The embodiments described herein relate to methods and apparatus for cooling solenoids used in solenoid pumps, and more particularly, to methods and apparatus including a secondary pumping chamber to cool the solenoid coil of a solenoid pump.
Known solenoid pump assemblies are used in a variety of different applications. For example, known solenoid pump assemblies are used in a variety of vehicle applications, such as, for example, to transfer oil, fuel and/or other fluids to facilitate the operation of the vehicle. Typically, solenoid pumps or pump assemblies can be configured to receive an electrical current to cause an armature to move, thus actuating a pumping mechanism to enable transfer of fluid. In most known systems, the armature can be moved along a fixed stroke length, wherein the distance between two end-stops is fixed. Similarly stated, in normal operation, when the solenoid coil is actuated, the armature moves a fixed distance or “stroke.” The volume of fluid pumped is proportional to the stroke length and the frequency of operation.
When a solenoid pump is required to pump at high frequency (e.g., to increase the flow rate), the electromagnetic force must be generated quickly. To facilitate rapid generation of electromagnetic force, without expensive/high voltage drive electronics, it is desirable that the solenoid coil have relatively low electrical resistance. The low coil resistance, however, can lead to resistive heating, which, in turn increases the resistance of the solenoid coil, resulting in an increased voltage requirement. Thus, to maintain the desired operating voltage, the inherent electrical resistance of the solenoid coil needs to be maintained at a low value and/or additional wire turns need to be added to the solenoid coil design. Adding turns to the solenoid coil, however, increases the coil inductance, which can undesirably slow the rise of the electromagnetic force in the solenoid coil. Additionally, reducing the initial electrical resistance of the solenoid coil (i.e., to accommodate expected resistance increase) can lead to additional resistive heating during use that can exaggerate the resistance change (due to the dissipation of significant power during high frequency operation).
The increased coil resistance caused by the resistive heating can result in lower peak current during operation. To overcome the diminished performance due to the lower peak current, the pulse width and/or frequency of operation can be increased. This, however, further increases the power dissipation of the solenoid coil, and exaggerates the heating, and eventually leads to lower force values and a minimum operating voltage near or above the designs nominal operating voltage.
Accordingly, a need exists for system and methods to reduce thermally-related increases in solenoid coil electrical resistance during operation to allow the operation of the pump at high frequencies.
Apparatus and methods for cooling a solenoid coil during operation of a fluid transfer assembly are described herein. In some embodiments, an apparatus includes a pump assembly and a pumping element. The pump assembly defines a first pumping chamber and a second pumping chamber. The first pumping chamber is fluidically isolated from the second pumping chamber. The first pumping chamber is fluidically coupled to a first fluid path and the second fluid chamber is fluidically coupled to a second fluid path. The pumping element is configured to move within the pump assembly between a first configuration and a second configuration. When the pumping element moves from the first configuration to the second configuration, the pumping element moves a first fluid into the first pumping chamber and a second fluid into the second pumping chamber. When the pumping element moves from the second configuration to the first configuration, the pumping element expels the first fluid from the first pumping chamber and the second fluid from the second pumping chamber.
Methods and apparatus for cooling a solenoid coil during operation of a fluid transfer assembly are described herein. In some embodiments, an apparatus includes a pump assembly and a pumping element. The pump assembly defines a first pumping chamber and a second pumping chamber, where the second pumping chamber is fluidically isolated from the first pumping chamber. The first pumping chamber is fluidically coupled to a first fluid path and the second fluid chamber is fluidically coupled to a second fluid path. The apparatus also includes a pumping element configured to move within the pump assembly between a first configuration and a second configuration. When the pumping element moves from the first configuration to the second configuration, the pumping element moves a first fluid into the first pumping chamber and a second fluid into the second pumping chamber. When the pumping element moves from the second configuration to the first configuration, the pumping element expels the first fluid from the first pumping chamber and the second fluid from the second pumping chamber.
