Methods and apparatus for delivering staples to a target tissue

Abstract
A device for attaching a sheet-like implant to a target tissue includes a pilot member and a staple push rod. In some embodiments, the pilot member has a distal end and at least a pair of prongs extending from the distal end. The prongs are configured to form pilot holes when the distal end of the pilot member is pressed against the target tissue. The staple push rod is disposed within at least a portion of the pilot member and slidable relative thereto. The staple push rod includes at least a pair of stakes. Each stake is dimensioned to engage a surface of a staple to apply pushing forces thereto. Each stake is positioned relative to a prong along an inner surface of the pilot member so that the stakes advance into the pilot holes when the stakes are moved in a distal direction. Methods for attaching a sheet-like implant to a target tissue are also disclosed.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

The present invention relates generally to orthopedic medicine and surgery. More particularly, the present invention relates to methods and apparatus for delivery and fixation of sheet-like materials, such as for treating articulating joints.


BACKGROUND OF THE INVENTION

The glenohumeral joint of the shoulder is found where the head of the humerus mates with a shallow depression in the scapula. This shallow depression is known as the glenoid fossa. Six muscles extend between the humerus and scapula and actuate the glenohumeral joint. These six muscles include the deltoid, the teres major, and the four rotator cuff muscles. As disclosed by Ball et al. in U.S. Patent Publication No. US 2008/0188936 A1 and as illustrated in FIG. 1 the rotator cuff muscles are a complex of four muscles. These four muscles are the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. The centering and stabilizing roles played by the rotator cuff muscles are critical to the proper function of the shoulder. The rotator cuff muscles provide a wide variety of moments to rotate the humerus and to oppose unwanted components of the deltoid and pectoralis muscle forces.


The four muscles of the rotator cuff arise from the scapula 12. The distal tendons of the rotator cuff muscles splay out and interdigitate to form a common continuous insertion on the humerus 14. The subscapularis 16 arises from the anterior aspect of the scapula 12 and attaches over much of the lesser tuberosity of the humerous. The supraspinatus muscle 18 arises from the supraspinatus fossa of the posterior scapula, passes beneath the acromion and the acromioclavicular joint, and attaches to the superior aspect of the greater tuberosity 11. The infraspinatus muscle 13 arises from the infraspinous fossa of the posterior scapula and attaches to the posterolateral aspect of the greater tuberosity 11. The teres minor 15 arises from the lower lateral aspect of the scapula 12 and attaches to the lower aspect of the greater tuberosity 11.


The mechanics of the rotator cuff muscles 10 are complex. The rotator cuff muscles 10 rotate the humerus 14 with respect to the scapula 12, compress the humeral head 17 into the glenoid fossa providing a critical stabilizing mechanism to the shoulder (known as concavity compression), and provide muscular balance. The supraspinatus and infraspinatus provide 45 percent of abduction and 90 percent of external rotation strength. The supraspinatus and deltoid muscles are equally responsible for producing torque about the shoulder joint in the functional planes of motion.


The rotator cuff muscles 10 are critical elements of this shoulder muscle balance equation. The human shoulder has no fixed axis. In a specified position, activation of a muscle creates a unique set of rotational moments. For example, the anterior deltoid can exert moments in forward elevation, internal rotation, and cross-body movement. If forward elevation is to occur without rotation, the cross-body and internal rotation moments of this muscle must be neutralized by other muscles, such as the posterior deltoid and infraspinatus. The timing and magnitude of these balancing muscle effects must be precisely coordinated to avoid unwanted directions of humeral motion. Thus the simplified view of muscles as isolated motors, or as members of force couples must give way to an understanding that all shoulder muscles function together in a precisely coordinated way—opposing muscles canceling out undesired elements leaving only the net torque necessary to produce the desired action. Injury to any of these soft tissues can greatly inhibit ranges and types of motion of the arm.


With its complexity, range of motion and extensive use, a fairly common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyperextension, from an acute traumatic tear or from overuse of the joint. With its critical role in abduction, rotational strength and torque production, the most common injury associated with the rotator cuff region is a strain or tear involving the supraspinatus tendon. A tear in the supraspinitus tendon 19 is schematically depicted in FIG. 2. A tear at the insertion site of the tendon with the humerus, may result in the detachment of the tendon from the bone. This detachment may be partial or full, depending upon the severity of the injury. Additionally, the strain or tear can occur within the tendon itself. Injuries to the supraspinatus tendon 19 and recognized modalities for treatment are defined by the type and degree of tear. The first type of tear is a full thickness tear as also depicted in FIG. 2, which as the term indicates is a tear that extends through the thickness of the supraspinatus tendon regardless of whether it is completely torn laterally. The second type of tear is a partial thickness tear which is further classified based on how much of the thickness is torn, whether it is greater or less than 50% of the thickness.


The accepted treatment for a full thickness tear or a partial thickness tear greater than 50% includes reconnecting the torn tendon via sutures. For the partial thickness tears greater than 50%, the tear is completed to a full thickness tear by cutting the tendon prior to reconnection. In contrast to the treatment of a full thickness tear or a partial thickness tear of greater than 50%, the treatment for a partial thickness tear less than 50% usually involves physical cessation from use of the tendon, i.e., rest. Specific exercises can also be prescribed to strengthen and loosen the shoulder area. In many instances, the shoulder does not heal and the partial thickness tear can be the source of chronic pain and stiffness. Further, the pain and stiffness may cause restricted use of the limb which tends to result in further degeneration or atrophy in the shoulder. Surgical intervention may be required for a partial thickness tear of less than 50%, however, current treatment interventions do not include repair of the tendon, rather the surgical procedure is directed to arthroscopic removal of bone to relieve points of impingement or create a larger tunnel between the tendon and bone that is believed to be causing tendon damage. As part of the treatment, degenerated tendon may also be removed using a debridement procedure in which tendon material is ablated. Again, the tendon partial tear is not repaired. Several authors have reported satisfactory early post operative results from these procedures, but over time recurrent symptoms have been noted. In the event of recurrent symptoms, many times a patient will “live with the pain”. This may result in less use of the aim and shoulder which further causes degeneration of the tendon and may lead to more extensive damage. A tendon repair would then need to be done in a later procedure if the prescribed treatment for partial tear was unsuccessful in relieving pain and stiffness or over time the tear propagated through injury or degeneration to a full thickness tear or a partial thickness tear greater than 50% with attendant pain and debilitation. A subsequent later procedure would include the more drastic procedure of completing the tear to full thickness and suturing the ends of the tendon back together. This procedure requires extensive rehabilitation, has relatively high failure rates and subjects the patient who first presented and was treated with a partial thickness tear less than 50% to a second surgical procedure.


As described above, adequate treatments do not currently exist for repairing a partial thickness tear of less than 50% in the supraspinatus tendon. Current procedures attempt to alleviate impingement or make room for movement of the tendon to prevent further damage and relieve discomfort but do not repair or strengthen the tendon. Use of the still damaged tendon can lead to further damage or injury. Prior damage may result in degeneration that requires a second more drastic procedure to repair the tendon. Further, if the prior procedure was only partially successful in relieving pain and discomfort, a response may be to use the shoulder less which leads to degeneration and increased likelihood of further injury along with the need for more drastic surgery. There is a large need for surgical techniques and systems to treat partial thickness tears of less than 50% and prevent future tendon damage by strengthening or repairing the native tendon having the partial thickness tear.


SUMMARY OF THE INVENTION

According to aspects of the invention, a device for attaching a sheet-like implant to a target tissue is disclosed. In some embodiments, the device includes a pilot member and a staple push rod. In these embodiments, the pilot member has a distal end and at least a pair of prongs extending from the distal end. The prongs are configured to form pilot holes when the distal end of the pilot member is pressed against the target tissue. The staple push rod is disposed within at least a portion of the pilot member and slidable relative thereto. The staple push rod includes at least a pair of stakes. Each stake is dimensioned to engage a surface of a staple to apply pushing forces thereto. Each stake is positioned relative to a prong along an inner surface of the pilot member so that the stakes advance into the pilot holes when the stakes are moved in a distal direction.


In some embodiments of the invention, the stakes are biased to expand against an inner surface of the pilot member. Each stake has a distal portion and a proximal portion. Each distal portion may be dimensioned to extend into a passage defined by a staple. Each proximal portion may have a width larger than a width of each distal portion so that a shoulder of each proximal portion contacts a proximal surface of the staple to apply pushing forces thereto.


In some embodiments, the device also includes a staple which is carried by the staple push rod. The staple includes first and second arms, each having proximal and distal ends. A bridge extends from the proximal end of the first aim to the proximal end of the second arm. A first fluke of the staple has a proximal end abutting the distal end of the first arm. A second fluke of the staple has a proximal end abutting the distal end of the second arm. In some of these embodiments, each stake of the staple push rod has a distal portion and a proximal portion. Each distal portion extends into a passage defined by a fluke. Each proximal portion has a width larger than a width of each distal portion. This allows a shoulder of each proximal portion to contact a distal surface of a fluke to apply pushing forces thereto. The pushing forces place the first arm, the second arm, and the bridge in tension when the flukes are pushed into the target tissue. Each stake may be configured to bend at a location slightly distal of the shoulder when each fluke rotates.


