The present invention relates to methods and apparatus for converting color values. More particularly, this invention relates to methods and apparatus for converting color values using a color lookup table as may be used in a print output device, such as a copier, printer, facsimile, or other suitable device.
A color image often is composed of an array of pixels, with each pixel including multiple color components. For example, in a three-color system, an electronic scanner may be used to separate a color image into red, green and blue (“RGB”) color components, with each color component represented numerically. Thus, in an 8-bit, three color system, each pixel may be represented by three color values, with each color value being a number in the range between 0 and 255. For example, the color values of a pixel in an 8-bit RGB system may be expressed as (20, 77, 201), where the numbers 20, 77 and 201 represent the values of the red, green and blue components, respectively, for that pixel.
Color output devices, such as color printers, typically produce output images using cyan, magenta, yellow, and sometimes black colorants. Accordingly, color output devices typically represent images using cyan, magenta and yellow (“CMY”) color components (i.e., a three color system), or cyan, magenta, yellow and black (“CMYK”) color components (i.e., a four-color system). To reproduce a color image on a color output device, therefore, the image data typically must be converted from one color component system (e.g., RGB) to another system (e.g., CMY). In particular, the input color values of each pixel must be converted to respective output color values to accurately reproduce the image on a print medium. For example, an input pixel having RGB values of (20, 77, 201) may correspond to an output pixel having CMY values of (100, 82, 0).
More generally, it is often desirable to convert color values from a first color system to a second color system. One known method for converting color values uses a lookup table that provides a corresponding set of second color values for each set of first color values. In an 8-bit system, each first color component may have any value between 0 and 255. Thus, in a three-color system, each pixel may be represented by any one of over 16 million different combinations of first color values (2563=16,777,216). Due to memory constraints, however, it is impractical for each of the possible combinations of first color values to be listed in the lookup table. Instead, a “sparse” lookup table is created that includes regularly spaced or intermittent combinations of first color values. For example, if a three-dimensional lookup table includes only thirty-three entries per dimension the lookup table will have 35,937 entries (333), which may be practically implemented in computer memory.
Referring to
For each point in the lookup table, there is also an associated second color value. Thus, point 20 may correspond to second color value (28, 36, 0), point 22 may correspond to second color value (25, 38, 0), point 24 may correspond to second color value (24, 37, 0), point 26 may correspond to second color value (27, 36, 0), point 28 may correspond to second color value (28, 41, 0), point 30 may correspond to second color value (29, 42, 0), point 32 may correspond to second color value (27, 42, 0) and point 34 may correspond to second color value (25, 42, 0).
Because a sparse lookup table includes only a subset of all possible first color combinations, many first color values will map to a point within this three dimensional space that does not correspond to one of the lookup table entries. For example, point 36 in
One conventional technique for assigning second color values to the set of first color values represented by point 36 is to interpolate between the known second color values associated with the surrounding lookup table entries. More particularly, interpolation is performed between the second color values that correspond to some or all of the eight first color values that define the surrounding cube. Examples of such commonly known interpolation techniques are trilinear (e.g., as described in Kasson et al. U.S. Pat. No. 5,390,035), tetrahedral (e.g., as described in Sakamoto et al. U.S. Pat. No. 4,275,413), cubic (e.g., as described in Murakami et al. U.S. Pat. No. 5,930,388 (“Murakami”)), prism (e.g., as described in Murakami), and other suitable interpolation techniques.
One problem with previously known interpolation techniques occurs when one of the second color values saturates at the low end (e.g., output value of 0) or high end (e.g., output value of 255) of the color value scale. An example of this “saturation error” is depicted in
Point 50 depicts a first color value that does not correspond to any entry in the lookup table, but instead is located halfway between points 44 and 46. Conventional linear interpolation techniques produce a second color value of ((5+0)÷2)=2.5 associated with point 50. However, this result is incorrect. In particular, assuming that the distance between second color components associated with points 42 and 44 (15−5=10 units) equals the distance between second color components associated with points 44 and 46, and assuming linearity in this region, the second color component associated with point 46 should have a value of −5. Because color component values are typically represented as unsigned numbers, however, the −5 value typically is clipped to 0. If the second color component value of point 46 were not so clipped, however, linear interpolation would produce a correct value of ((5+(−5))÷2)=0 for the second color component associated with point 50.
