1. Field of the Invention
The present invention relates to methods and apparatus for characterizing petroleum fluid extracted from a hydrocarbon bearing geological formation.
2. Description of Related Art
Petroleum consists of a complex mixture of hydrocarbons of various molecular weights, plus other organic compounds. The exact molecular composition of petroleum varies widely from formation to formation. The proportion of hydrocarbons in the mixture is highly variable and ranges from as much as 97 percent by weight in the lighter oils to as little as 50 percent in the heavier oils and bitumens. The hydrocarbons in petroleum are mostly alkanes (linear or branched), cycloalkanes, aromatic hydrocarbons, or more complicated chemicals like asphaltenes. The other organic compounds in petroleum typically contain carbon dioxide (CO2), nitrogen, oxygen, and sulfur, and trace amounts of metals such as iron, nickel, copper, and vanadium.
The alkanes, also known as paraffins, are saturated hydrocarbons with straight or branched chains which contain only carbon and hydrogen and have the general formula CnH2n+2. They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture. The alkanes include methane (CH4), ethane (C2H6), propane (C3H8), i-butane (iC4H10), n-butane (nC4H10), i-pentane (iC5H12), n-pentane (nC5H12), hexane (C6H14), heptane (C7H16), octane (C8H18), nonane (C9H20), decane (C10H22), hendecane (C11H24)— also referred to as endecane or undecane, dodecane (C12H26), tridecane (C13H28), tetradecane (C14H30), pentadecane (C15H32), and hexadecane (C16H34).
The cycloalkanes, also known as napthenes, are saturated hydrocarbons which have one or more carbon rings to which hydrogen atoms are attached according to the formula CnH2n. Cycloalkanes have similar properties to alkanes but have higher boiling points. The cycloalkanes include cyclopropane (C3H6), cyclobutane (C4H8), cyclopentane (C5H10), cyclohexane (C6H12), cycloheptane (C7H14), etc.
The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnHn. They tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic. The aromatic hydrocarbons include benzene (C6H6) and derivatives of benzene, as well as polyaromatic hydrocarbons.
Computer-based modeling and simulation techniques have been developed for estimating the properties and/or phase behavior of petroleum fluid in a reservoir of interest. Typically, such techniques employ a borehole sampling and analysis tool that samples petroleum fluid and analyzes the petroleum fluid at downhole conditions to derive properties of the sampled petroleum fluid at such downhole conditions. Examples of such borehole sampling and analysis tools include the Modular Formation Dynamics Tester (MDT) tool with downhole fluid analysis (DFA) module available from Schlumberger Technology Corporation of Sugar Land, Tex., USA, the SampleView Reservoir Characterization Instrument available from Baker Hughes, Inc. of Houston, Tex., USA, and the Reservoir Description Tool available from Halliburton Company of Houston, Tex., USA. As an example, the fluid properties measured by the MDT tool include weight fractions of the hydrocarbon components of the fluid, live fluid density, live fluid viscosity, gas-oil ratio (GOR), volumetric factors, flowline temperature and pressure, and formation temperature and pressure. Such fluid properties are typically used in conjunction with an equation of state (EOS) model that represents the phase behavior of the petroleum fluid in the reservoir to characterize a wide array of properties of the petroleum fluid of the reservoir. The EOS model and calculations based thereon can be extended to characterize the reservoir properties over time during planned production in order to simulate and analyze production scenarios for reservoir planning and optimization. A detailed description of reservoir fluid properties is desirable for an accurate modeling of the fluids in the reservoir. Indeed, decisions such as the type of well completion, production procedures, and the design of the surface handling and processing facilities are affected by the characteristics of the produced fluids.
Difficulties in accurately estimating the properties of petroleum fluid arise from the fact that the petroleum fluid samples captured by the borehole sampling and analysis tool are likely contaminated with drilling mud. More particularly, a borehole is drilled into the formation in order to provide access for the borehole sampling and analysis tool. During such drilling, mud is pumped into the borehole. The mud serves several purposes. It acts as a buoyant medium, cuttings transporter, lubricant, and coolant, as well as a medium through which downhole telemetry may be achieved. The mud is usually kept overbalanced, i.e. at a higher pressure than the pressure of the formation fluids. This leads to “invasion” of mud filtrate into the formation fluids and the buildup of mudcake on the borehole wall. There are three different mud types: water-based mud (WBM), oil-based mud (OBM), and synthetic-based mud (SBM). Water-based mud can be realized by, but are not limited to, freshwater, seawater, saltwater (brine) and others, or a combination of any of these fluids. Oil-based mud is an oil product, such as diesel or mineral oil. Synthetic-based mud can be realized, without limitation, by olefinic-, naphthenic-, and paraffinic-based compounds.