In some embodiments, an apparatus includes a pump assembly, a solenoid assembly, and a housing. The pump assembly includes a pumping element and defines a first pumping chamber and a second pumping chamber. The second pumping chamber is fluidically isolated from the first pumping chamber. The first pumping chamber is fluidically coupled to a first fluid path and the second pumping chamber is fluidically coupled to a second fluid path. The solenoid assembly that includes a solenoid coil and at least one electrical lead. When the solenoid coil is energized, the solenoid assembly is configured to move the pumping element within the first pumping chamber and the second pumping chamber. The solenoid assembly is contained in the housing, which is configured to be disposed within a reservoir containing a fluid. The housing and/or the solenoid assembly, or a combination thereof, define at least a portion of the second fluid path. The housing defines an opening in fluid communication with the second fluid path that is aligned with the electrical lead of the solenoid assembly. Additionally, the pumping element is configured to convey a portion of the fluid within the second fluid path via the opening when the solenoid assembly is energized and de-energized.
In some embodiments, a method includes first receiving a signal configured to energize a solenoid coil. Energizing the solenoid coil causes a pumping element to move in a first direction within a pump assembly. The pump assembly defines a first pumping chamber and a second pumping chamber that is fluidically isolated from the first pumping chamber. The first pumping chamber is fluidically coupled to a first fluid path and the second pumping chamber is fluidically coupled to a second fluid path. Then, the signal is removed from the solenoid to cause the pumping element to move in a second direction within the pump assembly. The pumping element conveys a first fluid from the first pumping chamber into the first fluid path and a second fluid from the second pumping chamber into the second fluid path in response to the receiving and removing.
As used in this specification, a module can be, for example, any assembly and/or set of operatively-coupled electrical components associated with performing a specific function(s), and can include, for example, a memory, a processor, electrical traces, optical connectors, software (that is stored in memory and/or executing in hardware) and/or the like.
As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a coil” is intended to mean a single coil or multiple coils, “a processor” is intended to mean a single processor or multiple processors; and “memory” is intended to mean one or more memories, or a combination thereof.
As used in this specification, unless otherwise stated, the term “solenoid coil” can be used interchangeably with a coil. As used in this specification, a solenoid coil or a coil can refer specifically to a long, thin loop of wire, typically wound into a tightly packed arrangement and wrapped around a metallic core, which produces a magnetic field in a volume of space when an electric current is passed through the wire.
The pumping element 192 is at least partially disposed in the pump assembly 107, and is configured to move within the pump assembly 107 between a first configuration (FIG. 1A) and a second configuration (
In some embodiments, the first pumping chamber 112 can be referred to as the primary pumping chamber, and can convey the first fluid to a device (e.g., an engine, compressor or other fluid machinery, not shown) via the first fluid path 174 to facilitate operation of the device. The second pumping chamber 114 can be referred to as the secondary (or parasitic) pumping chamber and can convey the second fluid within the system 100 via the second fluid path 172 to facilitate operation of the system 100. For example, in some embodiments, the second fluid path 172 can be in communication and/or can define a portion of a cooling circuit through which the second fluid can flow to cool a portion of the system (e.g., a solenoid, an actuator, or the like, not shown).
Although the first pumping chamber 112 is shown as having an inlet port and an outlet port, in other embodiments, the first pumping chamber 112 can include any port arrangement. For example, in some embodiments, the first pumping chamber 112 can include and/or be in fluid communication with only one port that is used for both fluid entry and expulsion (i.e., to produce a reciprocal flow of the first fluid). In other embodiments, the first pumping chamber 112 can include and/or be in fluid communication with multiple ports which are each designated as being for fluid entry, expulsion, or both. Although the second pumping chamber 114 is shown to have only one port for both fluid entry and expulsion (i.e., to produce a reciprocal flow of the second fluid), in other embodiments, the second pumping chamber 114 can include any port arrangement. For example, in some embodiments, the second pumping chamber 114 can include and/or be in fluid communication with a second port so that one port functions as an inlet port and the other port functions as an outlet port. The second pumping chamber 114 can also include multiple ports that function as fluid inlet ports, fluid outlet ports, or both. Additionally, the first pumping chamber 112 and the second pumping chamber 114 can optionally include any valve arrangement to control the flow of fluid.