In some embodiments, the proximal portion of each stake has a proximal thickness, and the distal portion of each stake has a distal thickness. The distal thickness may be configured to be less than the proximal thickness to facilitate bending of each stake at a location slightly distal of each shoulder. In some embodiments, each stake bends proximate the proximal end of a fluke when the flukes rotate. The proximal portions of the stakes may be configured with sufficient length so that there is a gap between the staple push rod and the bridge portion of staple. This allows the staple to be placed in tension without the bridge portion of the staple contacting the staple push rod.


In some embodiments, each prong of the pilot member has a length that is greater than a length of each fluke of the staple. The device may be configured such that the pushing forces include a first force applied to a proximal surface of the first fluke at a location that is offset from the first arm. The proximal portions of the stakes may be biased to diverge from one another so that the pushing force applied to each fluke has a laterally outward component. In some embodiments, a distal-most portion of each stake extends across a leading edge of each fluke.


According to aspects of the invention, methods for attaching a sheet-like implant to target tissue are also disclosed. In some embodiments, the methods include the step of providing a device that includes a pilot member. The pilot member has a distal end and at least a pair of prongs extending from the distal end. The device further includes a staple push rod carrying a staple. The staple comprises first and second arms each having proximal and distal ends. A bridge extends from the proximal end of the first arm to the proximal end of the second arm. The staple further comprises a first fluke having a proximal end abutting the distal end of the first arm, and a second fluke having a proximal end abutting the distal end of the second arm. The staple push rod of the device includes a pair of stakes, each having distal and proximal portions. Each distal portion extends into a passage defined by a fluke. Each proximal portion has a width larger than a width of each distal portion so that a shoulder of each proximal portion contacts a distal surface of a fluke.


The above methods further include the step of piercing the target tissue with the first prong of the pilot member to create a first pilot hole, and piercing the target tissue with the second prong to create a second pilot hole. The first fluke is positioned near the first pilot hole and the second fluke is positioned near the second pilot hole. The staple push rod is advanced in a distal direction so that the stakes apply pushing forces to the flukes. This causes the flukes to advance into the pilot holes and causes the first arm, the second arm, and the bridge to be placed in tension. The first arm provides a first reaction force when placed in tension and the second arm provides a second reaction force when placed in tension. The pushing forces and reaction forces cooperate to produce a moment applied to each fluke. The moment applied to each fluke causes each fluke to rotate so that each fluke assumes a locked position. When in the locked position, the longitudinal axis of each fluke is skewed relative to a longitudinal axis of the pilot member.


In some embodiments, a first moment having a first direction is applied to the first fluke, and a second moment having a second direction is applied to the second fluke. In these embodiments, the first direction is different from the second direction. In some embodiments, the first direction is generally opposite the second direction. The first direction may be a clockwise direction while the second direction is a counter-clockwise direction. In some embodiments, a first pushing force is applied to the proximal surface of the first fluke at a location that is offset from the first arm. The first pushing force may be in a direction that is generally parallel to a central axis of the first pilot hole.


In some embodiments, the flukes are advanced into the pilot holes while the prongs are disposed in the pilot holes. The methods may further include the step of moving the pilot member in a proximal direction relative to the target tissue until a distal end of the first prong is located proximal of the first fluke and a distal end of the second prong is located proximally of the second fluke. The step of advancing the staple push rod in a distal direction may include actuating a mechanism that produces relative motion between the staple push rod and the pilot member while applying a distally directed force to the pilot member.


In some of the above embodiments, moving the pilot member in a proximal direction relative to the target tissue includes producing relative motion between the staple push rod and the pilot member while applying a distally directed force to the pilot member. The first fluke may assume a first locking position and the second fluke may assume a second locking position while a distal end of the first prong is located proximal of the first fluke and a distal end of the second prong is located proximally of the second fluke.


According to aspects of the invention, a device for attaching a sheet-like implant to a target tissue is disclosed. In some embodiments the device includes a pilot member, a staple push rod slidably disposed within at least a portion of the pilot member, and a staple carried by the push rod. In these embodiments, the pilot member has a distal end and at least a pair of prongs extending from the distal end. The staple comprises first and second arms, each having proximal and distal ends. A bridge extends from the proximal end of the first aim to the proximal end of the second arm. A first fluke of the staple has a proximal end abutting the distal end of the first arm, and a second fluke of the staple has a proximal end abutting the distal end of the second arm. The staple push rod includes a pair of stakes, each having distal and proximal portions. The distal portion of each stake extends into a passage defined by a fluke. Each proximal portion has a width larger than a width of each distal portion.


With the above arrangement, a shoulder of each proximal portion contacts a distal surface of a fluke to apply pushing forces thereto. The pushing forces place the first arm, the second arm, and the bridge in tension when the flukes are pushed into the target tissue. The first arm provides a first reaction force when placed in tension, and the second arm provides a second reaction force when placed in tension. The pushing forces and the reaction forces cooperate to produce a moment applied to each fluke. The moment applied to each fluke causes each fluke to rotate so that each fluke assumes a locked position. When in the locked position, the longitudinal axis of each fluke is skewed relative to an arm of the staple.


Further aspects of the present invention will become apparent after review of the Detailed Description with reference to the following drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified perspective view of the human rotator cuff and associated anatomical structure. FIGS. 2A and 2B are alternative perspective views of the tissue fastener or staple of FIG. 1 illustrating other features in accordance with the present disclosure;



FIG. 2 is a schematic depiction of a full thickness tear in the supraspinatus tendon of the rotator cuff of FIG. 1. FIGS. 4A-4B are partial cross sectional views of the fastener of FIG. 1 depicting a projection in a first retracted state and a second deployed or extended state, respectively;



FIG. 3 is a stylized anterior view of a patient with a shoulder of patient being shown in cross-section for purposes of illustration.



FIG. 4 is a stylized anterior view of a shoulder including a humerus and a scapula. The head of the humerus is shown mating with the glenoid fossa of the scapula at a glenohumeral joint and a sheet-like material is fixed to the tendon.



FIG. 5 is a stylized perspective view illustrating an exemplary procedure for treating a shoulder of a patient.



FIG. 6 is a stylized perspective view of a shoulder including a supraspinatus having a distal tendon with a sheet-like material fixed thereto. A proximal end of the supraspinatus is fixed to the scapula and the distal tendon of the supraspinatus is fixed to the humerus.



FIG. 7A, FIG. 7B, and FIG. 7C are multiple plan views illustrating an exemplary staple in accordance with the present detailed description.



FIG. 8 is a perspective view further illustrating the staple shown in the previous Figure.



FIG. 9 is a perspective view showing a staple push rod that may be used in conjunction with the staple shown in the previous Figure.



FIG. 10A and FIG. 10B illustrate multiple plan views of an exemplary fixation tool in accordance with the present detailed description.



FIG. 11A is a further enlarged partial cross-sectional view of a distal portion of the fixation tool shaft shown in the previous Figure.



FIG. 11B is an additional partial cross-sectional view showing a staple carried by a staple push rod and a fixation tool shaft disposed about the staple push rod.



FIG. 12A through FIG. 12C are a sequence of plan views illustrating an exemplary method and apparatus in accordance with the present detailed description.



FIG. 13A, FIG. 13B, FIG. 13C and FIG. 13D are multiview projections illustrating a fixation tool shaft shown in the previous Figures.



FIG. 14 is an enlarged axial view of the fixation tool shaft shown in the previous Figure.



FIG. 15 is an additional enlarged axial view of the fixation tool shaft shown in the previous Figure.



FIG. 16 is an exploded isometric view of an exemplary fixation tool in accordance with this detailed description.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.


As used herein, the term “tissue” refers to soft tissue, such as a tendon, and/or bone tissue, depending on the context in which it is used.



FIG. 3 is a stylized anterior view of a patient 20. For purposes of illustration, a shoulder 22 of patient 20 is shown in cross-section in FIG. 3. Shoulder 22 includes a humerus 14 and a scapula 12. In FIG. 3, a head 24 of humerus 14 can be seen mating with a glenoid fossa of scapula 12 at a glenohumeral joint. With reference to FIG. 3, it will be appreciated that the glenoid fossa comprises a shallow depression in scapula 12. The movement of humerus 14 relative to scapula 12 is controlled by a number of muscles including: the deltoid, the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. For purposes of illustration, only the supraspinatus 26 is shown in FIG. 3.


With reference to FIG. 3, it will be appreciated that a distal tendon 28 of the supraspinatus 26 meets humerus 14 at an insertion point. Scapula 12 of shoulder 22 includes an acromium 32. In FIG. 3, a subacromial bursa 34 is shown extending between acromium 32 of scapula 12 and head 24 of humerus 14. In FIG. 3, subacromial bursa 34 is shown overlaying supraspinatus 26. Subacromial bursa 34 is one of the hundreds of bursae found the human body. Each bursa comprises a fluid filled sac. The presence of these bursae in the body reduces friction between bodily tissues. Injury and/or infection of the bursa can cause it to become inflamed. This condition is sometimes referred to as bursitis.