Water-based mud and aquifer water may form emulsions with formation petroleum fluids as a result of high speed drilling operations. When samples are taken, the samples are contaminated with the emulsified mud filtrate and even a small quantity of such mud filtrate in a sample can alter the properties of the fluid sample as measured by the tool.
For oil-based mud and synthetic-based mud, the mud filtrate may miscibly mix with the formation petroleum fluid. When samples are taken, the samples are contaminated with the mud filtrate and even a small quantity of such mud filtrate in a sample can alter the properties of the fluid sample as measured by the tool.
There are prior art techniques for estimating such mud filtrate based on the optical properties of the fluids flowing through a tool. More particularly, a fluid analysis module can measure the absorption spectrum of the formation fluid and use physical and empirical models in conjunction with the measured absorption spectrum to estimate the mud filtrate fraction, control sampling based thereon, and determine GOR of the formation fluid corrected for mud filtrate contamination. See, e.g., U.S. Pat. Nos. 6,178,815; 6,274,865; 6,343,507 and 6,350,986. Such techniques have several limitations, including the generation of a limited data set (e.g., mud filtrate fraction, GOR) that characterizes properties of the formation fluid in a real-time manner. Instead, other fluid properties of interest can be derived with significant delay, which typically results from a time period required to allow non-contaminated petroleum fluid to be sampled and analyzed by the tool.
In another example, U.S. Pat. No. 7,134,500 discloses a method for characterizing formation fluid using flowline viscosity and density data in an oil-based mud environment. However, this method has several limitations. First, it requires computational analysis of a one-dimensional column of measurements of density, viscosity, volume fraction of water, and volume fraction of mud filtrate over a number of samples that cannot be applied in real-time. Second, the method employs mixing rules that ignore excess volume created during mixing processes and cannot generate accurate fluid properties for high GOR systems, especially gas condensate. Third, the method usually calculates much higher density of oil-based mud than the actual experimental value.
In accordance with the present invention, a methodology and system for characterizing the fluid properties of petroleum samples contaminated with drilling mud is provided which substantially eliminates the limitations and problems associated with such prior art techniques.
More particularly, the present invention provides a methodology and system for characterizing the fluid properties of petroleum samples contaminated with drilling mud in a manner that compensates for the presence of such drilling mud. Such methodology and system characterizes the fluid properties of petroleum samples contaminated with drilling mud in a real-time manner and thus avoids the computational delays associated with the prior art.
The present invention also provides a methodology and system that characterizes a wide array of fluid properties of petroleum samples contaminated with drilling mud in a manner that compensates for the presence of such drilling mud.
The present invention also provides a methodology and system that characterizes the viscosity and density of petroleum samples contaminated with drilling mud at formation conditions in a manner that compensates for differences between flowline measurement conditions and formation conditions.
The present invention also provides a methodology and system that characterizes the fluid properties of petroleum samples contaminated with drilling mud in a manner that accounts for excess volume created during mixing processes, which increases the accuracy of such characterizations for high GOR samples, especially gas condensate.
The present invention, which will be discussed in detail below, includes a method and system for characterizing formation fluid in an earth formation surrounding a borehole drilled into the earth formation whereby formation fluid is sampled at a given location within the borehole by drawing formation fluid into a flowline disposed within the borehole. The formation fluid is analyzed in the flowline to derive first data characterizing properties of the formation fluid in the flowline. The first data includes data representing temperature and pressure of the formation fluid in the flowline. A data processing system operates on the first data to derive second data characterizing a plurality of properties of the formation fluid at the temperature and pressure of the formation fluid in the flowline. The second data characterizes properties of the formation fluid affected by contamination of mud filtrate in the formation fluid. The data processing system operates on the second data to derive third data characterizing properties of the formation fluid unaffected by contamination of mud filtrate in the formation fluid. The first data, second data, and third data are derived without sampling and analysis of formation fluid at another location within the borehole. The first data, second data, and third data can be derived in real-time for real-time analysis of the formation fluid at the given location within the borehole in conjunction with the sampling of the formation fluid at the given location within the borehole.
According to one embodiment of the invention, the properties represented by the second and third data are selected from the group including hydrocarbon component weight fractions, live fluid density, live fluid viscosity, gas-oil ratio, API gravity, and oil formation volume factor.
In another embodiment of the invention, the method and system derives measurements for the temperature and pressure of the formation fluid in the earth formation, and the data processing system derives fourth data characterizing at least one property of the formation fluid at the temperature and pressure of the formation fluid in the earth formation based on corresponding third data. Such fourth data characterizes the at least one property of the formation fluid unaffected by contamination of mud filtrate in the formation fluid. Preferably, the at least one property is selected from the group including live fluid density and live fluid viscosity.