Although the fluid transfer system 100 is shown as defining two pumping chambers in a linear arrangement within the pump assembly 107, in other embodiments, a fluid transfer system can define any number of pumping chambers in any suitable arrangement. For example,
The pump assembly 207 includes a pumping element 292 that moves between a first configuration and a second configuration, as indicated by the arrow GG, when the solenoid coil 286 is energized and de-energized. When the pumping element 292 moves, a first portion of the pumping element 292 moves within the first pumping chamber 212, and a second portion of the pumping element 292 moves within the second pumping chamber 214. In this manner, flows can be produced within the first fluid path 274 and the second fluid path 272, as described below.
The solenoid assembly 208 includes a solenoid coil 286 and at least one electrical lead 270. The solenoid assembly 208 is contained within the housing 296, which is configured to be disposed within a reservoir R containing a fluid. In this manner, the solenoid assembly 208 and the housing 296 can form a part of an in-tank fluid transfer system (e.g., an in-tank oil pump assembly, fuel pump assembly, or the like). Although the entire fluid transfer assembly 200 is shown as being disposed within the reservoir R, in other embodiments, portions of the fluid transfer assembly 200 can be disposed within the reservoir R while other portions can be disposed outside of the reservoir R.
The housing 296 defines at least a portion of the first fluid path 274. The housing 296 and/or the solenoid assembly 208, or a combination thereof, define both a portion of the second fluid path 272 and an opening 276 in fluid communication with the second fluid path 272. The second fluid path 272 can surround the solenoid coil 286, as shown in
In use, when the solenoid coil 286 is energized and de-energized (via the electrical lead 270), the solenoid assembly 208 moves the pumping element 292 within the first pumping chamber 212 and the second pumping chamber 214, as shown by arrow GG. Movement of the pumping element 292 produces a flow within the first fluid path 274 and the second fluid path 272. For example, the pumping element 292 can draw in a first portion of fluid from the reservoir R and produce a first flow within the first fluid path 274 that supplies an engine or other device with a working fluid (e.g., fuel, coolant, lubricant). In the same motion, the pumping element 292 can also draw in a second portion of fluid from the reservoir and produce a second flow within the second fluid path 272 to cool the solenoid assembly 208. More particularly, the pumping element 292 is configured to convey the second portion of the fluid within the second fluid path 272 via the opening 276 when the solenoid assembly 208 is energized and de-energized. Moreover, because the opening 276 is aligned with the electrical lead 270, the flow into and/or out of the opening 276 can provide enhanced cooling to the area of potentially high heat generation (e.g., due to the current within the electrical lead 270).
Although the second fluid path 272 is shown as surrounding the solenoid coil 286, in other embodiments the second fluid path 272 can pass only a portion or portions of the solenoid coil 286. In other embodiments, the second fluid path 272 can be a helical path that winds around the solenoid coil 286. Additionally, the second fluid path 272 can optionally include structures to enhance turbulence in the area of the solenoid coil 286 in order to facilitate high heat transfer.