The exemplary methods and apparatus described herein may be used to fix tendon repair implants to various target tissues. For example, a tendon repair implant may be fixed to one or more tendons associated with an articulating joint, such as the glenohumeral joint. The tendons to be treated may be torn, partially torn, have internal micro-tears, be untorn, and/or be thinned due to age, injury or overuse. Applicants believe that the methods and apparatus of the present application and related devices may provide very beneficial therapeutic effect on a patient experiencing joint pain believed to be caused by partial thickness tears and/or internal microtears. By applying a tendon repair implant early before a full tear or other injury develops, the implant may cause the tendon to thicken and/or at least partially repair itself, thereby avoiding more extensive joint damage, pain, and the need for more extensive joint repair surgery.



FIG. 4 is a stylized anterior view of a shoulder 22 including a humerus 14 and a scapula 12. In FIG. 4, a head 24 of humerus 14 is shown mating with a glenoid fossa of scapula 12 at a glenohumeral joint. A supraspinatus 26 is also shown in FIG. 4. This muscle (along with others) control the movement of humerus 14 relative to scapula 12. A distal tendon 28 of supraspinatus 26 meets humerus 14 at an insertion point 30.


In the embodiment of FIG. 4, distal tendon 28 includes a first damaged portion 36. A number of loose tendon fibers 40 in first damaged portion 36 are visible in FIG. 4. First damaged portion 36 includes a first tear 42 extending partially through distal tendon 28. First tear 42 may therefore be referred to as a partial thickness tear. With reference to FIG. 4, it will be appreciated that first tear 42 begins on the side of distal tendon 28 facing the subacromial bursa (shown in the previous Figure) and ends midway through distal tendon 28. Accordingly, first tear 42 may be referred to as a bursal side tear.


With reference to FIG. 4, it will be appreciated that distal tendon 28 includes a second damaged portion 38 located near insertion point 30. In the embodiment of FIG. 4, second damaged portion 38 of distal tendon 28 has become frayed and a number of loose tendon fibers 40 are visible in FIG. 4. Second damaged portion 38 of distal tendon 28 includes second tear 44. With reference to FIG. 4, it will be appreciated that second tear 44 begins on the side of distal tendon 28 facing the humerus 14. Accordingly, second damaged portion 38 may be referred to as an articular side tear.


In the embodiment of FIG. 4, a sheet-like implant 50 has been placed over the bursal side of distal tendon 28. With reference to FIG. 4, it will be appreciated that sheet-like implant 50 extends over insertion point 30, first tear 42 and second tear 44. Some useful methods in accordance with this detailed description may include placing a tendon repair implant on the bursal side of a tendon regardless of whether the tears being treated are on the bursal side, articular side or within the tendon. In some cases the exact location and nature of the tears being treated may be unknown. A tendon repair implant may be applied to the bursal side of a tendon to treat shoulder pain that is most likely caused by one or more partial thickness tears in the tendon. In the embodiment of FIG. 4, sheet-like implant 50 is fixed to distal tendon 28 and to humerus 14 by a plurality of staples 100 as described herein in detail.



FIG. 5 is a stylized perspective view illustrating an exemplary procedure for treating a shoulder 22 of a patient 20. The procedure illustrated in FIG. 5 may include, for example, fixing tendon repair implants to one or more tendons of shoulder 22. The tendons treated may be torn, partially torn, have internal micro-tears, be untorn, and/or be thinned due to age, injury or overuse.


Shoulder 22 of FIG. 5 has been inflated to create a cavity therein. In the exemplary embodiment of FIG. 5A, a fluid supply 52 is pumping a continuous flow of saline into the cavity. This flow of saline exits the cavity via a fluid drain 54. A camera 56 provides images from inside the cavity. The images provided by camera 56 may be viewed on a display 58.


Camera 56 may be used to visually inspect the tendons of shoulder 22 for damage. A tendon repair implant in accordance with this disclosure may be fixed to a bursal surface of the tendon regardless of whether there are visible signs of tendon damage. Applicants believe that the methods and apparatus of the present application and related devices may provide very beneficial therapeutic effect on a patient experiencing joint pain believed to be caused by internal microtears, but having no clear signs of tendon tears. By applying a tendon repair implant early before a full tear or other injury develops, the implant may cause the tendon to thicken and/or at least partially repair itself, thereby avoiding more extensive joint damage, pain, and the need for more extensive joint repair surgery.


A delivery system 60 can be seen extending from shoulder 22 in FIG. 5. Delivery system 60 comprises a sheath that is fixed to a handle. The sheath defines a lumen and a distal opening fluidly communicating the lumen. In the embodiment of FIG. 5, the distal opening of the sheath has been placed in fluid communication with the cavity created in shoulder 22.


A tendon repair implant is at least partially disposed in the lumen defined by the sheath of delivery system 60. Delivery system 60 can be used to place the tendon repair implant inside shoulder 22. Delivery system 60 can also be used to hold the tendon repair implant against the tendon. In some embodiments, the tendon repair implant is folded into a compact configuration when inside the lumen of the sheath. When this is the case, delivery system 60 may be used to unfold the tendon repair implant into an expanded shape.


The tendon repair implant may be fixed to the tendon while it is held against the tendon by delivery system 60. Various attachment elements may be used to fix the tendon repair implant to the tendon. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the exemplary embodiment of FIG. 5, the shaft of a fixation tool 70 is shown extending into shoulder 22. In one exemplary embodiment, fixation tool 70 is capable of fixing the tendon repair implant to the tendon with one or more staples while the tendon repair implant is held against the tendon by delivery system 60.



FIG. 6 is a stylized perspective view of a shoulder 22 including a supraspinatus 26 having a distal tendon 28. With reference to FIG. 6, it will be appreciated that a tendon repair implant 50 has been fixed to a surface of distal tendon 28. Tendon repair implant 50 may comprise, for example, various sheet-like structures without deviating from the spirit and scope of the present detailed description. In some useful embodiments, the sheet-like structure may comprise a plurality of fibers. The fibers may be interlinked with one another. When this is the case, the sheet-like structure may comprise a plurality of apertures comprising the interstitial spaces between fibers. Various processes may be used to interlink the fibers with one another. Examples of processes that may be suitable in some applications including weaving, knitting, and braiding. In some embodiment, the sheet-like structure may comprise a laminate including multiple layers of film with each layer of film defining a plurality of micro-machined or formed holes. The sheet-like structure of the tendon repair implant may also comprise a plurality of electro-spun nanofiber filaments forming a composite sheet. Additionally, the sheet-like structure may comprise a synthetic sponge material that defines a plurality of pores. The sheet-like structure may also comprise a reticulated foam material. Reticulated foam materials that may be suitable in some applications are available from Biomerix Corporation of Freemont, Calif. which identifies these materials using the trademark BIOMATERIAL™.


Various attachment elements may be used to fix tendon repair implant 50 to distal tendon 28 without deviating from the spirit and scope of this detailed description. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the exemplary embodiment of FIG. 6, a plurality of staples 100 are fixing tendon repair implant 50 to distal tendon 28. In some exemplary methods, a plurality of staples 100 may be applied using a fixation tool. The fixation tool may then be withdrawn from the body of the patient. Distal tendon 28 meets humerus 14 at an insertion point 30. With reference to FIG. 6, it will be appreciated that sheet-like implant 50 extends over insertion point 30. Tendon repair implant may be applied to distal tendon 28, for example, using the procedure illustrated in the previous Figure.



FIG. 7A, FIG. 7B, and FIG. 7C are multiple plan views illustrating an exemplary staple 100 in accordance with the present detailed description. FIG. 7A, FIG. 7B, and FIG. 7C may be collectively referred to as FIG. 7. A proximal direction is illustrated with an arrow P in FIG. 7. A distal direction is illustrated with a second arrow D in FIG. 7.


Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 7, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second arm 102B, respectively. With reference to FIG. 7, it will be appreciated that first fluke 106A has a lateral extent that is larger than a lateral extent of first arm 102A. First fluke 106A is mounted eccentrically to first arm 102A in the embodiment of FIG. 7. Second fluke 106B is mounted eccentrically to second arm 102B and second fluke 106B has a lateral extent that is larger than a lateral extent of second arm 102B. First fluke 106A includes a first proximal surface 108A projecting at an outward angle in a proximal direction away from the distal end of first arm 102A. Second fluke 106B includes a second proximal surface 108B projecting at an outward angle in a proximal direction away from the distal end of second arm 102B.


With reference to FIG. 7A, it will be appreciated that first fluke 106A includes a first point 120A and a first barb 122A. Second fluke 106B includes a second point 120B and a second barb 122B. In FIG. 7, first point 120A and second point 120B are shown generally pointing in the distal direction indicated by arrow D. Also in FIG. 7, first barb 122A and second barb 122B are shown generally pointing in the proximal direction indicated by arrow P.


With reference to FIG. 7A it will be appreciated that first fluke 106A defines a first passageway 124A and second fluke 106B defines a second passageway 124B. In the exemplary embodiment of FIG. 7, first passageway 124A extends through first fluke 106A and second passageway 124B extends through second fluke 106B. It will be appreciated, however, that first passageway 124A may extend through other portions of staple 100 in some embodiments. Similarly, second passageway 124B may extend through other portions of staple 100 in some embodiments. With reference to FIG. 7B it will be appreciated that, first passageway 124A and second passageway 124B each have a generally square cross-sectional shape. It will be appreciated, however, that first passageway 124A and second passageway 124B may have various cross-sectional shapes without deviating from the spirit and scope of the present detailed description. Further, each passageway can extend partially through the length of each fluke rather than all the way through to provide a cavity rather than a passageway.