According to yet another embodiment of the invention, the third data includes a fluid density unaffected by contamination of mud filtrate that is based on a scaling coefficient dependent on measured GOR of the formation fluid. This scaling coefficient accounts for excess volume created during mixing processes, which increases the accuracy of such characterizations for high GOR samples, especially gas condensate.
Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.
The fluid analysis module 25 includes means for measuring the temperature and pressure of the fluid in the flowline. The fluid analysis module 25 derives properties that characterize the formation fluid sample at the flowline pressure and temperature. In the preferred embodiment, the fluid analysis module 25 measures absorption spectra and translates such measurements into concentrations of several alkane components and groups in the fluid sample. In an illustrative embodiment, the fluid analysis module 25 provides measurements of the concentrations (e.g., weight percentages) of carbon dioxide (CO2), methane (CH4), ethane (C2H6), the C3-C5 alkane group, and the lump of hexane and heavier alkane components (C6+). The C3-C5 alkane group includes propane, butane, and pentane. The C6+ alkane group includes hexane (C6H14), heptane (C7H16), octane (C8H18), nonane (C9H20), decane (C10H22), hendecane (C11H24)— also referred to as endecane or undecane, dodecane (C12H26), tridecane (C13H28), tetradecane (C14H30), pentadecane (C15H32), hexadecane (C16H34), etc. The fluid analysis module 25 also provides a means that measures volume fraction of water (vw) at the flowline temperature and pressure, volume fraction of oil-based mud (vobm) at the flowline temperature and pressure, GOR, API gravity, oil formation volume factor (Bo), live fluid density (ρ) at the flowline temperature and pressure, live fluid viscosity (μ) at flowline temperature and pressure (in cp), formation pressure, and formation temperature.
Control of the fluid admitting assembly 20 and fluid analysis module 25, and the flow path to the fluid collecting chambers 22, 23 is maintained by the control system 18. As will be appreciated by those skilled in the art, the fluid analysis module 25 and the surface-located electrical control system 18 include data processing functionality (e.g., one or more microprocessors, associated memory, and other hardware and/or software) to implement the invention as described herein. The electrical control system 18 can also be realized by a distributed data processing system wherein data measured by the borehole tool 10 is communicated (preferably in real-time) over a communication link (typically a satellite link) to a remote location for data analysis as described herein. The data analysis can be carried out on a workstation or other suitable data processing system (such as a computer cluster or computing grid).
Formation fluids sampled by the borehole tool 10 may be contaminated with mud filtrate. That is, the formation fluids may be contaminated with the filtrate of a drilling fluid that seeps into the formation 14 during the drilling process. Thus, when fluids are withdrawn from the formation 14 by the fluid admitting assembly 20, they may include mud filtrate. In some examples, formation fluids are withdrawn from the formation 14 and pumped into the borehole or into a large waste chamber (not shown) in the borehole tool 10 until the fluid being withdrawn becomes sufficiently clean. A clean sample is one where the concentration of mud filtrate in the sample fluid is acceptably low so that the fluid substantially represents native (i.e., naturally occurring) formation fluids. In the illustrated example, the borehole tool 10 is provided with fluid collecting chambers 22 and 23 to store collected fluid samples.
The probe 202 can be realized by the Quicksilver Probe available from Schlumberger Technology Corporation. The Quicksilver Probe divides the fluid flow from the reservoir into two concentric zones, a central zone isolated from a guard zone about the perimeter of the central zone. The two zones are connected to separate flowlines with independent pumps. The pumps can be run at different rates to exploit filtrate/fluid viscosity contrast and permeability anisotropy of the reservoir. Higher intake velocity in the guard zone directs contaminated fluid into the guard zone flowline, while clean fluid is drawn into the central zone. Fluid analyzers analyze the fluid in each flowline to determine the composition of the fluid in the respective flowlines. The pump rates can be adjusted based on such compositional analysis to achieve and maintain desired fluid contamination levels. The operation of the Quicksilver Probe efficiently separates contaminated fluid from cleaner fluid early in the fluid extraction process, which results in obtaining clean fluid in much less time compared to traditional formation testing tools.
The fluid analysis module 25′ includes a flowline 207 that carries formation fluid from the port 204 through a fluid analyzer 208. The fluid analyzer 208 includes a light source that directs light to a sapphire prism disposed adjacent the flowline fluid flow. The reflection of such light is analyzed by a gas refractometer and dual fluoroscene detectors. The gas refractometer qualitatively identifies the fluid phase in the flowline. At the selected angle of incidence of the light emitted from the diode, the reflection coefficient is much larger when gas is in contact with the window than when oil or water is in contact with the window. The dual fluoroscene detectors detect free gas bubbles and retrograde liquid dropout to accurately detect single phase fluid flow in the flowline 207. Fluid type is also identified. The resulting phase information can be used to define the difference between retrograde condensates and volatile oils, which can have similar GOR's and live oil densities. It can also be used to monitor phase separation in real time and ensure single phase sampling. The fluid analyzer 208 also includes dual spectrometers—a filter-array spectrometer and a grating-type spectrometer.
