All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates generally to devices that are implanted within the eye. More particularly, the present invention relates to systems, devices and methods for delivering ocular implants into the eye.
According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.
The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid know as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.
Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm's canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm's canal and is carried along with the venous blood leaving the eye.
When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.
In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm's canal (Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. No. 6,450,984; U.S. Pat. No. 6,450,984).
The invention pertains to aspects of ocular implants and ocular implant delivery systems. One aspect of the invention provides a cannula for an ocular implant delivery system. In some embodiments, the cannula includes a tubular member having a curved portion, a distal opening surrounded by a distal opening surface, and a distal tip, the distal tip being adapted to be inserted into an anterior chamber of a human subject's eye, through trabecular meshwork and into Schlemm's canal of the eye, a proximal portion of the tubular member being adapted to extend from a location exterior to the eye when the distal tip is in Schlemm's canal of the eye, the cannula being further adapted to cooperate with an advancement mechanism to advance an ocular implant through the tubular member toward and through the distal opening into Schlemm's canal of the eye when the distal tip is disposed in Schlemm's canal.
In some embodiments, the cannula's tubular member also has a tongue region extending proximally from the distal tip on one side of the tubular member, with the tongue region forming at least part of the distal opening surface. In some embodiments the distal opening surface extends solely proximally from the distal tip, and the distal opening surface may be disposed in a distal opening plane. The tubular member curved portion may also define a curve plane, and the distal opening plane may be at an angle other than 90 degrees with respect to the curve plane.
In some embodiments of the cannula, the distal opening surface has a first section disposed in a distal opening plane disposed at a first section angle between 0 degrees and 90 degrees with respect to a longitudinal axis of the tubular member at the distal opening and a second section whose angle with respect to the longitudinal axis of the tubular member varies from an angle less than the first section angle at a distal limit of the second section to an angle greater than the first section angle at a proximal limit of the second section.
In other embodiments of the cannula, the distal opening surface has an edge formed from a circumferential portion of a cylindrical envelope defined by the tubular member, the angular extent of the circumferential portion within the cylindrical envelope increasing from the distal tip proximally to a first point, the angular extent of the circumferential portion within the cylindrical envelope decreasing between the first point and a second point proximal to the first point, the angular extent of the circumferential portion within the cylindrical envelope increasing to 360 degrees between the second point and a third point proximal to the second point.
In some embodiments of the cannula, the tubular member also has a second tongue region and a stop member defining the distal opening surface.
In some embodiments, an external diameter of the tubular member at a distal end of the tubular member is less than an external diameter of the tubular member proximal to the distal opening. The curved portion of the tubular member may also have a bend angle between 105 degrees and 165 degrees.
Another aspect of the invention provides an ocular implant system including an ocular implant having an inlet sized and configured to be disposed in an anterior chamber of a human subject's eye and a body sized and configured to be disposed in Schlemm's canal of the eye, the ocular implant being adapted to bend preferentially in a preferential bending plane; and a delivery cannula comprising a tubular member with a curved portion, a distal opening surrounded by a distal opening surface, and a distal tip, the distal tip being adapted to be inserted into an anterior chamber of a human subject's eye, through trabecular meshwork and into Schlemm's canal of the eye, the tubular member being adapted to extend from a location exterior to the eye when the distal tip is in Schlemm's canal of the eye, the cannula being further adapted to cooperate with an advancement mechanism to advance the ocular implant through at least the curved portion of the tubular member toward and through the distal opening into Schlemm's canal of the eye when the distal tip of the delivery tool is disposed in Schlemm's canal.
In some embodiments of the ocular implant system, a central axis of the cannula defines a cannula curvature plane, the ocular implant being oriented within the cannula so that the implant preferential bending plane is co-planar with the cannula curvature plane.
Yet another aspect of the invention provides a method of deploying an ocular implant into Schlemm's canal of a human eye. The method may include the following steps: inserting a distal tip of a delivery tool within an anterior chamber of the eye through trabecular meshwork of the eye into Schlemm's canal of the eye; and advancing an ocular implant through a curved portion and a distal opening of the delivery tool to place a body portion of the ocular implant in Schlemm's canal and an inlet portion of the ocular implant in the anterior chamber.