Although not shown in
The errors described above occur regardless of the type of linear interpolation used, the number of dimensions of the lookup table, or the number of bits used to represent color component values. Thus, in a 16-bit system used to covert RGB to CMYK data, in which color components may have any value between 0 and 65,535, the same type of interpolation error occurs when any of the four second color component values saturate at the low end (i.e., 0) or the high end (i.e., 65,535) of the color scale.
In view of the foregoing, it would be desirable to provide methods and apparatus for converting a first color value to a second color value without saturation error.
In view of the foregoing, it is an object of this invention to provide methods and apparatus for converting a first color value to a second color value without saturation error. These and other objects of the present invention are accomplished by providing methods and apparatus for converting a first color value, such as an RGB, L*a*b* or XYZ, etc. color value, to a second color value, such as an RGB, CMY, CMKY, L*a*b*, L,C1C2, or XYZ color value, via an intermediate color space. Apparatus according to this invention include computer hardware and/or software that may be programmed or provided that perform methods in accordance with this invention.
Methods according to this invention include providing an uncompressed lookup table having a plurality of table entries, with each table entry associating one of a first color value with one of a second color value. Each of the first and second color values have a value between zero (“ZERO”) and a non-zero maximum value (“MAX”). Next, second color values are compressed to form intermediate color values. Certain intermediate color values then are reset to a value determined by a regression that includes adjacent intermediate color values. To convert a first color value to a second color value, the compressed and modified table is used to convert the first color value to an intermediate color value, and then a decompressor is used to convert the intermediate color value to the second color value.
The above-mentioned objects and features of this invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
This invention provides methods and apparatus for converting a first color value, such as an RGB, L*a*b* or XYZ, or other color value, to a second color value, such as RGB, CMY, CMKY, L*a*b*, L,C1C2, XYZ, or other color value. Methods in accordance with this invention may be implemented in the form of computer-executable instructions, such as software modules, that may be executed by a computer device. Such software modules may include routines, programs, objects, components, data structures, etc. that perform tasks or implement particular abstract data types. Persons of ordinary skill in the art will understand that at least some aspects of this invention may be practiced using personal computers, microprocessor-based computers, multiprocessor systems, network computers, servers, minicomputers, set top boxes, mainframe computers, and other suitable computer systems. In addition, at least some aspects of this invention may be practiced in distributed computing environments in which task are performed by remote processing devices linked via a communications network.
Referring again to
At step 64, the second color values for entries in the uncompressed lookup table are compressed to form intermediate color values. One suitable form of compression is linear compression, such as provided in the following formula:
γ=αx+β (1)
where α is a scale factor, x is a second color value, β is a constant, and y is the intermediate color value. In an 8-bit color system, in which MAX=255, the following values may be used:
α=0.6
β=64 (2)
The exemplary values for α and β specified in Equation (2) provide a compression factor of approximately 2:1, and also convert ZERO and MAX to integer values. In a 16-bit color system, in which MAX=65,535, the following values may be used: α=0.6 and β=13,107. Note that the values selected for α and β may differ from the exemplary values specified above, and may be selected such that the intermediate color values have a desired characteristic, as described below. In addition, the compression formula of Equations (1) and (2) may be predetermined, or may be dynamically determined based on specific characteristics (e.g., magnitude, dynamic range) of the second color values.
In step 64, a compressed table containing intermediate color values is created by applying the compression formula of Equations (1) and (2) to the second color values of the uncompressed table. As used herein, a table entry having a second color value equal to ZERO is referred to as a “Zero-Valued Entry” and an entry having a second color value equal to MAX is referred to as a “Max-Valued Entry.” To simplify subsequent processing steps, all table entries except Zero-Valued Entries and Max-Valued Entries may be compressed, and the intermediate color values of Zero-Valued Entries and Max-Valued Entries, may be set to ZERO and MAX, respectively.
An example of this compression technique is illustrated in
Referring again to
As shown in
The result of the next step in the iteration is shown in
Similarly, intermediate color values of Max-Valued Entries are reset to a value determined by a regression that includes table entries having intermediate color values less than MAX. This step also may be implemented in an iterative fashion, beginning with a Max-Valued Entry adjacent an entry having a non-MAX intermediate color value, and resetting the intermediate color value of each Max-Valued Entry until the intermediate color values of all Max-Valued Entries have been reset.
