1. Field of the Invention
The present invention relates to methods and apparatus for controlling airflow in a fiber extrusion system and, more particularly, to an airflow control device capable of selectively separating, removing, or re-directing air present in the system to control the flow of the air and fibers in a desired manner.
2. Description of the Related Art
A great deal of development work has ensued since the initial development of the spunbond process in 1959 by DuPont. Much of that work has centered around uniform laydown of the melt spun fibers and properties of the spun web prior to bonding, such as loft or crimp. Additional development work has centered around the nature of the foraminous belt or drum collector, particularly when depositing the melt spun fibers onto solid or microporous substrates.
A schematic of a system 10 for performing a conventional spunbond process is shown in
Below the spinneret, quench air is blown onto the extruded filaments from the sides to at least partially quench the filaments, with some portion of the quench air being exhausted to the sides, as shown in
The system shown in
In
In accordance with the present invention, an apparatus for controlling the flow of air in a fiber extrusion process includes a fiber flow region between an inlet through which extruded fibers are received and an outlet through which the extruded fibers are discharged and at least one surface providing a boundary between the fiber flow region and another region, wherein the surface includes apertures permitting air to flow between the fiber flow region and the other region to control airflow at the outlet of the fiber flow region. The apparatus can include a housing which contains at least one chamber, with the surface being an internal surface that forms a boundary between the fiber flow region and the chamber. In a spunbond process, for example, the airflow control device can be positioned between the outlet of the aspirator and the web-forming surface (e.g., foraminous belt or drum). In this configuration, the airflow control device receives drawn filaments and process air from the aspirator at the inlet and discharges the filaments and remaining air, if any, at the outlet onto the web-forming surface. The housing may be positioned relative to the aspirator to form an air gap between the inlet and the aspirator, and the length of the air gap can be adjustable. Optionally, the width of the inlet and the width of the outlet can be adjustable.
The internal surface bounding the fiber flow region can include first and second walls, wherein at least one of the first and second walls includes the apertures. The internal walls can be planar, angled or curved (concave or convex) and can be substantially parallel, convergent, or divergent in the fiber flow direction, depending on the desired effect on airflow. Optionally, the angle or distance between the internal walls is adjustable. If chambers are within the device, they communicate with the fiber flow region via the two internal walls. Alternatively, instead of chambers, the apertures may communicate with flow passages, manifolds or the ambient environment. Optionally, only one of the internal walls includes apertures, and the walls may be positioned either symmetrically or asymmetrically with respect to the fiber flow direction.
The apertures can be distributed either uniformly or non-uniformly over the interior surface bounding the fiber flow region. For example, in one configuration in which the airflow is recycled by circulating between the chambers and the fiber flow region, the internal walls include apertures at an inlet end portion and an outlet end portion, but have a solid center portion without apertures. In general, the apertures can vary in at least one of shape, size, spacing, and distribution over the internal surface or may be uniform with respect to any or all of these attributes. In addition, a particular plate may have a mechanism wherein the size, spacing and distribution of the apertures in that plate can be selectively adjusted. For example, two adjacent plates may be moved relative to another so that apertures in one or the other or both can be positioned to effectively modify the size or shape of some or all of the combined openings, or even close the combined openings, etc. Dampers would be another mechanism for effecting the desired modifications.
If chambers are employed within the airflow control device, the chambers can include an external wall with an opening or vent that permits ingress or egress of air into or out of the chamber. For example, the opening in the external wall can be located toward the outlet end of the housing for ducting air into an exhaust passage or duct extending from the chamber. Another option is to place an opening or vent in the external wall near the inlet end of the housing to permit ingress of air into the chamber via the external wall, which is particularly useful in the aforementioned air recycling configuration. The chamber can also include a bottom surface adjacent the outlet of the housing. The bottom surface can be substantially solid (i.e., no apertures), or the bottom surface can include apertures in communication with the chamber to permit ingress or egress of air via the bottom surface.
By reducing the amount of entrained air in the fiber extrusion process, the airflow control device of the present invention can substantially reduce the suction typically required through the web-forming surface, which minimizes the criticality of the open area of the expensive forming wire while maximizing the capability of multi-laydowns, and the capability to make composites, even composites onto impervious or microporous substrates. Likewise, the device may reduce the energy costs required because of lower air handling and conditioning requirements, and the air can be recycled if economical. The airflow control device also considerably reduces the noise caused by open airflow.