In some embodiments, the delivery tool has a curved distal portion, the inserting step including the step of aligning the curved distal portion with respect to Schlemm's canal so that the ocular implant is delivered into the center of Schlemm's canal or slightly radially inward of an outer wall of Schlemm's canal. The curved distal portion of the delivery tool may have a radius of curvature smaller than that of Schlemm's canal.
In some embodiments, the inserting step includes the step of advancing the distal tip into Schlemm's canal until a stop portion of a distal opening surface surrounding the distal opening engages the trabecular meshwork. The inserting step may also include the step of depressing trabecular meshwork and Schlemm's canal tissue with the distal tip with a distal opening surface surrounding the distal opening, the distal opening surface being disposed at an angle other than 90 degrees with respect to a longitudinal axis of the delivery tool.
In embodiments in which the delivery tool has a distal opening surface surrounding the distal opening, the inserting step may include the step of inserting less than all of the distal opening surface into Schlemm's canal.
In some embodiments, the delivery tool has a distal opening surface surrounding the distal opening and the distal tip is disposed at the distal end of a tongue. In such embodiments the inserting step may include the step of inserting the tongue into Schlemm's canal. The advancing step may also include the step of advancing the ocular implant through the distal opening while a portion of the distal opening surface is disposed in Schlemm's canal and a portion of the distal opening surface is disposed outside of Schlemm's canal.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Apparatus and methods in accordance with the present detailed description may be used to deliver an ocular implant into a subject's eye and to place distal portion of an ocular implant in Schlemm's canal of an eye.
Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
In a healthy eye, aqueous humor flows out of the anterior chamber 30 through the trabecular meshwork 36 and into Schlemm's canal 38, located at the outer edge of the iris 42. Aqueous humor exits Schlemm's canal 38 by flowing through a number of outlets 40. After leaving Schlemm's canal 38, aqueous humor is absorbed into the venous blood stream.
In
Ocular implant 100 may be inserted into Schlemm's canal of a human eye to facilitate the flow of aqueous humor out of the anterior chamber. This flow may include axial flow along Schlemm's canal, flow from the anterior chamber into Schlemm's canal, and flow leaving Schlemm's canal via outlets communicating with Schlemm's canal. When in place within the eye, ocular implant 100 will support trabecular mesh tissue and Schlemm's canal tissue and will provide for improved communication between the anterior chamber and Schlemm's canal (via the trabecular meshwork) and between pockets or compartments along Schlemm's canal. As shown in
For example, frame 136 of ocular implant 100 is disposed between a first spine 140 and a second spine 142. Frame 136 is formed as a first strut 144 that extends between first spine 140 and second spine 142 and a second strut 146 extending between first spine 140 and second spine 142. In the exemplary embodiment of
In the embodiment of
In the embodiment of
Stated another way, in the embodiment of
In the embodiment of
During the exemplary procedure illustrated in
Among other functions, one particular function of core 754 is to block the openings formed in ocular implant 900 so as to minimize interference between the implant and tissue within Schlemm's canal 38 as the implant is advanced. The delivery system's advancement mechanism may also include a push tube (not shown) for selectively applying distally directed forces to the proximal end of ocular implant 900. Core 754 may extend proximally into the push tube. A handheld actuator (not shown) may be used to advance the push tube, the core 754 and the ocular implant 900. The handheld actuator may also be used to provide relative motion between the push tube and the core 754. In the embodiment of
In the exemplary embodiment of
In some useful embodiments, bent portion 1214 of tubular member 1202 is dimensioned to achieve substantially tangential entry into Schlemm's canal of a human eye. In these useful embodiments, bent portion 1214 may have a radius of curvature between about 0.05 inches and about 0.3 inches, and an angular span between about 105 degrees and about 165 degrees. In one exemplary embodiment, bent portion 1214 has a bend radius of about 0.125 inches (measured to the tube centerline) and an angular span of about 132.5 degrees. In this exemplary embodiment, distal portion 1212 may have a length of about 0.044 inches and proximal portion 1210 may have a length of about 0.727 inches.