The filter-array spectrometer of the analyzer 208 includes a broadband light source providing broadband light that passes along optical guides and through an optical chamber in the flowline 207 to an array of optical density detectors that are designed to detect narrow frequency bands (commonly referred to as channels) in the visible and near-infrared spectra as described in U.S. Pat. No. 4,994,671. Preferably, these channels include a subset of channels that detect water absorption peaks (which are used to characterize water content in the fluid) as well as a dedicated channel corresponding to the absorption peak of CO2 with dual channels above and below this dedicated channel that subtract out the overlapping spectrum of hydrocarbon and small amounts of water (which are used to characterize CO2 content in the fluid). The filter-array spectrometer also employs optical filters that provide for identification of the color of the fluid in the flowline 207. Such color measurements support fluid identification, determination of asphaltene gradients, and pH measurement. Mud filtrates or other solid materials generate noise in the channels of the filter-array spectrometer. Scattering caused by these particles is independent of wavelength. In the preferred embodiment, the effect of such scattering can be removed by subtracting a nearby channel.
The grating-type spectrometer of the analyzer 208 is designed to detect channels in the near-infrared spectra (preferably between 1600-1800 nm) where reservoir fluid has absorption characteristics that reflect molecular structure.
The analyzer 208 also includes a pressure sensor for measuring pressure of the formation fluid in the flowline 207, a temperature sensor for measuring temperature of the formation fluid in the flowline 207, and a density sensor for measuring live fluid density of the fluid in the flowline 207. In the preferred embodiment, the density sensor is realized by a vibrating sensor that oscillates in two perpendicular modes within the fluid. Simple physical models describe the resonance frequency and quality factor of the sensor in relation to live fluid density. Dual mode oscillation is advantageous over other resonant techniques because it minimizes the effects of pressure and temperature on the sensor through common mode rejection. In addition to density, the density sensor can also provide a measurement of fluid viscosity from the quality factor of oscillation frequency. Note that viscosity is often measured by placing a vibrating object in the fluid flow and measuring the increase in line width of any fundamental resonance. This increase in line width is related closely to the viscosity of the fluid. The change in frequency of the vibrating object is closely associated with the mass density of the object. If density is measured independently, then the determination of viscosity is more accurate because the effects of a density change on the mechanical resonances are determined. Generally, the response of the vibrating object is calibrated against known standards. The fluid analyzer 208 can also measure resistivity and pH of fluid in the flowline 207. In the preferred embodiment, the fluid analyzer 208 is realized by the InSitu Fluid Analyzer available from Schlumberger Technology Corporation. In other exemplary implementations, the flowline sensors of the fluid analyzer 208 may be replaced or supplemented with other types of suitable measurement sensors (e.g., NMR sensors or capacitance sensors). Pressure sensor(s) and/or temperature sensor(s) for measuring pressure and temperature of fluid drawn into the flowline 207 can also be part of the probe 202.
A pump 228 is fluidly coupled to the flowline 207 and is controlled to draw formation fluid into the flowline 207 and possibly to supply formation fluid to the fluid collecting chambers 22 and 23 (
The fluid analysis module 25′ includes a data processing system 213 that receives and transmits control and data signals to the other components of the fluid analysis module 25′ for controlling operations of the module 25′. The data processing system 213 also interfaces to the fluid analyzer 208 for receiving, storing and processing the measurement data generated therein. In the preferred embodiment, the data processing system 213 processes the measurement data output by the fluid analyzer 208 to derive and store measurements of the hydrocarbon composition of fluid samples analyzed insitu by the fluid analyzer 208, including concentrations (e.g., weight percentages) of carbon dioxide (CO2), methane (CH4), ethane (C2H6), the C3-C5 alkane group, and the lump of hexane and heavier alkane components (C6+), flowline temperature and flowline pressure, volume fraction of water (vw) at the flowline temperature and pressure, volume fraction of oil-based mud (vobm) at the flowline temperature and pressure, GOR, API gravity, oil formation volume factor (Bo), live fluid density (ρ) at the flowline temperature and pressure, live fluid viscosity (ρ) at flowline temperature and pressure, and possibly other parameters. The measurements of the hydrocarbon composition of fluid samples are derived by translation of the data output by spectrometers of the fluid analyzer 208. Flowline temperature and pressure are measured by the temperature sensor and pressure sensor, respectively, of the fluid analyzer 208 (and/or probe 202). In the preferred