With reference to FIG. 7C, it will be appreciated that first barb 122A of first fluke 106A defines a first notch 126A. In the exemplary embodiment of FIG. 7, first notch 126A divides first barb 122A into a first sub-barb and a second sub-barb. Second barb 122B of second fluke 106B defines a second notch 126B. In the exemplary embodiment of FIG. 7, second notch 126B divides second barb 122B into a first sub-barb and a second sub-barb.



FIG. 8 is a perspective view showing staple 100 shown in the previous Figure. Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. With reference to FIG. 8 it will be appreciated that first fluke 106A defines a first passageway 124A. In the exemplary embodiment of FIG. 8, first passageway 124A has a generally square cross-sectional shape. It will be appreciated, however, that first passageway 124A may have various cross-sectional shapes without deviating from the spirit and scope of the present detailed description.


A second fluke 106B extends distally from second arm 102B with the proximal end of second fluke 106B abutting the distal end of second arm 102B. With reference to FIG. 8, it will be appreciated that second fluke 106B has a lateral extent that is larger than a lateral extent of second arm 102B. Second fluke 106B is mounted eccentrically to second arm 102B in the embodiment of FIG. 8. Similarly, first fluke 106A is mounted eccentrically to first arm 102A and first fluke 106A has a lateral extent that is larger than a lateral extent of first arm 102A.


A proximal direction is illustrated with an arrow P in FIG. 8. A distal direction is illustrated with a second arrow D in FIG. 8. With reference to FIG. 8A, it will be appreciated that first fluke 106A of first arm 102A includes a first point 120A and a first barb 122A. Second fluke 106B includes a second point 120B and a second barb 122B. In FIG. 8, first point 120A and second point 120B are shown generally pointing in the distal direction indicated by arrow D. Also in FIG. 8, first barb 122A and second barb 122B are shown generally pointing in the proximal direction indicated by arrow P. With reference to FIG. 8, it will be appreciated that first fluke 106A includes a first proximal surface 108A projecting at an outward angle in a proximal direction away from the distal end of first arm 102A. Second fluke 106B includes a second proximal surface 108B projecting at an outward angle in a proximal direction away from the distal end of second arm 102B.



FIG. 9 is a perspective view showing a staple push rod 130 that may be used in conjunction with staple 100 shown in the previous Figure. Staple push rod 130 includes a shaft 132 and a pair of stakes 134 extending distally beyond a distal end of shaft 132. The distal direction is indicated with an arrow D in FIG. 9. Stakes 134 include a first stake 134A and a second stake 134B. First stake 134A and second stake 134B form a fork 136.


In the embodiment of FIG. 9, each stake 134 has a distal portion 138 and a proximal portion 140. In some useful embodiments, each distal portion 138 is dimensioned to extend into a passage defined by a staple. In the embodiment of FIG. 9, each proximal portion 140 has a width larger than a width of each distal portion 138 so that a shoulder of each proximal portion 140 contacts a proximal surface of the staple to apply pushing forces thereto. First stake 134A comprises a first shoulder 142A and second stake 134B comprises a second shoulder 142B. Although depicted as a shoulder to provide pushing force to the staple, other designs can be utilized. For example, any larger cross section proximal portion can provide a pushing force, such as a conical increase in profile. In the embodiment of FIG. 9, proximal portion 140 of first stake 134A and the proximal portion 140 of second stake 134B diverge from one another as they extend in distal direction D away from shaft 132. In some applications, this arrangement may cause pushing forces applied to two flukes of a staple to have a laterally outward component.


In FIG. 9, first stake 134A and second stake 134B are shown assuming a substantially unstressed state. It will be appreciated that first stake 134A and second stake 134B can be resiliently urged to assume shapes other than the shape shown in FIG. 9. For example, first stake 134A and second stake 134B may be urged together so that fork 136 can be inserted into a lumen having a diameter smaller than the distance between the distal points of first stake 134A and second stake 134B shown in FIG. 9.



FIG. 10A and FIG. 10B illustrate multiple plan views of an exemplary fixation tool 144 in accordance with the present detailed description. Fixation tool 144 incorporates staple push rod 130 and is useful in delivering staple 100. FIG. 10A and FIG. 10B may be referred to collectively as FIG. 10. It is customary to refer to multi-view projections using terms such as front view, top view, and side view. In accordance with this convention, FIG. 10A may be referred to as a top view of fixation tool 144 and FIG. 10B may be referred to as a side view of fixation tool 144. The terms top view and side view are used herein as a convenient method for differentiating between the views shown in FIG. 10. It will be appreciated that the elements shown in FIG. 10 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view and side view should not be interpreted to limit the scope of the invention recited in the attached claims.


In the embodiment of FIG. 10, fixation tool 144 comprises a pilot member or fixation tool shaft 146 that is attached to a handle 148. Fixation tool shaft 146 comprises a wall 150 defining a lumen 152. With reference to FIG. 10, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 156B that extend distally beyond a distal end 158 of lumen 152.


In FIG. 10, a staple 100 can be seen residing in lumen 152 of fixation tool shaft 146. For purposes of illustration, a distal portion of fixation tool shaft 146 is enlarged in FIG. 10 to better show staple 100. Staple 100 comprises a first aim 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 10, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second arm 102B, respectively.


Staple push rod 130 includes a shaft 132 and a pair of stakes 134 extending distally beyond a distal end of shaft 132. The distal direction is indicated with an arrow D in FIG. 10. Stakes 134 include a first stake 134A and a second stake 134B. In FIG. 10, a distal portion of each stake 134 can be seen extending through a passageway defined by staple 100. In the embodiment of FIG. 10, a trigger 160 is pivotably coupled to handle 148 of fixation tool 144. Trigger 160 is operatively coupled to staple push rod 130. In operation, staple push rod 130 will be advanced and/or retracted in an axial direction when trigger 160 is pivoted relative to handle 148.



FIG. 11A is a further enlarged top view of a distal portion of fixation tool shaft 146 shown in the previous Figure. For purposes of illustration, fixation tool shaft 146 is shown in partial cross-section in FIG. 11A so that staple 100 is visible residing in lumen 152. With reference to FIG. 11A, it will be appreciated that staple 100 is disposed on a distal portion of staple push rod 130. Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 11, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second aim 102B, respectively.


First fluke 106A of staple 100 defines a first passageway 124A. In FIG. 11A, a distal portion 138 of first stake 134A of staple push rod 130 can be seen extending through first passageway 124A defined by first fluke 106A. A distal portion 138 of second stake 134B of staple push rod 130 can be seen extending through a second passageway 124B defined by second fluke 106B of staple 100.


In FIG. 11A, a first shoulder 142A of first stake 134A is shown contacting proximal surface 108 of first fluke. Distal portion 138 of first stake 134A extends distally of first shoulder 142A and proximal portion 140 of first stake 134A extends proximally of first shoulder 142A. In some useful embodiments, the proximal portion of first stake 134A has a first thickness and the distal portion of first stake 134A has a second thickness different from the first thickness. In some particularly useful embodiments, the second thickness is less than the first thickness. In some applications, this may increase the flexibility of the distal portion of first stake 134A so that it bends more easily, and so that it withdraws from the staple with minimal force.


A second shoulder 142B of second stake 134B is shown contacting proximal surface 108 of second fluke 106 in FIG. 11A. A distal portion 138 of second stake 134B extends distally of second shoulder 142B and a proximal portion 140 of second stake 134B extends proximally of second shoulder 142B. In some useful embodiments, the proximal portion of second stake 134B has a first thickness and the distal portion of second stake 134B has a second thickness different from the first thickness. In some particularly useful embodiments, the second thickness is less than the first thickness. In some applications, this may increase the flexibility of the distal portion of first stake 134A so that it bends more easily, and so that it withdraws from the staple with minimal force.


With reference to FIG. 11A, it will be appreciated that there is a gap G between staple push rod 130 and bridge 104 of staple 100. In some applications, gap G allows staple 100 to be placed in tension without bridge 104 contacting staple push rod 130. Staple 100 may be placed in tension, for example, as staple 100 is advanced into a target tissue.



FIG. 11B is an additional top view showing a distal portion of fixation tool shaft 146, staple push rod 130, and staple 100. By comparing FIG. 11A and FIG. 11B, it will be appreciated that staple push rod 130 and staple 100 have been advanced in a distal direction D relative to fixation tool shaft 146. In FIG. 11B, staple 100 is shown extending out of lumen 152 defined by fixation tool shaft 146.


In FIG. 11B, a distal portion 138 of first stake 134A of staple push rod 130 can be seen extending through a first passageway 124A defined by first fluke 106A of staple 100. In FIG. 11B, a first shoulder 142A of first stake 134A is shown contacting proximal surface 108 of first fluke 106A. Distal portion 138 of first stake 134A extends distally of first shoulder 142A and proximal portion 140 of first stake 134A extends proximally of first shoulder 142A. In some useful embodiments, the proximal portion of first stake 134A has a first width and the distal portion of first stake 134A has a second width different from the first width. In some particularly useful embodiments, the first width is greater than the first width. The arrangement allows the proximal portion of stake to engage a proximal surface of the staple to apply pushing forces to the staple.