The solenoid pump 307 defines an interior volume within which at least a portion of a first (or primary) pumping chamber 312 and a second (or secondary) pumping chamber 314 are defined. The housing is configured to be coupled to a fluid reservoir, such as, for example, an oil tank, a fuel tank or the like, such that at least a portion of the solenoid pump 307 is disposed within and/or placed in fluid communication with an interior volume of the fluid reservoir. The first pumping chamber 312 delivers fluid from the fluid reservoir to, for example, portions of a vehicle, device or engine to facilitate operation of the vehicle, device or engine. The first pumping chamber 312 includes a portion of a pump element (not shown in
The second pumping chamber 314 implements a forced convection cooling method, as described herein. In particular, the forced convection cooling method utilizes parasitic pumping loss to produce a flow to cool the solenoid, thus reducing a thermal-related increase in electrical resistance of the solenoid coil of the solenoid pump 307. The forced convection cooling method includes the flow of a parasitic pumped fluid into and out of a housing of the solenoid pump 307 during the operation of the solenoid pump 307 via a specific fluid path that passes adjacent and/or surrounds the solenoid coil (not shown in
The memory 301 can be, for example, a random access memory (RAM), a memory buffer, a hard drive, a database, an erasable programmable read-only memory (EPROM), an electrically erasable read-only memory (EEPROM), a read-only memory (ROM), registers, cache memory, flash memory and/or so forth. The memory 301 can store instructions to cause the processor 302 to execute modules, processes and/or functions associated with the fluid transfer system 300.
The processor 302 can be any processor configured to, for example, write data into and read data from the memory 301, and execute the instructions and/or methods stored within the memory 301. For example, the processor 302 can be a general purpose processor, a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), and/or the like. The processor 302 can run and/or execute applications, modules, processes and/or functions associated with the fluid transfer system 300. Furthermore, the processor 302 can be configured to control operation of the driver module 303, output module 304, and/or any other components of the controller 305. Specifically, the processor 302 can receive a signal including, for example, current decay information and can determine the extent of the solenoid stroke. In other configurations, the processor 302 can be, for example, a combination of ASICs that are designed to perform one or more specific functions. In yet other configurations, the processor 302 can be an analog or digital circuit, or a combination of multiple circuits.
The driver module 303 includes circuitry and/or components to produce a voltage potential capable of generating a current in the solenoid coil of the solenoid pump 307 (e.g., solenoid coil 486 shown in
The solenoid assembly 408 includes a solenoid coil 486, an armature 491, an actuator rod 492, a spring 493, a pole 495, a retaining ring 494 such as a bobbin retainer, and a lower plate 488 (also referred to as a bushing). The retaining ring 494 holds the solenoid coil 486 in place within the solenoid pump 407.
The lower plate 488 of the solenoid assembly 408 includes a protrusion 489. The protrusion 489 is configured to be disposed within the pump assembly 410 and receives a portion of an actuator rod 492. The actuator rod 492 and the lower plate 488 are configured such that the actuator rod 492 can freely move within and/or through the lower plate 488 when the solenoid assembly 408 is energized and de-energized. In this manner, as described herein, the movement of the actuator rod 492 can produce a desired flow within the pump assembly 410. The armature 491 is disposed within the solenoid coil 486. The solenoid assembly 408 is configured to receive an electrical signal (e.g., from any suitable controller, such as controller 305 shown in
The pump assembly 410 is operatively coupled to the solenoid assembly 408, and defines a first (or primary) pumping chamber 412, an inlet port 474 and an outlet port 476. The actuator rod 492 is slidably disposed within the lower plate 488 of the solenoid assembly 408 such that a portion of the actuator rod 492 reciprocates within the pumping chamber 412 when the solenoid is actuated. In particular, when the solenoid assembly 408 is energized, the actuator rod 492 moves as shown by the arrow HH in
While the first pumping chamber 412 is shown to have an inlet port and an outlet port, the first pumping chamber 412 may include any port arrangement, such as including only one port that is used for both fluid entry and expulsion, or including multiple ports which are each designated as being for fluid entry, expulsion, or both. Additionally, the first pumping chamber 412 may optionally include any valve arrangement to control the flow of fluid.