embodiment, the output of the temperature sensor(s) and pressure sensor(s) are monitored continuously before, during, and after sample acquisition to derive the temperature and pressure of the fluid in the flowline 207. The volume fraction of water (vw) at the flowline temperature and pressure is determined by measuring the near-infrared absorption peaks of water, hydrocarbons, CO2 and possible other components. Generally, the fraction of water is given by the magnitude of the two-stretch overtone water peak in comparison to its maximum value when the flowline 207 is filled with water. The volume fraction of oil-based mud (vobm) at the flowline temperature and pressure is determined by the measured optical properties of the fluid in the flowline 207 as a function of pumping time in conjunction with a fluid sample cleanup model that estimates filtrate contamination as a function of the measured optical properties and pumping time. In the preferred embodiment, the fluid sample cleanup model follows Beers-Lambert mixing law as described in “Quantifying Contamination using Color of Crude and Condensate,” Oilfield Review, published by Schlumberger, Autumn 2001, pg. 24-43. GOR is determined by measuring the quantity of methane and liquid components of crude oil using near infrared absorption peaks. The ratio of the methane peak to the oil peak on a single phase live crude oil is directly related to GOR. API gravity is determined by measuring the frequency shift of a calibrated vibrating object placed in the fluid of interest. The oil formation volume factor (Bo) can be derived from equation of state analysis based on the measurements of the hydrocarbon composition of the formation fluid. It can also be estimated utilizing well known correlations (e.g., Standing, Vasquez and Beggs, Glaso, Al-Marhoun, Petrosky and Farshad, Asgarpour, Dokla and Osman, Obomanu, Farshad, and Kartoatmodjo and Schmidt), from a trained neural network, or from other suitable means. Live fluid density (ρ) at the flowline temperature and pressure is determined by the output of the density sensor of the fluid analyzer 208 at the time the flowline temperature and pressure is measured. Live fluid viscosity (μ) at flowline temperature and pressure is derived from the quality factor of the density sensor measurements at the time the flowline temperature and pressure is measured.
Formation pressure as a function of depth in the borehole 12 can be measured as part of a pretest carried out prior to the downhole fluid sampling and analysis at the various measurement stations within the borehole 12 as described herein. The formation temperature is not likely to deviate substantially from the flowline temperature at a given measurement station and thus can be estimated as the flowline temperature at the given measurement station in many applications. Formation pressure can also be measured by the temperature sensor and pressure sensor, respectively, of the fluid analyzer 208 in conjunction with the downhole fluid sampling and analysis at a particular measurement station after buildup of the flowline to formation pressure.
The fluid analysis module 25′ also includes a tool bus 214 that communicates data signals and control signals between the data processing system 213 and the surface-located control system 18 of
Although the components of
In accordance with the present invention, the system of
In step 101A, the following parameters are derived offline and loaded into a persistent storage (e.g., one or more data files or other suitable electronic data structures) accessible by the data processing functionality of the system:
The water density (ρw) can be calculated as function of temperature (T in ° F.) and pressure (P in psia) by McCain's correlation:
ΔVT=−1.0001×10−2+1.33391×10−4T+5.50654×10−7T2 (2)
ΔVP=−1.95301×10−9PT−1.72834×10−13P2T−3.58922×10−7P−2.25341×10−10P2 (3)
The water viscosity (μw) can be calculated as function of temperature and pressure by McCain's correlation:
μw=109.574T−1.2166(0.9994+4.0295×10−5P+3.1062×10−9P2) (4)
The types of oil-based mud (OBM) commonly used by the industry include diesel, mineral oils, n-paraffins, olefins, esters, and the like. The densities and viscosities of these OBM's can be measured using commercially available fluid PVT analysis setups. The ranges of temperatures and pressures cover all the reservoir and standard conditions.
The experimental density measurements can be correlated by the following polynomial function to derive density of OBM (ρobm) as a function of temperature (T in ° F.) and pressure (P in psia):
The experimental viscosity measurements can be correlated by the following polynomial function to derive viscosity of OBM (μobm) as a function of temperature (T in ° F.) and pressure (P in psia):
μobm=α1Tα
In step 101B, the formation pressure is measured as a function of depth within the borehole 12 as part of a pretest. Such formation pressure measurements and corresponding depth values (or possibly an empirical relation that is correlated to such pressure measurements and depth values) are loaded into persistent storage accessible by the data processing functionality of the system for use in the subsequent data processing operations of steps 102 to 118. The pretest can be carried out by a separate wireline tool, by operation of the borehole tool 10 without downhole fluid analysis, or by other suitable means.
