In operation, air flows through low pressure compressor 12 supplying compressed air from low pressure compressor 12 to high pressure compressor 14. The highly compressed air is delivered to combustor 16. Airflow from combustor 16 is channeled through a turbine nozzle (not shown in
In the exemplary embodiment, a first portion 216 of each seal 170 is coupled to, and supported by, a radial tab. Each seal first portion 216 is also at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 170 includes a second portion 218 that is not coupled against a radial tab or spring 176. Rather, in the exemplary embodiment, a first seal support end 204 is coupled against second portion 218 of first seal 208, and a second seal support end 210 is coupled against second portion 218 of second seal 214.
During operation, leaf seal assemblies 190 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 170 during operation are at least partially absorbed by springs 176; however portions of seals 170 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 200 facilitate further absorption of pressure induced upon seals 170. Accordingly, seal supports 200 facilitate reducing cracking and breakage along seals 170 to facilitate maintaining turbine efficiency and increasing turbine life-span.
In the exemplary embodiment, a first portion 254 of each seal 170 is coupled to, and supported by, a radial tab. More specifically, each seal first portion 254 is at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 170 also includes a second portion 256 that is not coupled against or supported by any radial tabs or springs 176. Rather, in the exemplary embodiment, first seal support first end 236 is coupled against a second portion 256 of first seal 240, and second end 242 of first seal support 238 is positioned adjacent a second portion 256 of second seal 244. Moreover, second seal support first end 246 is coupled against a second portion 256 of second seal 244, and second seal support second end 250 is positioned adjacent a second portion 256 of the third seal.
During operation, leaf seal assemblies 230 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 170 during operation are at least partially absorbed by springs 176; however portions of seals 170 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 232 facilitate further absorption of pressure induced upon seals 170. Accordingly, seal supports 232 facilitate reducing cracking and breakage along seals 170 to facilitate maintaining turbine efficiency and increasing turbine life-span.
In the exemplary embodiment, each seal 270 includes first portion 290 that is supported by, and coupled to a radial tab 160, via fastener 172. More specifically, each seal first portion 290 is also at least partially supported by at least one spring 176. Moreover, in the exemplary embodiment, each seal 270 includes a second portion 292 that is not coupled against or supported by any radial tabs or springs 176. In the exemplary embodiment, first seal support 276 is coupled against second seal second portion 292, and a second seal support 282 is coupled against first seal second portion 292.
During operation, leaf seal assemblies 268 seal the nozzle assembly and the combustor interface to facilitate reducing hot gas injection along the vane leading edge and improve the turbine nozzle life-span. Pressure and vibrations induced on seals 270 during operation are at least partially absorbed by springs 176; however portions of seals 270 that are not at least partially supported by springs 176 may become susceptible to cracking and, ultimately, breakage. As such seal supports 272 facilitate further absorption of pressure induced upon seals 270. Accordingly, seal supports 272 facilitate reducing cracking and breakage along seals 270 to facilitate maintaining turbine efficiency and increasing turbine life-span.
In one embodiment, a method for assembling a gas turbine engine is provided. The method includes providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge, and a body extending therebetween. At least one of the outer band and the inner band has at least one radial tab extending outward therefrom. The method also includes coupling at least one seal between at least one of the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band. The method also includes positioning at least one non-planar seal support against at least one portion of the seal.
The above-described methods and apparatus provide a nozzle assembly seal support that facilitates reducing cracking and breakage in the nozzle assembly seals. Specifically, the seal support provides support for portions of the seal that are not coupled to or supported by the radial tabs or springs of the nozzle assembly. As such, these portions of the seal are enabled to withstand pressure increases and vibrations caused by operation of the turbine. Accordingly, the seal supports facilitate reducing cracking and breakage along the seals to facilitate maintaining turbine efficiency and increasing turbine life-span.
As used herein, an element or step recited in the singular and proceeded with the word a or should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Although the methods and systems described herein are described in the context of nozzle assemblies for a gas turbine engine, it is understood that the nozzle assembly methods and systems described herein are not limited to gas turbine engines. Likewise, the nozzle assembly components illustrated are not limited to the specific embodiments described herein, but rather, components of the nozzle assembly can be utilized independently and separately from other components described herein.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.