The airflow control device also provides the versatility to control filament velocity in web formation independent of a filament spinning velocity. In general, improved web formation can be achieved, particularly at higher spinning speeds, due to reduced air disturbance and a smoother laydown of fibers onto the foraminous surface, and improved fiber orientation can be obtained.
In accordance with another aspect of the present invention, a method of controlling the flow of air in a fiber extrusion process includes: receiving extruded fibers at an inlet of an airflow control device; passing the extruded fibers through a fiber flow region of the airflow control device, wherein at least one surface provides a boundary between the fiber flow region and at least one other region; and discharging the extruded fibers through an outlet of the fiber control device, wherein the surface includes apertures permitting air to flow between the fiber flow region and the other region to control airflow at the outlet of the airflow control device.
The above and still further objects, features and advantages of the present invention will become apparent upon consideration of the following definitions, descriptions and descriptive figures of specific embodiments thereof wherein like reference numerals in the various figures are utilized to designate like components. While these descriptions go into specific details of the invention, it should be understood that variations may and do exist and would be apparent to those skilled in the art based on the descriptions herein.
The following detailed explanations of
More particularly, a process and apparatus have been developed and demonstrated whereby the filaments exiting the aspirator are fed into an airflow control device upstream of the foraminous belt or drum. As shown in
Each duct section is essentially a chamber for receiving air, with the chamber being bounded by external lateral side walls 106 (at the cross directional ends of the duct sections), a top wall 108, a bottom wall 110, an external back wall 112, and an internal wall or plate 114 (see
A slot-shaped inlet 116 is formed at the uppermost end of the housing by a gap or opening between duct sections 102 and 104 for receiving fibers exiting the aspirator. The elongated direction of the inlet slot is oriented in the cross direction to correspond to the shape of the curtain of fibers exiting a slot-shaped aspirator. The width of inlet 116 can be adjustable in the machine direction. For example, horizontal slots 118 and mating pins or bolts 120 respectively formed near the top of the lateral side walls 106 of the two duct sections 102 and 104 can be used to select the width of the inlet by sliding the pins or bolts 120 to the appropriate position within the slots 118. It will be appreciated that any of a variety of other mechanisms can be used to adjust or control the relative positions of the duct sections and the inlet and outlet widths.
A slot-shaped outlet 122 extending in the cross direction is formed between the two duct sections at the lower end of the housing, centered in the machine direction. Fibers entering the airflow control device via inlet 116 travel along the fiber flow region within the housing and exit the airflow control device via outlet 122. Preferably, the width of outlet 122 is adjustable. For example, arc-shaped slots 124 and mating pins or bolts 126 respectively formed on the lateral side walls 106 of the two duct sections 102 and 104 can be used to select the width of the outlet by sliding the pins or bolts 126 to the appropriate position within slots 124. As will be described in greater detail, the shape of the fiber flow region as well as the relative orientation of the internal walls 115 that bound the fiber flow region are affected by selection of the widths of the inlet and outlet via positioning of the respective pins and slots, which in turn impacts how the airflow control device handles incoming air. As used herein, the term “bound(s)” or “bounding” indicates that a surface or wall serves as at least a portion of or lies along a boundary of a region or like and does not necessarily suggest or require that surface completely surround or enclose a region or define the entire extent of the region.
At their lower ends, duct sections 102 and 104 can be coupled to respective exhaust ducts 128 and 130, which in certain configurations can be used to remove air separated from the fibers. Optionally, the amount of air flowing into the exhaust ducts can be controlled (e.g., by adjustable baffles), and in certain configurations the passage to the exhaust ducts can be completely blocked or the exhaust ducts can be eliminated entirely.