In step 102, the borehole tool 10 is controlled to obtain one or more formation fluid sample(s) contaminated by OBM and/or water at a measurement station within the borehore 12 at the formation pressure and temperature. The fluid sample is drawn into the flowline of the fluid analysis module 25 of the borehole tool 10. The fluid analysis module 25 derives properties that characterize the formation fluid sample, including concentrations (e.g., weight percentages) of carbon dioxide (CO2), methane (CH4), ethane (C2H6), the C3-C5 alkane group, and the lump of hexane and heavier alkane components (C6+), flowline temperature and flowline pressure, volume fraction of water (vw) at the flowline temperature and pressure, volume fraction of oil-based mud (vobm) at the flowline temperature and pressure, GOR, API gravity, oil formation volume factor (Bo), live fluid density (ρ) at the flowline temperature and pressure, live fluid viscosity (μ) at flowline temperature and pressure, and possibly other parameters.
In step 103, the effect of water on the live fluid density (ρ) is removed to derive a density of OBM contaminated live fluid at flowline conditions (ρo). The live fluid density (ρ) can be expressed as
In step 104, the effect of water on live fluid viscosity (μ) is removed to derive a viscosity of OBM-contaminated live fluid at flowline conditions (μo). Specifically, a mixture of water and an oil phase can have an effective viscosity obtained from the following equation as taught by G. K. Batchelor, “An Introduction to Fluid Dynamics,” Cambridge University Press, New York, 1967.
In step 105A, the OBM density parameters generated and stored in step 101A for the type of OBM used to drill the sampled borehole are utilized to calculate the density of OBM (ρobm) at the flowline temperature and flowline pressure measured in step 102.
In step 105B, the OBM density parameters generated and stored in step 101A for the type of OBM used to drill the sampled borehole are utilized to calculate the density of OBM (ρobmSTD) at a standard temperature and a standard pressure. In the preferred embodiment, the standard temperature is selected as 60° F. and the standard pressure is selected as 14.696 psia for a reservoir in North America. Other suitable temperatures and pressures can be used as desired.
In Step 106, the volume fraction of OBM (vobm) derived in step 102 is converted to a weight fraction of OBM (wobm) as follows:
In step 107, EOS flash calculations are performed to obtain a gas phase molecular weight for OBM-contaminated fluid (Mwgas) and a density of OBM-contaminated stock tank oil (STO) at standard conditions (ρSTO). Such EOS flash calculations are based on EOS equations that represent the functional relationship between pressure, volume and temperature of the fluid sample. The EOS equations can take many forms. For example, they can be any one of many cubic EOS, as is well known. Such cubic EOS include van der Waals EOS (1873), Redlich-Kwong EOS (1949), Soave-Redlich Kwong EOS (1972), Peng-Robinson EOS (1976), Stryjek-Vera-Peng-Robinson EOS (1986), and Patel-Teja EOS (1982). Volume shift parameters can be employed as part of the cubic EOS in order to improve liquid density predictions, as is well known. Mixing rules (such as van der Waals mixing rule) can also be employed as part of the cubic EOS. A statistical associating fluid theory, SAFT-type, EOS can also be used, as is well known in the art Tuning of the EOS equations can be carried out, which typically involves tuning volume translation parameters, binary interaction parameters, and/or critical properties of the components of the EOS equations. An example of EOS tuning is described in Reyadh A. Almehaideb et al., “EOS tuning to model full field crude oil properties using multiple well fluid PVT analysis,” Journal of Petroleum Science and Engineering, Volume 26, Issues 1-4, pp. 291-300, 2000. The flash EOS calculations are also based on the properties of a two phase fluid (liquid-vapor) in equilibrium. A condition for such equilibrium is that the chemical potential of each component in each phase are equal. This is equivalent to the fugacity of each component in each phase being equal as well. The fugacity of a component in the mixture can be expressed in terms of a fugacity coefficient. For a mixture of gas and liquid, the fugacity coefficients for the gas and liquid phases can be written as fiv=yiφivP and fiL=xiφiLP. The equilibrium condition can be written in terms of an equilibrium ratio (Ki) for the components as
The fugacity coefficient for the gas phase (φiv) is a function of pressure, temperature and molar gas fraction yi. The fugacity coefficient for the liquid phase (φiL) is a function of pressure, temperature and molar liquid fraction xi. The molar liquid fraction xi is related to the molar component fraction zi by
where αg is the gas fraction. And there is a constraint (known as the Rachford-Rice Objective Function) that all mole fractions must add to one as
In the preferred embodiment, the flash EOS calculations are carried out over hydrocarbon components that are delumped from the lumps of hydrocarbon components measured by the borehole tool 10 in step 102 in accordance with the delumping operations described in U.S. patent application Ser. No. 12/209,050, filed on Sep. 11, 2008, commonly assigned to the assignee of the present application. These equations are used in conjunction with a phase stability analysis based on the gas fraction αg that determines whether the fluid is unstable or stable in a single phase. If the fluid is unstable, EOS parameters are calculated at given temperature and pressure, and an initial estimate is made for the equilibrium ratios (Ki values) of the components of the fluid. These K value estimates are used in conjunction with the Rachford-Rice Objective Function to calculate the gas and liquid compositions by the Newton-Raphson method iteration. The gas and liquid compositions are translated to component fugacities in the gas and liquid phases using equations of state. The operations evaluate convergence criteria by determining whether the fugacities of each component in the gas and liquid phase match. If the convergence criteria are not satisfied, the K value estimates are updated and the analysis repeated using the updated K value estimates until the convergence criteria are satisfied. When the convergence criteria are satisfied, the mole fractions of the gas and liquid phases of the component are obtained from the solved component fugacities.