Although shown in
The housing 496 defines a cavity 431 within which at least a portion of the solenoid assembly 408 and at least a portion of the pump assembly 410 are disposed. The housing 496 may surround or substantially surround the solenoid coil 486. The housing 496 can be any suitable size, shape, or configuration and can be formed using any suitable material or method. For example, in some embodiments, the housing 496 can be formed from, molded plastic, cast metal, or machined material (e.g., machined billet material such as aluminum). In some embodiments, at least a portion of the housing 496 defines a portion of a magnetic return path, and thus is constructed from a ferrous material. The housing 496 is configured to be coupled to a reservoir, such as for example, an oil tank, fuel tank or the like, such that at least a first portion of the housing 496 is disposed within an interior volume of the reservoir, and at least a second portion of the housing 496 is disposed outside the interior volume of the reservoir. Alternatively, the entire housing may be disposed within a reservoir containing the fluid moved into the second pumping chamber. The housing may define at least one inlet-outlet port of the second fluid path, the inlet-outlet port being aligned with one of the electrical leads.
The housing 496 can also include a seal portion 425 configured to fluidically isolate the assembly within the reservoir. In some embodiments, the seal portion 425 can include at least one seal member, such as, for example, an O-ring. In other embodiments, the seal portion 425 can include a sealing membrane, a threaded fitting, a grommet, and/or the like. Furthermore, the seal portion 425 can include a coupling member and/or retention member (e.g., a snap ring, clip, threaded nut, and/or the like (not shown)). For example, in some embodiments, the seal portion 425 can include a snap ring configured to maintain at least the seal portion 425 in contact with a portion of the reservoir. Thus the seal portion 425 (e.g., at least a seal member included in the seal portion 425) can engage a wall of the reservoir such that the inner volume of the reservoir is fluidically isolated from the volume outside the reservoir.
As shown in
Further to the description above, during normal operation, the solenoid-actuated pump 407 is actuated from the de-energized configuration (
When the solenoid coil 486 is energized, the armature 491 and the armature rod 492 are pulled toward the pole 495 in the direction of the arrow HH shown in
The cavity 431 is defined such that the secondary flow passes around the solenoid coil 486. Moreover, the internal clearances within the cavity 431 are such that the fluid velocity around the solenoid coil 486 is increased, which improves the heat transfer from the solenoid coil 486 to the parasitic or secondary flow. In particular, increasing the velocity of the secondary flow around the coil 486 can produce a turbulent flow and otherwise break and/or disrupt the boundary layer around the coil 486 to improve the convection heat transfer between the coil 486 and the secondary flow. The enhanced heat transfer allows for the efficient operation of the solenoid pump 407 by mitigating the increase in electrical resistance caused by a hot coil 486 during operation of the solenoid pump 407, particularly at high frequencies.
It is to be noted that the fluid pathway for the intake and exit of the parasitic fluid into the cavity 431 is such that the maximum heat transfer can take place in the regions of the solenoid coil 486 in the immediate vicinity of the electrical leads 470. For example, the openings 472 can be positioned in circumferential alignment with the leads 470 to facilitate high flow in this region. This arrangement enhances the heat transfer efficiency because such regions of the solenoid coil 486 experience the maximum amount of thermal-related increase in electrical resistance.
The solenoid coil and the pump assembly can be any of the pump assemblies and solenoid assemblies shown and described herein. For example, in some embodiments, the solenoid coil can be disposed within a solenoid housing, and the solenoid housing can define a portion of the second fluid path. In some embodiments, the pump assembly can define an inlet port through which the first fluid moves into the first pumping chamber and an outlet port through which the first fluid moves out of the first pumping chamber, wherein the inlet port is separate from the outlet port. The pump assembly can also define a port through which the second fluid moves into and out of the second pumping chamber. The second chamber can be defined at least partially by a retaining ring configured to retain the solenoid coil within a solenoid assembly. In some embodiments, the method step 502 can optionally include receiving the signal via an electrical lead coupled to the solenoid coil. The second fluid can be conveyed from the second fluid path to an area outside of the solenoid assembly via an opening, where the opening is aligned with the electrical lead.