For purposes of illustration, major axis 1220 and minor axis 1222 each extend beyond distal opening 1158 in
In the exemplary embodiment of
Tubular member 1202 defines a proximal opening (not shown), a distal opening 1158, and a lumen 1208 that extends between the proximal opening and the distal opening. In the exemplary embodiment of
In some useful embodiments, second diameter DB is dimensioned so that distal opening 1158 can be placed in fluid communication with Schlemm's canal of a human eye. Also in some useful embodiments, first diameter DA is dimensioned to provide a desirable level of structural support when tubular member 1202 is advanced through the cornea of a human eye and the distal end of beveled tip 1216 is inserted into Schlemm's canal.
In some useful embodiments first diameter DA is between about 0.010 and about 0.030 inches and second diameter DB is between about 0.005 and about 0.020. In one exemplary embodiment, first diameter DA is about 0.018 inches, second diameter DB is about 0.016, and the diameter of lumen 1208 is about 0.0135 inches. With reference to
Major axis 1220 of distal opening 1158 and central axis 1226 of tubular member 1202 define a pitch angle PA of beveled distal tip 1216. In some useful embodiments, pitch angle PA is steep enough to tent open tissue (e.g., trabecular mesh and the wall of Schlemm's canal) when the distal end of beveled tip 1216 is inserted into Schlemm's canal. Also in some useful embodiments, pitch angle PA is shallow enough to prevent tearing or cutting of tissue when the distal end of beveled tip 1216 is inserted into Schlemm's canal. In some useful embodiments, pitch angle PA is between about 5 degrees and about 35 degrees. In some particularly useful embodiments, pitch angle PA is greater than about 15 degrees and less than about 25 degrees. In one exemplary embodiment, pitch angle PA is about 20 degrees.
In some useful embodiments, roll angle RA is selected so that a physician using the cannula assembly can see distal opening 1158 when the tubular member 1202 is extending through the cornea of a human eye and the distal end of beveled distal tip 1216 is inserted into Schlemm's canal. In other words, the plane of distal opening surface 1218 meets bend plane 1228 at an angle other than 90 degrees. Also in some useful embodiments, roll angle RA is selected so that distal end of beveled distal tip 1216 is the first part of tubular member 1202 to touch tissue when the tubular member 1202 is extending through the cornea of a human eye and the distal end of beveled distal tip 1216 is inserted into Schlemm's canal.
Additionally, roll angle RA may be selected so that an ocular implant travels over the point of beveled distal tip 1216 as the ocular implant is advanced out of distal opening 1158 and into Schlemm's canal. In some useful embodiments, roll angle RA is greater than about 100 degrees and less than about 110 degrees. In one exemplary embodiment, roll angle RA is about 105 degrees.
In the exemplary embodiment of
An exemplary method in accordance with this detailed description may include the step of advancing the distal end 2168 of cannula 2108 through the cornea of a human eye so that distal end 2168 is disposed in the anterior chamber of the eye. Cannula 2108 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end 2168 of cannula 108. Distal opening 2169 of cannula 2108 may be placed in fluid communication with a lumen defined by Schlemm's canal. The ocular implant may be advanced out of a distal port of the cannula and into Schlemm's canal.
Ocular implant 100 extends along a generally curved longitudinal axis 2134. Longitudinal axis 2134 defines a first plane 2154. In the embodiment of
Cannula 2108 of
In the embodiment of
With reference to the figures described above, it will be appreciated that methods in accordance with the present detailed description may be used to position a distal portion of an implant in Schlemm's canal of an eye. An exemplary method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm's canal, for example, by piercing the wall of Schlemm's canal with a distal portion of the cannula.