In FIG. 11B, a distal portion 138 of second stake 134B of staple push rod 130 can be seen extending through a second passageway 124B defined by second fluke 106B of staple 100. In FIG. 11B, a second shoulder 142B of second stake 134B is shown contacting proximal surface 108 of second fluke 106B. In the embodiment of FIG. 11B, proximal portion 140 of second stake 134B may apply pushing force to proximal surface 108 of second stake 134B. Proximal portion 140 of second stake 134B extends proximally of second shoulder 142B and distal portion 138 of second stake 134B extends distally of second shoulder 142B. In the embodiment of FIG. 11B, proximal portion 140 of second stake 134B has a width larger than the width of distal portion 138 of second stake 134B so that the shoulder 142 of second stake 134B contacts proximal surface 108 of second fluke 106B to apply pushing forces thereto.


In the embodiment of FIG. 11B, first stake 134A and second stake 134B are in a substantially unstressed state. It will be appreciated that first stake 134A and second stake 134B can be resiliently urged to assume shapes other than the shape shown in FIG. 11. For example, first stake 134A and second stake 134B may be urged together so that fork 136 of staple push rod 130 and staple 100 can be inserted into lumen 152 defined by fixation tool shaft 146.


With reference to FIG. 11B, it will be appreciated that there is a gap G between staple push rod 130 and bridge 104 of staple 100. In some applications, gap G allows staple 100 to be placed in tension without bridge 104 contacting staple push rod 130. In some applications, placing staple 100 under tension may urge first fluke 106 and second fluke 106 into orientations which lock staple 100 into a target tissue. For example, first fluke 106A and second fluke 106B may be rotated so that a barb of each fluke engages the target tissue. When this is the case, the tension on the staple may keep first fluke 106A and second fluke 106B in the rotated position. Also when this is the case, the barbs of the rotated flukes may inhibit staple pullout.



FIG. 12A through FIG. 12C are a sequence of plan views illustrating an exemplary method in accordance with the present detailed description. FIG. 12A, FIG. 12B, and FIG. 12C may be collectively referred to as FIG. 12. The exemplary method illustrated in FIG. 12 may be used, for example, to fix a tendon repair implant 50 to a target tissue T using a staple 100.


At FIG. 12A, a fixation tool 144 has been used to form a first pilot hole 162A and a second pilot hole 162B in target tissue T. In the embodiment of FIG. 12, fixation tool 144 includes a fixation tool shaft 146 comprising a wall 150 defining a lumen 152. With reference to FIG. 12, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 156B that extend distally beyond a distal end 158 of lumen 152. In the embodiment of FIG. 12A, first prong 154A and second prong 156B have been urged into tissue T to form first pilot hole 162A and second pilot hole 162B. In FIG. 12A a distally directed force F applied to fixation tool shaft 146 is illustrated using an arrow. Force F may be produced, for example, by pushing on a handle that is fixed to a proximal portion of fixation tool shaft 146. It will be appreciated that in some embodiments, such as the embodiment depicted in FIG. 6, one of the first and second pilot holes may be formed through the sheet-like implant and the target tissue, and the other pilot hole may be formed directly in the target tissue without passing through the sheet-like implant. In other words, in various embodiments staples may straddle the perimeter edge of the sheet-like implant (as shown in FIG. 6), may be applied adjacent to the perimeter, and/or be applied to a central region of the implant. In some embodiments, the staples may be used to attach the implant to soft tissue and/or to bone. In FIG. 12A, a staple 100 can be seen residing in lumen 152 of fixation tool shaft 146. For purposes of illustration, fixation tool shaft 146 is shown in partial cross-section in FIG. 12A so that staple 100 is visible residing in lumen 152. With reference to FIG. 12, it will be appreciated that staple 100 is carried by a fork 136 comprising a first stake 134A and a second stake 134B. In FIG. 12A, a distal portion of first stake 134A of staple push rod 130 can be seen extending through a first passageway defined by first fluke 106A. A distal portion of second stake 134B of staple push rod 130 can be seen extending through a second passageway defined by second fluke 106B of staple 100.


In some useful embodiments, each stake is positioned relative to a prong along an inner surface of fixation tool shaft 146 so that the stakes advance into the pilot holes when the stakes are moved in a distal direction. Staple push rod 130 is slidably disposed within lumen 152 defined by along fixation tool shaft 146. Fixation tool 144 includes a mechanism that is capable of creating relative axial motion between staple push rod 130 and fixation tool shaft 146 so that staple push rod 130 slides along fixation tool shaft 146.


At FIG. 12B, relative motion has been created between staple push rod 130 and fixation tool shaft 146 while distally directed force F has been continuously applied to fixation tool shaft 146. By comparing FIG. 12B and FIG. 12A, it will be appreciated that first stake 134A and second stake 134B have been advanced in a distal direction D. With reference to FIG. 12, it will also be appreciated that first stake 134A and second stake 134B have advanced into first pilot hole 162A and second pilot hole 162B, respectively. In FIG. 12B, first fluke 106A is shown residing in first pilot hole 162. Second fluke 106B is residing in second pilot hole 162 in the embodiment of FIG. 12B.


At FIG. 12C, additional relative motion has been created between staple push rod 130 and fixation tool shaft 146 while distally directed force F has been continuously applied to fixation tool shaft 146. By comparing FIG. 12C and FIG. 12B, it will be appreciated that the relative motion between staple push rod 130 and fixation tool shaft 146 has moved fixation tool shaft 146 in a proximal direction P.


By comparing FIG. 12C and FIG. 12B, it will also be appreciated that first arm 102A of staple 100 has been bent and first fluke 106A has been rotated to a toggled position. In the exemplary embodiment of FIG. 12C, force applied to first fluke 106A by first shoulder 142A has caused first fluke 106A to rotate. Also in the embodiment of FIG. 12C, the rotation of first fluke 106A has caused some bending in the distal portion 138 of first stake 134A. With continuing reference to FIG. 12C and FIG. 12B, it will be appreciated that second arm 102B of staple 100 has been bent and second fluke 106A has been rotated to a toggled position. In the exemplary embodiment of FIG. 12C, force applied to second fluke 106b by second shoulder 142B has caused second fluke 106B to rotate. Also in the embodiment of FIG. 12C, the rotation of second fluke 106B has caused some bending in the distal portion 138 of second stake 134B.


With reference to FIG. 12C, it will be appreciated that a first through hole 164A and a second through hole 164B have been formed in tendon repair implant 50. In the embodiment of FIG. 12, first through hole 164A and a second through hole 164B were created by urging first prong 154A and second prong 156B of fixation tool shaft 146 through tendon repair implant 50.



FIG. 13A, FIG. 13B, and FIG. 13C are multiview projections illustrating a fixation tool shaft 146 shown in the previous Figures. FIG. 13D is a cross-sectional view of fixation tool shaft 146 sectioned along cutting plane D-D illustrated in FIG. 13C. These Figures may be collectively referred to as FIG. 13. Fixation tool shaft 146 of FIG. 13 comprises a wall 150 defining a lumen 152. A first prong 154A and a second prong 156B of fixation tool shaft 146 extend distally beyond a distal end 158 of lumen 152.


With reference to FIG. 13, it will be appreciated that fixation tool shaft 146 comprises a proximal portion 170, a distal portion 168 and an intermediate portion 166 disposed between proximal portion 170 and distal portion 168. In the embodiment of FIG. 13, distal portion 168 has an axial extent DA, a major lateral extent LA and a minor lateral extent LB. With reference to FIG. 13, it will be appreciated that axial extent DA is greater than both minor lateral extent LB and major lateral extent LA.



FIG. 14 is an enlarged axial view of fixation tool shaft 146 shown in the previous Figure. With reference to FIG. 14, it will be appreciated that proximal portion 170 of fixation tool shaft 146 comprises a wall 150 having an outer surface 172. In FIG. 14, outer surface 172 is illustrated using a circle. Thus, it will be appreciated that proximal portion 170 of fixation tool shaft 146 has a generally cylindrical outer shape in the exemplary embodiment of FIG. 14. In the exemplary embodiment of FIG. 14, fixation tool shaft 146 has a generally uniform wall thickness. Accordingly, the shape of proximal portion 170 may be generally described as a cylindrical tube. The shape of distal portion 168 may be described as a cylindrical-tube that has been partially flattened. In the exemplary embodiment of FIG. 14, distal portion 168 of fixation tool shaft 146 has a major lateral extent LA and a minor lateral extent LB. With reference to FIG. 14, it will be appreciated that major lateral extent LA is greater than minor lateral extent LB.



FIG. 15 is an additional enlarged axial view of fixation tool shaft 146. With reference to FIG. 15, it will be appreciated that distal portion 168 of fixation tool shaft 146 comprises a first major side SA, a second major side SB, a first minor side SC, and a second minor side SD. In the exemplary embodiment of FIG. 15, each minor side has a first central radius RA and each major side has a second central radius RB. With reference to FIG. 15, it will be appreciated that second central radius RB is greater than first central radius RA. In the exemplary embodiment of FIG. 15, first major side SA, second major side SB, first minor side SC, and second minor side SD each have a generally convex shape. In the exemplary embodiment of FIG. 15, each minor side is generally more convex than each major side.