Optionally, air vents 132 can be located along the external back walls 112 of duct sections 102 and 104. Preferably, the air vents are adjustable to permit control of the amount of airflow therethrough, from a fully open position to fully closed position. In general, the air vents can be positioned at any locations that result in beneficial control of the airflow; however, in accordance with one exemplary embodiment described herein, the air vents are positioned near or at the top of the external back walls 112 of duct section 102 and 104, as shown in
The perforated internal wall 114 of duct section 104 is shown in
The attributes of the apertures, including size, shape, spacing and distribution, are not limited to the configuration shown in
A test airflow control device was constructed in accordance with the embodiment shown in
For purposes of illustrating various options, components and configurations of the airflow control device, a diagrammatic cross-sectional side view of an exemplary airflow control device is shown in
The external walls of the device, such as the external back walls 112 can also have open area, solid area or combination of both, as previously described. This feature is shown conceptually in
As suggested by the arrows shown in
While the internal walls 114 are shown as diverging in the fiber flow direction in
The setting of the internal plates (parallel, converging or diverging position) and the configuration of the chambers have a significant effect on the behavior of the flow (velocities, pressure zones, etc.), the amount of air coming into the process (reduce or prevent), the amount of air going out (to the foraminous belt, room, out of the process area, etc), and the amount of air being recycled within the chamber to the process. Since air is the tension media in the fiber laydown process, control of airflows provides a better control of the fiber tension, the fiber orientation, and the amount of air in the laydown.
In the configuration shown in
While the chambers within the airflow control device are beneficial in providing control over the air leaving the fiber flow region (tests conducted using two solid plates where no chambers existed were found to produce relatively little airflow control), it has nevertheless been found that at least some significant improvement in airflow control can be achieved by using a perforated surface that is not enclosed by a housing that forms a closed chamber. For example, two perforated plates (i.e., with apertures) bounding a fiber control region can yield substantially improved airflow control relative to conventional spunbond processes having no perforated plates or bounded fiber flow region. Thus, the minimum requirement for the airflow control device of the present invention is a fiber flow region between and inlet and outlet with at least one perforated surface (i.e., a surface with apertures) providing a boundary between the fiber flow region and at least one other region, where the apertures permit air to flow between the fiber flow region and the other region to control airflow at the outlet. An external housing then makes the “other” region into a partially or fully enclosed chamber with potentially greater airflow control options. Where the external housing is omitted, other mechanisms can be used to achieve greater airflow control, such as surfaces positioned near but not necessarily attached to the airflow control device or the positioning of separate suction devices near the exterior of the fiber flow region. For some applications, the “other” region may be the ambient environment in which the system is located.
Referring again to
The arrangement shown in
In typical spunbond processes, the entrained air provides tension on the filaments as they are laid on the foraminous belt. Where substantially all of the air is separated from the fibers, as with parallel or converging plates, tension is instead provided by the fiber contacting the surfaces of the internal plates. Nevertheless, it may be desirable to allow at least some amount of air to exit the outlet to prevent development of a plug of fibers and to provide additional control of the fibers in the laydown process. This result can be achieved by adjusting the size of the outlet relative to the size/area of the apertures (or others of the aforementioned parameters) such that a desired volume of air remains with the fiber to maintain a continuous flow.
At the outlet end, the overall volume of air exiting the device remains substantial, since virtually no air is removed from the process via the chambers; however, the circulation and recycling of the airflow through the chambers results in a more manageable airflow pattern distributed in a controlled manner at the outlet and at the foraminous belt where the fiber web is formed. The shape of the chambers and the positioning of the apertures can be tailored to promote recycling of the airflow having a desired flow pattern. The divergent arrangement of the internal walls and the angling of the bottom walls provides more area at the bottom of the airflow control device to distribute air, which can be more smoothly suctioned into the table. The arrangement shown in
In general, good air balance allows better web formation, which is typically more difficult to achieve at high spinning speeds. Accordingly, the airflow control device of the invention can be particularly useful in improving airflow conditions in higher speed extrusion processes. The device can also be useful where a particular machine direction/cross direction (md/cd) web orientation is desired, since such orientation generally results from fiber flow conditions at the point of deposition on the foraminous surface. By controlling the airflow in a particular manner, a more precise md/cd ratio can be achieved.