Methods in accordance with the present detailed description can be used to deliver an implant into Schlemm's canal of an eye. In these exemplary methods, a distal portion of the ocular implant may be advanced out of the distal port of a cannula and into Schlemm's canal. Ocular implant 100 may be disposed on a core while the distal portion of the implant is advanced into Schlemm's canal. In some useful methods, the ocular implant comprises a body defining a plurality of apertures and the method includes the step of closing the apertures with a core. When this is the case, the distal portion of the ocular implant may be advanced into Schlemm's canal while the apertures are closed by the core. Closing the apertures as the ocular implant is advanced into Schlemm's canal may reduce the trauma inflicted on Schlemm's canal by the procedure. Once the ocular implant has reached a desired position, the core may be retracted while a push tube prevents ocular implant from being pulled proximally.
With reference to
In addition, since the curve of the cannula at the distal tip 2168 is greater than the curve of Schlemm's canal (i.e., the cannula at its distal end has a smaller radius of curvature than Schlemm's canal), the distal tip may be oriented so that the ocular implant is delivered into the center or possibly slightly radially inward of the outer wall of Schlemm's canal. This combination of cannula shape and cannula orientation helps guide the ocular implant safely into Schlemm's canal.
As shown in
In this embodiment, cutting portion 3110 is formed from two convex edges 3112 meeting at a tip 3114. In other embodiments, the cutting edges can be concave or straight. As shown, edges 3112 extend from tip 3114 to a pair of optional stops 3116 formed at the intersection of edges 3112 with an optional cannula extension portion 3118. As shown in
In some embodiments, cannula 3102 is formed from transparent polycarbonate tubing having a diameter less than about 0.030 inches, e.g., an outer diameter of 0.028 inches and an inner diameter of 0.014 inches. In embodiments with cutting edges leading to stops, the cutting edges may be at angles of between about 10 degrees and 80 degrees with respect to the cannula's central axis, and the stops may be located approximately one-half diameter inward of tip 3114. In embodiments with a cannula extension portion, the extension portion 3118 may extend approximately 1.5 mm beyond tip 3114. Among other functions, the bending of tongue or extension portion 3118 while forward pressure is maintained on the cannula (as shown, e.g., in
During delivery, ocular implant 900 is mounted on a core or carrier 754 which is movable with implant 000 within cannula 3102. Among other functions, one particular function of core 754 is to block the openings 3122 formed in implant 900 so as to minimize interference between the implant and tissue within Schlemm's canal 38 as the implant is advanced. The ocular implant 900 has a blunt distal end 902 in this embodiment to avoid damage to ocular tissue. In other embodiments, the blunt distal end may be provided at least in part by the carrier.
While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.
This application is a divisional of pending U.S. application Ser. No. 12/632,738, filed Dec. 7, 2009, which is a continuation-in-part of pending U.S. application Ser. No. 11/943,289, filed Nov. 20, 2007, which application claims the benefit of the following: U.S. Provisional Application No. 61/120,222, filed Dec. 5, 2008; U.S. Provisional Application No. 61/120,295, filed Dec. 5, 2008; U.S. Provisional Application No. 61/224,156, filed Jul. 9, 2009; and U.S. Provisional Application No. 61/224,158, filed Jul. 9, 2009. All of these applications are incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3788327 | Donowitz et al. | Jan 1974 | A |
3948271 | Akiyama | Apr 1976 | A |
4037604 | Newkirk | Jul 1977 | A |
4428746 | Mendez | Jan 1984 | A |
4457757 | Molteno | Jul 1984 | A |
4722724 | Schocket | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4826478 | Schocket | May 1989 | A |
4886488 | White | Dec 1989 | A |
4934809 | Volk | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5213569 | Davis | May 1993 | A |
5246452 | Sinnott | Sep 1993 | A |