FIG. 16 is an exploded isometric view of an exemplary fixation tool 144 in accordance with this detailed description. In the embodiment of FIG. 16, fixation tool 144 comprises a fixation tool shaft 146 and a handle 148. In FIG. 16, handle 148 is exploded into two pieces. A proximal portion of fixation tool shaft 146 is fixed to handle 148 when fixation tool 144 is in an assembled state. Fixation tool shaft 146 comprises a wall 150 defining a lumen 152.


When fixation tool 144 is in an assembled state a staple push rod 130 extends into lumen 152 of fixation tool shaft 146. Staple push rod 130 comprises a fork 136 and a shaft 132. Fork 136 comprises a first stake 134A and a second stake 134B. Shaft 132 is coupled between fork 136 and a lever 174. Lever 174 is coupled to a trigger 160. Trigger 160 is pivotably coupled to handle 148 of fixation tool 144 when fixation tool 144 is in an assembled state. In operation, staple push rod 130 will be advanced and/or retracted in an axial direction when trigger 160 is pivoted relative to handle 148.


While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims and subsequently filed claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims
  • 1. A device for attaching a sheet-like implant to a target tissue, comprising: a sheath having a proximal end, a distal end, and a pair of pilot-hole forming members extending distally therefrom; anda single staple push rod slidably disposed within the sheath and having fixed at a distal end thereof a pair of stakes, the pair of stakes having opposing laterally outward surfaces, the pair of stakes configured and adapted to directly and releasably engage a staple disposed at least partially within the sheath such that a portion of the staple is positioned between the laterally outward surfaces of the pair of stakes and an interior surface of the sheath, the single staple push rod being sized and adapted to impart a distally directed force to a staple disposed at least partially within the sheath such that the staple moves distally relative to the sheath distally beyond the pair of pilot-hole forming members,wherein the pair of pilot-hole forming members form pilot-holes when pressed against the target tissue, wherein the pair of stakes is positioned relative to the pair of pilot-hole forming members so that the pair of stakes advances distally into the pair of pilot-holes formed by the pair of pilot-hole forming members while the pair of pilot-hole forming members is in the pilot-holes when the pair of stakes is advanced distally relative to the sheath to extend distally beyond the distal ends of the pair of pilot-hole forming members.
  • 2. The device of claim 1, wherein the pair of stakes diverge from one another to expand against an inner wall of the sheath.
  • 3. The device of claim 1, further comprising a staple engaged with the pair of stakes, the staple comprising a first arm with a first passage extending at least partially through the first arm, a second arm with a second passage extending at least partially through the second arm, and a bridge connecting the first arm and the second arm.
  • 4. The device of claim 3, wherein each stake is dimensioned such that at least a portion of each stake extends into one of the first passage or of the second passage of the staple when the staple is engaged with the pair of stakes.
  • 5. The device of claim 3, wherein the pair of stakes apply a pushing force to the staple when the single staple push rod is advanced distally relative to the sheath, and wherein the pair of stakes impart a laterally outward component to the pushing force.
  • 6. The device of claim 3, wherein the first passage extends from a proximal surface on the first arm to a distal surface on the first arm, wherein the second passage extends from a proximal surface on the second arm to a distal surface on the second arm, wherein each stake of the pair of stakes has a distal portion configured to extend into one of the first passage or of the second passage of the staple and to have a proximal portion wider than the distal portion, andwherein the proximal portion of each stake of the pair of stakes imparts a pushing force on the proximal surface of one of the first and second arms of the staple when the single staple push rod is advanced distally with respect to the sheath.
  • 7. The device of claim 3, wherein each passage of each arm has a proximal opening and a distal opening, and wherein each stake extends through one of the first passage of the first arm or the second passage of the second arm and distally of the respective distal opening.
  • 8. The device of claim 3, wherein each arm of the staple comprises a trunk portion and a fluke portion, wherein the fluke portion is offset from the trunk portion, and wherein the first passage and the second passage extend at least partially through the fluke portion of each arm.
  • 9. The device of claim 8, wherein the pair of pilot-hole forming members have greater lengths than the fluke portion of each arm.
  • 10. The device of claim 8, wherein the pair of stakes are configured to apply pushing forces to the staple offset from the trunk portion of each arm when the single staple push rod is advanced distally with respect to the sheath.
  • 11. An apparatus for attaching a sheet-like implant to a target tissue, comprising: a tube member having a proximal end and a distal end, the distal end of the tube member forming a pair of distally extending pilot-hole forming prongs;a single staple push rod having a proximal end and a distal end and disposed at least partially within the tube member, the single staple push rod slidable relative to the tube member, wherein the distal end of the single staple push rod comprises a pair of stakes; anda staple engaged with the pair of stakes, the staple comprising a first arm with a first passage extending at least partially through the first arm, a second arm with a second passage extending at least partially through the second arm, and a bridge connecting the first arm and the second arm,wherein the pair of stakes is configured and adapted to directly and releasably engage the staple,wherein the pair of stakes is configured and adapted to impart a distally directed force on the staple such that the staple moves distally relative to the tube member distally beyond the pair of distally extending pilot-hole forming prongs, andwherein the pair of stakes is positioned relative to the pair of distally extending pilot-hole forming prongs so that the pair of stakes advance distally into pilot-holes formed by the pair of distally extending pilot-hole forming prongs while the pair of distally extending pilot-hole forming prongs is in the pilot-holes when the pair of stakes is advanced distally relative to the tube member to extend distally beyond the distal ends of the pair of pilot-hole forming members.
  • 12. The apparatus of claim 11, wherein the pair of stakes apply a pushing force including a laterally outward component to the staple when the single staple push rod is advanced distally with respect to the tube member.
  • 13. The apparatus of claim 11, wherein the pair of stakes apply a pushing force to a proximally facing surface of the first arm and to a proximally facing surface of the second arm.
  • 14. The apparatus of claim 11, wherein the first arm comprises a first trunk portion and a first fluke portion offset from the first trunk portion and the second arm comprises a second trunk portion and a second fluke portion offset from the second trunk portion, wherein the first passage extends at least partially through the first fluke portion in a first direction with respect to a longitudinal axis of the first trunk portion,wherein the second passage extends at least partially through the second fluke portion in a second direction with respect to a longitudinal axis of the second trunk portion,wherein the first trunk portion and the second trunk portion are configured to bend under reaction forces when placed in tissue causing the first fluke portion and the second fluke portion to rotate such that the first passage extends at least partially through the first fluke portion in a third direction with respect to the longitudinal axis of the first trunk portion and the second passage extends at least partially through the second fluke portion in a fourth direction with respect to the longitudinal axis of the second trunk portion,wherein the first direction is different from the third direction and the second direction is different from the fourth direction.
  • 15. The apparatus of claim 14, wherein the first trunk portion and the second trunk portion are configured to bend under reaction forces when placed in tissue causing the first fluke portion and the second fluke portion to rotate in opposite directions.
  • 16. An apparatus for attaching a sheet-like implant to a target tissue, comprising: a sheath having a proximal end, a distal end, and a pair of distally extending pilot-hole forming prongs extending distally therefrom;a single staple push rod having a proximal end and a distal end and disposed at least partially within the sheath, the single staple push rod slidable relative to the sheath, wherein the distal end of the single staple push rod comprises a pair of stakes; anda staple disposed on the pair of stakes of the single staple push rod, the staple comprising a first arm with a first passage extending at least partially through the first arm, a second arm with a second passage extending at least partially through the second arm, and a bridge connecting the first arm and the second arm,wherein each stake of the pair of stakes includes a shoulder to directly push against and releasably engage the staple, wherein the shoulder of each stake of the pair of stakes is configured and adapted to impart a distally directed force on the staple such that the staple moves distally relative to the sheath distally beyond the pair of distally extending pilot-hole forming prongs,wherein a portion of the first arm extends distally beyond a distal opening of the first passage, and wherein a portion of the second arm extends distally beyond a distal opening of the second passage, andwherein the pair of distally extending pilot-hole forming prongs is in pilot-holes formed thereby when the pair of stakes is advanced distally relative to the sheath to extend distally beyond the distal ends of the pair of pilot-hole forming members.
  • 17. The apparatus of claim 16, wherein the pair of stakes diverge from one another.
  • 18. The apparatus of claim 16, wherein the first arm comprises a first trunk portion and a first fluke portion offset from the first trunk portion and the second arm comprises a second trunk portion and a second fluke portion offset from the second trunk portion, and wherein the first passage extends at least partially through the first fluke portion and the second passage extends at least partially through the second fluke portion.
  • 19. The apparatus of claim 16, wherein the pair of stakes are positioned relative to the pair of distally extending pilot-hole forming prongs so that the pair of stakes advance into pilot-holes formed by the pair of distally extending pilot-hole forming prongs while the pair of distally extending pilot-hole forming prongs is in the pilot-holes when the pair of stakes are advanced distally relative to the sheath.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/889,687, filed May 8, 2013, which is a continuation of U.S. application Ser. No. 12/794,551, filed Jun. 4, 2010, which claims the benefit of U.S. provisional application Ser. No. 61/313,051 filed Mar. 11, 2010; U.S. provisional application Ser. No. 61/253,800, filed Oct. 21, 2009; and U.S. provisional application Ser. No. 61/184,198, filed Jun. 4, 2009, the disclosures of each incorporated herein by reference.