In addition to overcoming the many problems associated with excessive amounts of compressed and entrained air in uniform laydown of the fibers/web during fabric formation, the invention has many other useful features. For example, by reducing the amount of entrained air in the process, the airflow control device can reduce or eliminate the suction required through the forming table or drum, which minimizes the criticality of the open area of the expensive forming wire, while maximizing the capability of multi-laydowns, and the capability to make composites, even composites onto impervious or microporous substrates. Further, in certain configurations, the device can greatly simplify the air handling system by reducing the problem of entrained room air. Likewise, the device may reduce the energy costs required because of lower air handling and conditioning requirements, and the air can be recycled if economical. The airflow control device also considerably reduces the noise caused by open airflow.
With respect to web formation, the invention provides the versatility to control filament velocity in web formation independent of a filament spinning velocity. In general, improved web formation can be achieved, particularly at higher spinning speeds, due to reduced air disturbance and a smoother laydown of fibers onto the foraminous surface, and improved fiber orientation can be obtained. The ability to separate a selected amount of air from the fibers allows the option to generate a zone of lower or no tension in the fibers for a finite residence time prior to web formation or fabric bonding. This provides the opportunity for several process/fabric enhancements including but not limited to: in-line development of crimp using bicomponent technology, the in-line application of heat or moisture (for various purposes including but not limited to inducing multi-component fibers to split into finer fibers), application of topical treatments, and controlled heat setting.
The airflow control device of the present invention has been described primarily in the context of an open spunbond system; however, the invention is not limited to this particular context. While the present invention is described by reference to an open system, it could be used equally well in a closed system. Further, the airflow control device can be configured for use in meltblown processes. A meltblown process differs from a spunbond process in that extruded polymer filaments, upon emerging from an extruder die, are immediately blown with a high velocity, heated medium (e.g., air) onto a suitable support surface. In contrast, extruded but substantially solidified filaments (e.g., utilizing a suitable quenching medium such as air) in a spunbond process are drawn and attenuated utilizing a suitable drawing unit (e.g., an aspirator or godet rolls) prior to being laid down on a support surface. Meltblown processes are typically utilized in forming fibers having diameters on a micron level, whereas spunbond processes are typically employed to produce fibers having normal textile dimensions.
The invention is not limited to processes where the fibers are immediately deposited on a surface to form a web. For example, the airflow control device can be used in systems where the extruded fibers (e.g., spunbond or meltblown) are wound up on a mandrel in the manufacture a cartridge filter or the like. Another option is to directly feed spunbond or meltblown fibers discharged from the airflow control device to a lapping machine to make a non-woven web with multiple layers of lapped web.
As noted above, air egressing via the apertures in the fiber flow region can be fed back into the region, either as a result of pressure differentials existing at different longitudinal flow locations adjacent the flowing fibers or by forcefully directing air back into the fiber flow region. He feedback air can be supplemented by additional air or other fluid before being fed back. In addition, whether or not egressing air is fed back, additional fluid can be delivered through the apertures into the fiber flow region to produce desired chemical and physical effects on the fibers. The additional fluid can be air, other gases, vapor, or any of these bearing an additive to produce the desired effects on the fibers. Additives my be used, for example, as drying agents, wetting agents, pH modifiers, coloring agents, etc. As also noted above, the direction of flow of fluid entering the fiber flow region via the apertures in the sidewalls can be transverse, upstream or downstream (or some vectorial combination thereof) relative to the fiber flow direction, again depending on the effects to be produced on the fibers.
Having described preferred embodiments of new and improved methods and apparatus for controlling airflow in a fiber extrusion system, it is believed that other modifications, variations and changes will be suggested to those skilled in the art in view of the teachings set forth herein. It is therefore to be understood that all such variations, modifications and changes are believed to fall within the scope of the present invention as defined by the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/471,710 entitled “A Modified Spun Bond Process Having Improved Fiber and Web Laydown, Greater Versatility and Improved Economics,” filed May 20, 2003. The disclosure of this provisional patent application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3062611 | Keen | Nov 1962 | A |
4492557 | Ray et al. | Jan 1985 | A |
4712988 | Broaddus et al. | Dec 1987 | A |
4743186 | Schippers | May 1988 | A |
5714171 | Profe | Feb 1998 | A |
5814349 | Geus et al. | Sep 1998 | A |
5935512 | Haynes et al. | Aug 1999 | A |
6103158 | Schafer et al. | Aug 2000 | A |
Number | Date | Country | |
---|---|---|---|
20050008728 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60471710 | May 2003 | US |