5360399 | Stegmann | Nov 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5454796 | Krupin | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5591223 | Lock et al. | Jan 1997 | A |
5626558 | Suson | May 1997 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Richter et al. | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5948427 | Yamamoto et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6050970 | Baerveldt | Apr 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6186974 | Allan et al. | Feb 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6238409 | Hojeibane | May 2001 | B1 |
D444874 | Haffner et al. | Jul 2001 | S |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533764 | Haffner et al. | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881198 | Brown | Apr 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7207965 | Simon | Apr 2007 | B2 |
7207980 | Christian et al. | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7699882 | Stamper et al. | Apr 2010 | B2 |
7740604 | Schieber et al. | Jun 2010 | B2 |
7931596 | Rachlin et al. | Apr 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
8012115 | Karageozian | Sep 2011 | B2 |
8034105 | Stegmann et al. | Oct 2011 | B2 |
8123729 | Yamamoto et al. | Feb 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8282592 | Schieber et al. | Oct 2012 | B2 |
8337509 | Schieber et al. | Dec 2012 | B2 |
8372026 | Schieber et al. | Feb 2013 | B2 |
8414518 | Schieber et al. | Apr 2013 | B2 |
20010002438 | Sepetka et al. | May 2001 | A1 |
20020003546 | Mochimaru et al. | Jan 2002 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20030004457 | Andersson | Jan 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060748 | Baikoff | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040024453 | Castillejos | Feb 2004 | A1 |
20040082939 | Berlin | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040098124 | Freeman et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040106975 | Solovay et al. | Jun 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225357 | Worst et al. | Nov 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050041200 | Rich | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050101967 | Weber et al. | May 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050131514 | Hijlkema et al. | Jun 2005 | A1 |
20050154443 | Linder et al. | Jul 2005 | A1 |
20050165385 | Simon | Jul 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197667 | Chan et al. | Sep 2005 | A1 |
20050203542 | Weber et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050244464 | Hughes | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050260186 | Bookbinder et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20050288745 | Andersen et al. | Dec 2005 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060052879 | Kolb | Mar 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060079828 | Brown | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060154981 | Klimko et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060155300 | Stamper et al. | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060189915 | Camras et al. | Aug 2006 | A1 |
20060189916 | Bas | Aug 2006 | A1 |
20060189917 | Mayr et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060195187 | Stegmann et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070073275 | Conston et al. | Mar 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070106200 | Levy | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070112292 | Tu et al. | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070191863 | De Juan, Jr. et al. | Aug 2007 | A1 |
20070202186 | Yamamoto et al. | Aug 2007 | A1 |
20070265582 | Kaplan et al. | Nov 2007 | A1 |
20070270945 | Kobayashi et al. | Nov 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20070298068 | Badawi et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20090005852 | Gittings et al. | Jan 2009 | A1 |
20090028953 | Yamamoto et al. | Jan 2009 | A1 |
20090030363 | Gellman | Jan 2009 | A1 |
20090030381 | Lind et al. | Jan 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090069786 | Vesely et al. | Mar 2009 | A1 |
20090082860 | Schieber et al. | Mar 2009 | A1 |
20090082862 | Schieber et al. | Mar 2009 | A1 |
20090104248 | Rapacki et al. | Apr 2009 | A1 |