The exemplary technique described above and illustrated in
As shown in
After the compressed and modified table is created, it then may be used to convert first colors values to intermediate color values that may subsequently be decompressed to provide second color values.
Using the compressed and modified table values shown in
z=(1÷α)×(y−β) (3)
where y is the intermediate color value and z is the resulting second color value. Using the values for α and β specified in Equation (2), and the intermediate color value y=73, Equation (3) provides a second color value z=(1÷0.6)×(73−64)=15. This result is the same as the second color value associated with point 42 in
In the second example, first color value 50 midway between points 44 and 46 is not a table entry. Thus, at step 92, the result of the decision block is “NO.” Accordingly, at step 96, the intermediate color value is determined by interpolation. As discussed above, any previously known interpolation technique may be used. By way of example, using linear interpolation, the intermediate color value y midway between points 44 and 46 equals ((67+61)÷2)=64. At step 98, Equations (2) and (3) provide a second color value z=(1÷0.5)(64−64)=0, which is the correct result. Note that the second color value z typically will saturate to ZERO if the result of Equation (3) is a value less than 0, and will saturate to 255 (in an 8-bit color system) or 65,535 (in a 16-bit color system) if the result of Equation (3) is a value that exceeds 255 or 65,535, respectively.
Methods in accordance with this invention can be repeated for each pixel in the image that is to be converted. In the examples above, three color components are included in each image pixel. However, methods in accordance with this invention can be used with pixels having a number of color components other than three. Moreover, the color components of the image pixel can be converted to RGB, CMY, CMKY, L*a*b*, L,C1C2, XYZ, or other color value.
Referring now to
Persons of ordinary skill in the art will understand that color converter and interpolator 102 and decompressor 104 each may be implemented in hardware or software, or any combination of hardware and software in accordance with well-known techniques. Persons of ordinary skill in the art also will understand that the first color values coupled to color converter and interpolator 102 may be RGB, L*a*b* or XYZ, or other color values, and the second color values provided by decompressor 104 may be RGB, CMY, CMKY, L*a*b*, L,C1C2, XYZ, or any other output color values.
Referring now to
The number of entries in each of 1-D LUT modules 122, 124 and 126 may exceed the number of entries in each dimension of the compressed and modified color table in color converter and interpolator 102. For greatest accuracy, the compression constants α and β of Equation (1) and the number of entries in each 1-D LUT should be selected so that each 1-D LUT includes entries for intermediate color values corresponding to ZERO and MAX valued second color values.
Methods in accordance with this invention have been described herein as applying to the conversion of color values from one color space to another, such as from RGB to CMY. Persons of ordinary skill in the art will understand, however, that methods in accordance with this invention also can be applied to conversions within a single color space such as RGB to RGB. Moreover, methods in accordance with this invention also can be applied to conversions of other sets of quantified image qualities such as, for example, L*a*b* and XYZ color spaces.
Exemplary apparatus for implementing at least some aspects of this invention include a general purpose computing device, such as a personal computer, and a special purpose computing device, such as a controller for digital printers and digital copiers. Such computing devices may include a computer memory such as read only memory, hard disk, magnetic disk, optical disk, or other suitable memory that may be used to store software modules and other data, such as lookup tables, used to implement methods of the present invention.
Persons of ordinary skill in the art further will recognize that methods and apparatus in accordance with this invention may be implemented using steps or devices other than those shown and discussed above. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application is a continuation of U.S. application Ser. No. 10/897,958, filed 23 Jul. 2004, now U.S. Pat. No. 6,950,110, which is a continuation of U.S. application Ser. No. 10/154,643, filed 24 May 2002, now U.S. Pat. No. 6,781,596.
Number | Name | Date | Kind |
---|---|---|---|
4275413 | Sakamoto et al. | Jun 1981 | A |
5390035 | Kasson et al. | Feb 1995 | A |
5504821 | Kanamori et al. | Apr 1996 | A |
5930388 | Murakami et al. | Jul 1999 | A |
6195456 | Balasubramanian | Feb 2001 | B1 |
6285398 | Shinsky et al. | Sep 2001 | B1 |
6335800 | Balasubramanian | Jan 2002 | B1 |
6556312 | Nagatani | Apr 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060007241 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10897958 | Jul 2004 | US |
Child | 11223656 | US | |
Parent | 10154643 | May 2002 | US |
Child | 10897958 | US |