US Referenced Citations (440)
Number Name Date Kind
511238 Hieatzman Dec 1893 A
765793 Ruckel Jul 1904 A
1728316 Von Wachenfeldt Sep 1929 A
1855546 File Apr 1932 A
1868100 Goodstein Jul 1932 A
1910688 Goodstein May 1933 A
1940351 Howard Dec 1933 A
2034785 Wappler Mar 1936 A
2075508 Davidson Mar 1937 A
2131321 Hart Sep 1938 A
2158242 Maynard May 1939 A
2199025 Conn Apr 1940 A
2201610 Dawson, Jr. May 1940 A
2254620 Miller Sep 1941 A
2277931 Moe Mar 1942 A
2283814 La Place May 1942 A
2316297 Southerland et al. Apr 1943 A
2421193 Gardner May 1947 A
2571813 Austin Oct 1951 A
2630316 Foster Mar 1953 A
2684070 Kelsey Jul 1954 A
2744251 Vollmer May 1956 A
2790341 Keep et al. Apr 1957 A
2817339 Sullivan Dec 1957 A
2825162 Flood Mar 1958 A
2881762 Lowrie Apr 1959 A
2910067 White Oct 1959 A
3068870 Levin Dec 1962 A
3077812 Dietrich Feb 1963 A
3103666 Bone Sep 1963 A
3123077 Alcamo Mar 1964 A
3209754 Brown Oct 1965 A
3221746 Noble Dec 1965 A
3470834 Bone Oct 1969 A
3527223 Shein Sep 1970 A
3570497 Lemole Mar 1971 A
3577837 Bader, Jr. May 1971 A
3579831 Stevens et al. May 1971 A
3643851 Green et al. Feb 1972 A
3687138 Jarvik Sep 1972 A
3716058 Tanner, Jr. Feb 1973 A
3717294 Green Feb 1973 A
3757629 Schneider Sep 1973 A
3777538 Weatherly et al. Dec 1973 A
3837555 Green Sep 1974 A
3845772 Smith Nov 1974 A
3875648 Bone Apr 1975 A
3960147 Murray Jun 1976 A
3976079 Samuels et al. Aug 1976 A
4014492 Rothfuss Mar 1977 A
4127227 Green Nov 1978 A
4259959 Walker Apr 1981 A
4263903 Griggs Apr 1981 A
4265226 Cassimally May 1981 A
4317451 Cerwin et al. Mar 1982 A
4400833 Kurland Aug 1983 A
4422567 Haynes Dec 1983 A
4454875 Pratt et al. Jun 1984 A
4480641 Failla et al. Nov 1984 A
4485816 Krumme Dec 1984 A
4526174 Froehlich Jul 1985 A
4549545 Levy Oct 1985 A
4570623 Ellison et al. Feb 1986 A
4595007 Mericle Jun 1986 A
4624254 McGarry et al. Nov 1986 A
4627437 Bedi et al. Dec 1986 A
4632100 Somers et al. Dec 1986 A
4635637 Schreiber Jan 1987 A
4669473 Richards et al. Jun 1987 A
4696300 Anderson Sep 1987 A
4719917 Barrows et al. Jan 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4762260 Richards et al. Aug 1988 A
4799495 Hawkins et al. Jan 1989 A
4809695 Gwathmey et al. Mar 1989 A
4821721 Chin Apr 1989 A
4851005 Hunt et al. Jul 1989 A
4858608 McQuilkin Aug 1989 A
4884572 Bays et al. Dec 1989 A
4887601 Richards Dec 1989 A
4924866 Yoon May 1990 A
4930674 Barak Jun 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays et al. Dec 1990 A
4994073 Green Feb 1991 A
4997436 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5013316 Goble et al. May 1991 A
5015249 Nakao et al. May 1991 A
5037422 Hayhurst et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5053047 Yoon Oct 1991 A
5059206 Winters Oct 1991 A
5062563 Green et al. Nov 1991 A
5100417 Cerier et al. Mar 1992 A
5102421 Anspach, Jr. Apr 1992 A
5116357 Eberbach May 1992 A
5122155 Eberbach Jun 1992 A
5123913 Wilk et al. Jun 1992 A
RE34021 Mueller et al. Aug 1992 E
5141515 Eberbach Aug 1992 A
5141520 Goble et al. Aug 1992 A
5156609 Nakao et al. Oct 1992 A
5156616 Meadows et al. Oct 1992 A
5167665 McKinney Dec 1992 A
5171259 Inoue Dec 1992 A
5174295 Christian et al. Dec 1992 A
5174487 Rothfuss et al. Dec 1992 A
5176682 Chow Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5203787 Noblitt et al. Apr 1993 A
5217472 Green et al. Jun 1993 A
5222961 Nakao Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5242457 Akopov et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5251642 Handlos Oct 1993 A
5261914 Warren Nov 1993 A
5269753 Wilk Dec 1993 A
5269783 Sander Dec 1993 A
5282829 Hermes Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290217 Campos Mar 1994 A
5304187 Green et al. Apr 1994 A
5333624 Tovey Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5354292 Braeuer et al. Oct 1994 A
5364408 Gordon Nov 1994 A
5366460 Eberbach Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5372604 Trott Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5383477 DeMatteis Jan 1995 A
5397332 Kammerer et al. Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5411522 Trott May 1995 A
5411523 Goble May 1995 A
5417691 Hayhurst May 1995 A
5417712 Whittaker et al. May 1995 A
5425490 Goble et al. Jun 1995 A
5441502 Bartlett Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456720 Schultz et al. Oct 1995 A
5464403 Kieturakis et al. Nov 1995 A
5478354 Tovey et al. Dec 1995 A
5486197 Le et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5503623 Tilton, Jr. Apr 1996 A
5505735 Li Apr 1996 A
5507754 Green et al. Apr 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5545180 Le et al. Aug 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562689 Green et al. Oct 1996 A
5569306 Thal et al. Oct 1996 A
5582616 Bolduc et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5618314 Harwin et al. Apr 1997 A
5622257 Deschenes et al. Apr 1997 A
5628751 Sander et al. May 1997 A
5643319 Green et al. Jul 1997 A
5643321 McDevitt Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649963 McDevitt Jul 1997 A
5662683 Kay Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5674245 Ilgen Oct 1997 A
5681342 Benchetrit Oct 1997 A
5702215 Li Dec 1997 A
5713903 Sander et al. Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5741282 Anspach, III et al. Apr 1998 A
5766246 Mulhauser et al. Jun 1998 A
5782864 Lizardi Jul 1998 A
5797909 Michelson Aug 1998 A
5797931 Bito et al. Aug 1998 A
5797963 McDevitt Aug 1998 A
5807403 Beyar et al. Sep 1998 A
5830221 Stein et al. Nov 1998 A
5836961 Kieturakis et al. Nov 1998 A
5868762 Cragg et al. Feb 1999 A
5873891 Sohn Feb 1999 A
5885258 Sachdeva et al. Mar 1999 A
5885294 Pedlick et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5904696 Rosenman May 1999 A
5919184 Tilton, Jr. Jul 1999 A
5922026 Chin Jul 1999 A
5948000 Larsen et al. Sep 1999 A
5957939 Heaven et al. Sep 1999 A
5957953 Dipoto et al. Sep 1999 A
5968044 Nicholson et al. Oct 1999 A
5980557 Iserin et al. Nov 1999 A
5988171 Sohn Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
5997552 Person et al. Dec 1999 A
6063088 Winslow May 2000 A
6156045 Ulbrich et al. Dec 2000 A
6179840 Bowman Jan 2001 B1
6193731 Oppelt et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6302885 Essiger Oct 2001 B1
6312442 Kieturakis et al. Nov 2001 B1
6315789 Cragg Nov 2001 B1
6318616 Pasqualucci et al. Nov 2001 B1
6322563 Cummings et al. Nov 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
6391333 Li et al. May 2002 B1
6413274 Pedros Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6436110 Bowman et al. Aug 2002 B2
6447522 Gambale et al. Sep 2002 B2
6447524 Knodel et al. Sep 2002 B1
6478803 Kapec et al. Nov 2002 B1
6482178 Andrews et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6506190 Walshe Jan 2003 B1
6511499 Schmieding et al. Jan 2003 B2
6517564 Grafton et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6527795 Lizardi Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6540769 Miller, III Apr 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6554852 Oberlander Apr 2003 B1
6569186 Winters et al. May 2003 B1
6575976 Grafton Jun 2003 B2
6599289 Bojarski et al. Jul 2003 B1
6620185 Harvie et al. Sep 2003 B1
6629988 Weadock Oct 2003 B2
6638297 Huitema Oct 2003 B1
6648893 Dudasik Nov 2003 B2
6666872 Barreiro et al. Dec 2003 B2
6673094 McDevitt et al. Jan 2004 B1
6685728 Sinnott et al. Feb 2004 B2
6692506 Ory et al. Feb 2004 B1
6723099 Goshert Apr 2004 B1
6726704 Loshakove et al. Apr 2004 B1
6726705 Peterson et al. Apr 2004 B2
6740100 Demopulos et al. May 2004 B2
6746472 Frazier et al. Jun 2004 B2
6764500 Muijs Van De Moer et al. Jul 2004 B1
6770073 McDevitt et al. Aug 2004 B2
6779701 Bailly et al. Aug 2004 B2
6800081 Parodi Oct 2004 B2
6835206 Jackson Dec 2004 B2
6849078 Durgin et al. Feb 2005 B2