In step 107, the gas phase molecular weight for OBM-contaminated fluid (Mwgas) is calculated according to the mole fractions of the gas phase for the components (as dictated by the solved component fugacities of the flash EOS calculations) and the component molecular weights as:
ρSTO=Mwoil/LMV (14)
In step 108, the weight fraction of OBM at flowline conditions (wobm) as derived in step 106 is translated to a weight fraction of OBM at standard conditions (wobmSTO). The weight fraction of OBM at standard conditions (wobmSTO) can be defined as:
mobm=wobmSTOmSTO (16)
On the other hand, the weight fraction for OBM at flowline conditions can be given by:
Therefore, the weight fraction of OBM at standard conditions can be estimated by:
In step 109, the weight fractions derived in step 102 are translated to corresponding weight fractions with the effect of the OBM contamination removed (wi,clean). In the preferred embodiment, the weight fractions with the effect of the OBM contamination removed are defined as:
In step 110, the GOR derived in step 102 is translated to GOR with the effect of the OBM and water contamination removed (GORclean) as follows:
In step 111, the API gravity derived in step 102 is translated to an API gravity with the effect of the OBM and water contamination removed (APIclean) as follows:
In step 112, the oil formation volume factor (Bo) derived in step 102 is translated to an oil formation volume factor with the effect of the OBM and water contamination removed (Boclean) as follows:
In step 113, the live fluid density (ρ) derived in step 102 is translated to a fluid density with the effect of the OBM and water contamination removed (ρclean) If the OBM level is expressed in weight fraction, then the density is given by:
Finally, the density of decontaminated live fluids is calculated by:
Equation (26) works very well for low GOR oil systems. However, for high GOR systems, due to the excess volume impact during mixing processes, the modified equation is
Equation (27) introduces a coefficient β. The value of β is determined from laboratory measurements. In the preferred embodiment, β is greater than 1 and is treated as a function of GOR. In an illustrative embodiment,
β=1 for GOR<=1000 scf/stb, (28a)
β>3.215553E-09*GOR*GOR−4.025872E-06*GOR+1.001199 (28b)
β=1.35 for GOR>=10,300 scf/stb (28c)
In step 114, the live fluid viscosity (μ) derived in step 102 is translated to a fluid viscosity with the effect of the OBM and water contamination removed (μclean). The viscosity-composition behavior of liquid hydrocarbon mixtures is a concave function that rarely goes through a minimum. The viscosity of a mixture can be estimated by the following mixing rules. For example, the Arrehenius logarithmic mixing rule is given by:
μo=(xobmμobmn+(1−xobm)μcleann)1/n (31)
Equation (30), (31), or (32) can be used to solve for μclean. The mole fractions of OBM and reservoir fluid are estimated by:
In the preferred embodiment, xobm and xclean are estimated by Equations (33 and 34),
μobm is calculated by Equation (6) at the flowline temperature and pressure, and μo is derived from step 104. xobm and xclean, μobm and μo are used in conjunction with one of the mixing rules of Equations (30), (31) or (32) with Newton's method to solve for μclean.
In step 115, EOS calculations are performed to translate the fluid density ρclean derived in step 113 to the formation temperature and formation pressure at the depth of the given measurement station. In the preferred embodiment, the formation pressure at the depth of the given measurement station is derived from the formation pressure (or an empirical relation) stored in the database in step 101B. Alternatively, the formation pressure at the depth of the given measurement station can be measured by the fluid analyzer in conjunction with the downhole fluid sampling and analysis at a particular measurement station after buildup of the flowline to formation pressure. The formation temperature is not likely to deviate substantially from the flowline temperature at a given measurement station and thus can be estimated as the flowline temperature at the given measurement station in many applications. EOS calculations are also performed to translate the fluid viscosity μclean derived in step 114 to the formation temperature and formation pressure. Such EOS calculations are based on EOS equations that represent the functional relationship between pressure, volume, and temperature of the fluid sample. The EOS equations can take many forms as described above. For translating fluid density, the EOS equations include volume translation parameters that model fluid density as a function of pressure and temperature. For translating fluid viscosity, various viscosity models can be used, such as the corresponding states viscosity model and the Lohrenz-Bray-Clark viscosity model. Such EOS equations are tuned to match one or more points of measured data. In the preferred embodiment, the EOS calculations are carried out over hydrocarbon components that are delumped from lumps of hydrocarbon components measured by the borehole tool 10 in step 102 in accordance with the delumping operations described in U.S. patent application Ser. No. 12/209,050, filed on Sep. 11, 2008.
