 8 wherein a first portion of said seal is supported by said at least one radial tab and a second portion of said seal is unsupported by said at least one radial tab, said seal support comprises an end that is against said seal second portion.
  • 10. A turbine engine nozzle assembly in accordance with claim 8 wherein a first portion of said seal is supported by said at least one radial tab and a second portion of said seal is unsupported by said at least one radial tab, said seal support comprises an end that is against a second portion of ta circumferentially-adjacent seal.
  • 11. A turbine engine nozzle assembly in accordance with claim 8 wherein said seal support extends from an end of said seal and is positioned against a circumferentially-adjacent seal.
  • 12. A turbine engine nozzle assembly in accordance with claim 8 further comprising a spring coupled between said seal and said at least one radial tab.
  • 13. A turbine engine nozzle assembly in accordance with claim 8 wherein said seal Support facilitates preventing breakage of said seal due to vibration.
  • 14. A turbine engine nozzle assembly in accordance with claim 8 wherein said seal support comprises at least one dimpled end.
  • 15. A turbine engine comprising: a plurality of adjacent nozzle assemblies, each said nozzle assembly comprising:an outer band comprising a leading edge, a trailing edge, and a body extending therebetweenan inner hand comprising a leading edge, a trailing edge, and a body extending therebetween, at least one of said inner band and said outer band further comprises at least one radial tab extending outward therefrom;at least one vane extending between said outer and inner bands;at least one seal coupled between at least one radial tab and of said band leading edges; andat least one non-planar seal support positioned coupler at least one portion of said seal using a single fastener to facilitate preventing breakage of said seal due to vibration.
  • 16. A turbine engine in accordance with claim 15 wherein a first portion of said seal is supported by said at least one radial tab and a second portion of said seal is unsupported by said at least one radial tab, said seal support comprises an end that: is against said seal second portion.
  • 17. A turbine engine in accordance with claim 15 wherein a first portion of said seal is supported by said at least one radial tab and a second portion of said seal is unsupported by said at least one radial tab, said seal support comprises an end that is against a second portion of a circumferentially-adjacent seal.
  • 18. A turbine engine in accordance with claim wherein said seal support extends from an end of said seal and is positioned against a circumferentially-adjacent seal.
  • 19. A turbine engine in accordance with claim 15 further comprising a spring coupled between said seal and said at least one radial tab.
  • 20. A turbine engine in accordance with claim 15 wherein said seal support comprises at least one dimpled end.