At 604, the armature is moved from the first position to the second position such that parasitic fluid is conveyed into the second pumping chamber. As described above, the first position of the armature can be associated with a de-energized configuration of, for example, a solenoid pump. The second position of the armature can be associated with an energized configuration of, for example, a solenoid pump. As described above, in some instances, movement of the armature from the first position to the second position involves the armature travelling a specified distance to close or substantially close a working air gap (e.g., air gap ST shown in
As described above, movement of the armature and armature rod can draw fluid from a fluid reservoir via, for example, parasitic fluid opening(s) on the housing of the solenoid pump, into the second pumping chamber. As described above, the intake of fluid can be through a fluid pathway that passes around the solenoid coil. This in turn increases the fluid velocity around the solenoid coil and improves the heat transfer from the solenoid coil to the parasitic or working fluid by increasing the velocity of the parasitic fluid which breaks the boundary layer around the solenoid coil. The enhanced heat transfer allows the operation of the solenoid pump and helps to mitigate the higher electrical resistance caused by a hot coil during operation of the solenoid pump, particularly at high frequencies.
At 606, the signal is removed to cause the armature to move from the second position back to the first position.
At 608, the armature is moved from the second position back to the first position such that the parasitic fluid is conveyed from the second pumping chamber. As described above, the second position of the armature can be associated with the energized configuration of, for example, a solenoid pump, and the first position of the armature can be associated with a de-energized configuration of, for example, a solenoid pump. Such movement of the armature from the second position to the first position is defined as the “de-energized stroke” of the armature.
The movement of the armature back to the first position causes the pressure applied to the parasitic fluid in the secondary pumping chamber to increase, resulting in the parasitic fluid being conveyed from the second pumping chamber. The parasitic fluid may then pass over a coil, resulting in heat transfer from the coil to the parasitic fluid. The parasitic fluid may be conveyed from the second pumping chamber through a parasitic fluid opening in the housing. This can lead to an increase in fluid velocity. The increase in fluid velocity of the parasitic fluid may break the boundary layer and increase the heat transfer from the coil to the parasitic fluid. As described above, the heat-transfer process described herein is repeated as many times as the solenoid pump moves from the energized configuration to the de-energized configuration, thus allowing for operation of the solenoid pump at high frequencies in a manner that mitigates the higher electrical resistance caused by a hot coil.
The fluid transfer systems of the embodiments described herein can be any suitable system for transferring and/or pumping fluids, and can be used in conjunction with any suitable equipment. In some embodiments, the fluid transfer system can be any suitable system for transferring and/or pumping fluids in conjunction with vehicles or the like (e.g., a recreational vehicle, all-terrain vehicle (ATV), snowmobile, dirt bike, watercraft, on-highway vehicles, off-highway construction vehicles, or the like). In some embodiments, the fluid transfer system can be used as an oil pump to transfer oil to an engine included in the vehicle. The fluid transfer system can have any suitable shape, size, or configuration. For example, the fluid transfer system can have a substantially circular cross-section, a square cross-section, a rectangular cross-section, an oblong cross-section, or any other suitable shape. Furthermore, the fluid transfer system can include components formed from any suitable material or any suitable combination of materials. For example, in some embodiments, portions of the fluid transfer system can be formed from molded plastic, rubber, cast metal, or machined material (e.g., machined billet material, such as aluminum).
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the invention, which is done to aid in understanding the features and functionality that can be included in the invention. The invention is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, although the invention is described above in terms of various embodiments and implementations, it should be understood that the various features and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in some combination, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present invention should not be limited by any of the above-described embodiments.
Some embodiments described herein, such as for example, the production of a signal to actuate any of the solenoid pumps described herein, relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to: magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices.
Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using imperative programming languages (e.g., C, Fortran, etc.), functional programming languages (Haskell, Erlang, etc.), logical programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++, etc.) or other suitable programming languages and/or development tools. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Although various modules in the different devices are shown to be located in the processors of the device, they can also be located/stored in the memory of the device (e.g., software modules) and can be accessed and executed by the processors.
This application claim priority to and benefit of U.S. Provisional Application Ser. No. 62/009,597, entitled “Methods and Apparatus for Cooling a Solenoid Coil for Solenoid Pump,” filed Jun. 9, 2014, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62009597 | Jun 2014 | US |