20090132040 | Frion et al. | May 2009 | A1 |
20090138081 | Bergheim et al. | May 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090247955 | Yamamoto et al. | Oct 2009 | A1 |
20090281520 | Highley et al. | Nov 2009 | A1 |
20100004580 | Lynch et al. | Jan 2010 | A1 |
20100057072 | Roman et al. | Mar 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100173866 | Hee et al. | Jul 2010 | A1 |
20100191176 | Ho et al. | Jul 2010 | A1 |
20100191177 | Chang et al. | Jul 2010 | A1 |
20100234726 | Sirimanne et al. | Sep 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20110009874 | Wardle et al. | Jan 2011 | A1 |
20110009958 | Wardle et al. | Jan 2011 | A1 |
20110098809 | Wardle et al. | Apr 2011 | A1 |
20110319806 | Wardle | Dec 2011 | A1 |
20120010702 | Stegmann et al. | Jan 2012 | A1 |
20120191064 | Conston et al. | Jul 2012 | A1 |
20120323159 | Wardle et al. | Dec 2012 | A1 |
20130006165 | Euteneuer et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
199876197 | Feb 1999 | AU |
1950091 | Apr 2007 | CN |
1615604 | Aug 2009 | EP |
2193821 | Jun 2010 | EP |
1715827 | Dec 2010 | EP |
2380622 | Oct 2011 | EP |
2468327 | Jun 2012 | EP |
2471563 | Jul 2012 | EP |
1833440 | Aug 2012 | EP |
11123205 | May 1999 | JP |
2007181714 | Jul 2007 | JP |
WO 0007525 | Feb 2000 | WO |
WO 0064389 | Nov 2000 | WO |
WO 0064393 | Nov 2000 | WO |
WO 0197727 | Dec 2001 | WO |
WO 0236052 | May 2002 | WO |
WO 02074052 | Sep 2002 | WO |
WO 02080811 | Oct 2002 | WO |
WO 03015659 | Feb 2003 | WO |
WO 03045290 | Jun 2003 | WO |
WO 2004093761 | Nov 2004 | WO |
WO 2005105197 | Nov 2005 | WO |
WO 2006066103 | Jun 2006 | WO |
WO 2007035356 | Mar 2007 | WO |
WO 2007047744 | Apr 2007 | WO |
WO 2007087061 | Aug 2007 | WO |
WO 2008002377 | Jan 2008 | WO |
WO 2009120960 | Oct 2009 | WO |
WO 2011053512 | May 2011 | WO |
WO 2011057283 | May 2011 | WO |
Entry |
---|
Lynch, Mary G.; U.S. Appl. No. 60/131,030 entitled “Devices and methods for treating glaucoma by enhancing aqueous outflow through schlemm's canal and anterior chamber angle,” filed Apr. 26, 1999. |
Bahler, et al.; Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments; Amer. Journal of Ophthalmology; vol. 138, No. 6; pp. 988-994.e2; Dec. 2004. |
D'Ermo, et al.; Our results with the operation of ab externo trabeculotomy; Ophthalmologica; vol. 163; pp. 347-355; Feb. 1971. |
Ellingsen et al.; Trabeculotomy and sinusotomy in enucleated human eyes; Investigative Ophthalmology; vol. 11; pp. 21-28; Jan. 1972. |
Grant; Experimental aqueous perfusion in enucleated human eyes; Archives of Ophthalmology; vol. 69; pp. 783-801; Jun. 1963. |
Johnstone et al.; “Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System;” American Journal of Ophthalmology, vol. 76 (6): 906-917; Dec. 1973. |
Lee et al.; Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966. |
Moses, Robert; The effect of intraocular pressure on resistance to outflow; Survey of Ophthalmology; vol. 22; No. 2; pp. 88-100; Sep.-Oct. 1977. |
Mäepea et al.; The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663; Oct. 1989. |
Rosenquist et al.; Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy; Current Eye Res.; vol. 8; No. 12; pp. 1233-1240; Dec. 1989. |
Savage, James; Gonioscopy in the management of glaucoma; Am. Academy of Ophthalmology; Focal Points; vol. XXIV; No. 3; pp. 1-4; Mar. 2006. |
Schultz, Jared; Canaloplasty procedure show promise for open-angle glaucoma in European study; Ocular Surgery News; vol. 34; Mar. 1, 2007. |
Smit et al.; Effects of viscoelastic injection into schlemm's canal in primate and human eyes; J. Am. Academy of Ophthalmology; vol. 109; No. 4; pp. 786-792; Apr. 2002. |
Spiegel et al.; Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?; Ophthalmic Surgery and Lasers; vol. 30, No. 6; pp. 492-494; Jun. 1999. |
Wardle et al.; U.S. Appl. No. 13/330,592 entitled “Delivering Ocular Implants Into the Eye,” filed Dec. 19, 2011. |
Number | Date | Country | |
---|---|---|---|
20130079701 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61120222 | Dec 2008 | US | |
61120295 | Dec 2008 | US | |
61224156 | Jul 2009 | US | |
61224158 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12632738 | Dec 2009 | US |
Child | 13681365 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11943289 | Nov 2007 | US |
Child | 12632738 | US |