For example, in translating fluid density, the Peng-Robinson EOS equations with volume translation parameters can be used to model fluid density of reservoir fluids as a function of pressure and temperature when tuned to match one point of the measured data. In this example, the Peng-Robinson EOS equations with volume translation parameters are tuned to match the fluid density ρclean at the flowline temperature and pressure. Once tuned, the EOS equations with volume translation parameters are used to derive the density of the decontaminated live fluid at the formation temperature and pressure measured in step 102.
In another example, in translating fluid viscosity, a corresponding states viscosity model with one reference fluid (methane) can be used to model viscosity of reservoir fluids as a function of pressure and temperature when tuned to match one point of measured data. In this example, the corresponding states viscosity model is tuned to match the fluid viscosity μclean at the flowline temperature and pressure. Once tuned, the corresponding states viscosity model is used at step 116 to derive the viscosity of the decontaminated live fluid at the formation temperature and pressure measured in step 102.
In step 117, a set of fluid properties calculated in the previous steps are stored and preferably output for display to a user for evaluation of the formation fluids at the given measurement station. These properties preferably include the following:
In step 118, a criterion is evaluated to determine whether the operations of steps 102-117 should be repeated for additional formation fluid sample(s) at the current measurement station, or possibly at a different measurement station for reservoir fluid analysis at varying depths. If evaluation of the criterion determines that the operations of steps 102-117 should be repeated, the operations return to step 102 for repeating the processing of steps 102-117 for additional formation fluid sample(s) at the current measurement station (or at a different measurement station for reservoir fluid analysis at varying depths within the borehole 12). Otherwise, the operations continue to step 119.
In step 119, statistics (such as averages) for the fluid properties stored (or output) in step 117 over the fluid sample processing iterations of steps 102-116 are generated, stored and preferably output for display to a user for evaluation of the formation fluids.
The operations of
With respect to validating the derivation of live fluid density corrected for contamination by mud filtrates, drilling mud concentration in the mixtures based on STO mass were converted to drilling mud concentrations based on live fluid mass in terms of GOR (gas-oil ratio), STO density, and gas specific gravity. Then the live fluid densities were corrected for the effect of drilling mud contamination as set forth herein. The results are shown in Table 1 using the ideal mixing rules of Equation (26). It is found that the ideal mixing rules work well for low GOR systems (e.g., GOR<1000 scf/stb). However, the deviations become bigger at high OBM levels for gas condensate systems. This means that the excess volume of mixing cannot be ignored.
When modified mixing rules of Equation (27) are used to derive live fluid density corrected for drilling mud contamination, improved results are obtained for gas condensate systems. The results are shown in Table 2.
Table 3 gives the deviation of GOR corrected for drilling mud contamination as calculated according to the methodology herein in comparison to the experimental data. The calculated results are in good agreement with the experimental data.
Table 4 gives the deviation of API gravity corrected for drilling mud contamination as calculated according to the methodology herein in comparison to the experimental data. The calculated results are in good agreement with the experimental data.
In order to verify the accuracy of the calculations that translate live fluid density from flowline conditions to other temperatures and pressures, including formation conditions (step 116), three types of fluids (heavy oil (HO), black oil (BO) and gas condensate (GC)) are selected. The fluid density at one condition (temperature and pressure) is matched by tuning the EOS parameter. Then the densities are predicted at other temperatures and pressures. The results are shown in
Advantageously, the operations of
There have been described and illustrated herein a preferred embodiment of a method, system, and apparatus for characterizing the compositional components of a reservoir of interest and analyzing fluid properties of the reservoir of interest based upon its compositional components. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular PVT analyses have been disclosed, it will be appreciated that other PVT analyses can be used as well. In addition, while particular formulations of empirical relations have been disclosed with respect to particular fluid properties, it will be understood that other empirical relations can be used. Furthermore, while particular data processing methodologies and systems have been disclosed, it will be understood that other suitable data processing methodologies and systems can be similarly used. Moreover, while particular equation of state models and calculations have been disclosed for predicting properties of reservoir fluid, it will be appreciated that other equation of state models and calculations could be used as well. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its scope as claimed.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/051867 | 5/6/2009 | WO | 00 | 12/10/2010 |
Number | Date | Country | |
---|---|---|---|
61052677 | May 2008 | US |