6887259 Lizardi May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6932834 Lizardi et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6946003 Wolowacz et al. Sep 2005 B1
6949117 Gambale et al. Sep 2005 B2
6964685 Murray et al. Nov 2005 B2
6966916 Kumar Nov 2005 B2
6972027 Fallin et al. Dec 2005 B2
6984241 Lubbers et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
7008435 Cummins Mar 2006 B2
7021316 Leiboff Apr 2006 B2
7025772 Gellman et al. Apr 2006 B2
7033379 Peterson Apr 2006 B2
7037324 Martinek May 2006 B2
7048171 Thornton et al. May 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7083638 Foerster Aug 2006 B2
7087064 Hyde Aug 2006 B1
7112214 Peterson et al. Sep 2006 B2
7118581 Fridén Oct 2006 B2
7144413 Wilford et al. Dec 2006 B2
7144414 Harvie et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7160314 Sgro et al. Jan 2007 B2
7160326 Ball Jan 2007 B2
7163551 Anthony et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7169157 Kayan Jan 2007 B2
7189251 Kay Mar 2007 B2
7201754 Stewart et al. Apr 2007 B2
7214232 Bowman et al. May 2007 B2
7226469 Benavitz et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7247164 Ritchart et al. Jul 2007 B1
7303577 Dean Dec 2007 B1
7309337 Colleran et al. Dec 2007 B2
7320692 Bender et al. Jan 2008 B1
7320701 Haut et al. Jan 2008 B2
7322935 Palmer et al. Jan 2008 B2
7326231 Phillips et al. Feb 2008 B2
7343920 Toby et al. Mar 2008 B2
7368124 Chun et al. May 2008 B2
7377934 Lin et al. May 2008 B2
7381213 Lizardi Jun 2008 B2
7390329 Westra et al. Jun 2008 B2
7399304 Gambale et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7452368 Liberatore et al. Nov 2008 B2
7460913 Kuzma et al. Dec 2008 B2
7463933 Wahlstrom et al. Dec 2008 B2
7465308 Sikora et al. Dec 2008 B2
7481832 Meridew et al. Jan 2009 B1
7485124 Kuhns et al. Feb 2009 B2
7497854 Gill et al. Mar 2009 B2
7500972 Voegele et al. Mar 2009 B2
7500980 Gill et al. Mar 2009 B2
7500983 Kaiser et al. Mar 2009 B1
7503474 Hillstead et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7559941 Zannis et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7585311 Green et al. Sep 2009 B2
7766208 Epperly et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776057 Laufer et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7785255 Malkani Aug 2010 B2
7807192 Li et al. Oct 2010 B2
7819880 Zannis et al. Oct 2010 B2
7918879 Yeung et al. Apr 2011 B2
8114101 Criscuolo et al. Feb 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8821536 Euteneuer et al. Sep 2014 B2
20020077687 Ahn Jun 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020123767 Prestel Sep 2002 A1
20020165559 Grant et al. Nov 2002 A1
20030073979 Naimark et al. Apr 2003 A1
20030125748 Li et al. Jul 2003 A1
20030212456 Lipchitz et al. Nov 2003 A1
20040059416 Murray et al. Mar 2004 A1
20040138705 Heino et al. Jul 2004 A1
20040167519 Weiner et al. Aug 2004 A1
20050015021 Shiber Jan 2005 A1
20050049618 Masuda et al. Mar 2005 A1
20050051597 Toledano Mar 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050060033 Vacanti et al. Mar 2005 A1
20050107807 Nakao May 2005 A1
20050113736 Orr et al. May 2005 A1
20050171569 Girard et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050240222 Shipp Oct 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20060074423 Alleyne et al. Apr 2006 A1
20060178743 Carter Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060293760 Dedeyne Dec 2006 A1
20070078477 Heneveld, Sr. et al. Apr 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070112361 Schonholz et al. May 2007 A1
20070179531 Thornes Aug 2007 A1
20070185506 Jackson Aug 2007 A1
20070190108 Datta et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070270804 Chudik Nov 2007 A1
20070288023 Pellegrino et al. Dec 2007 A1
20080027470 Hart et al. Jan 2008 A1
20080051888 Ratcliffe et al. Feb 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080090936 Fujimura et al. Apr 2008 A1
20080125869 Paz et al. May 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080173691 Mas et al. Jul 2008 A1
20080188874 Henderson Aug 2008 A1
20080188936 Ball et al. Aug 2008 A1
20080195119 Ferree Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080241213 Chun et al. Oct 2008 A1
20080272173 Coleman et al. Nov 2008 A1
20080306408 Lo Dec 2008 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090012521 Axelson, Jr. et al. Jan 2009 A1
20090030434 Paz et al. Jan 2009 A1
20090069806 De La Mora Levy et al. Mar 2009 A1
20090076541 Chin et al. Mar 2009 A1
20090105535 Green et al. Apr 2009 A1
20090112085 Eby Apr 2009 A1
20090134198 Knodel et al. May 2009 A1
20090156986 Trenhaile Jun 2009 A1
20090156997 Trenhaile Jun 2009 A1
20090182245 Zambelli Jul 2009 A1
20090242609 Kanner Oct 2009 A1
20100145367 Ratcliffe Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100191332 Euteneuer et al. Jul 2010 A1
20100241227 Euteneuer et al. Sep 2010 A1
20100249801 Sengun et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100292715 Nering et al. Nov 2010 A1
20100292791 Lu et al. Nov 2010 A1
20100312250 Euteneuer et al. Dec 2010 A1
20100312275 Euteneuer et al. Dec 2010 A1
20100327042 Amid et al. Dec 2010 A1
20110000950 Euteneuer et al. Jan 2011 A1
20110004221 Euteneuer et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110034942 Levin et al. Feb 2011 A1
20110040310 Levin et al. Feb 2011 A1
20110040311 Levin et al. Feb 2011 A1
20110066166 Levin et al. Mar 2011 A1
20110106154 DiMatteo et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110224702 Van Kampen et al. Sep 2011 A1
20110264149 Pappalardo et al. Oct 2011 A1
20120160893 Harris et al. Jun 2012 A1
20120193391 Michler et al. Aug 2012 A1
20120209401 Euteneuer et al. Aug 2012 A1
20120211543 Euteneuer Aug 2012 A1
20120248171 Bailly et al. Oct 2012 A1
20120316608 Foley Dec 2012 A1
20130153627 Euteneuer et al. Jun 2013 A1
20130153628 Euteneuer Jun 2013 A1
20130158554 Euteneuer et al. Jun 2013 A1
20130158587 Euteneuer et al. Jun 2013 A1
20130158661 Euteneuer et al. Jun 2013 A1
20130172920 Euteneuer et al. Jul 2013 A1
20130172997 Euteneuer et al. Jul 2013 A1
20130184716 Euteneuer et al. Jul 2013 A1
20130240598 Euteneuer et al. Sep 2013 A1
20130245627 Euteneuer et al. Sep 2013 A1
20130245682 Euteneuer et al. Sep 2013 A1
20130245706 Euteneuer et al. Sep 2013 A1
20130245707 Euteneuer et al. Sep 2013 A1
20130245762 Van Kampen et al. Sep 2013 A1
20130245774 Euteneuer et al. Sep 2013 A1
Foreign Referenced Citations (36)
Number Date Country
2390508 May 2001 CA
0142225 May 1985 EP
0298400 Jan 1989 EP
0390613 Oct 1990 EP
0543499 May 1993 EP
0548998 Jun 1993 EP
0557963 Sep 1993 EP
0589306 Mar 1994 EP
0908152 Apr 1999 EP
1491157 Dec 2004 EP
1559379 Aug 2005 EP
2030576 Mar 2009 EP
2154688 Sep 1985 GB
2397240 Jul 2004 GB
58188442 Nov 1983 JP
2005506122 Mar 2005 JP
2006515774 Jun 2006 JP
8505025 Nov 1985 WO
0176456 Oct 2001 WO
0234140 May 2002 WO
03105670 Dec 2003 WO
2004000138 Dec 2003 WO
2004093690 Nov 2004 WO
2005016389 Feb 2005 WO
2006086679 Aug 2006 WO
2007014910 Feb 2007 WO
2007030676 Mar 2007 WO
2007078978 Jul 2007 WO
2007082088 Jul 2007 WO
2008111073 Sep 2008 WO
2008111078 Sep 2008 WO
2008139473 Nov 2008 WO
2009079211 Jun 2009 WO
2009143331 Nov 2009 WO
2011095890 Aug 2011 WO
2011128903 Oct 2011 WO
Non-Patent Literature Citations (18)
Entry
Bahler et al.; Trabecular Bypass Stents Decrease Intraocular Pressure in Cultured Human Anterior Segments; Am. J. Opthalmology; 138(6): 988-994; Dec. 2004.
Chamay et al.; Digital Contracture Deformity After Implantation of a Silicone Prosthesis: Light and Electron Microscopic Study; The Journal of Hand Surgery; 3(3): 266-270; May 1978.
D'Ermo et al.; Our Results with the Operation of ab externo; Ophthalmologica; 168: 347-355; 1971.
France et al.; Biomechanical Evaluation of Rotator Cuff Fixation Methods; The American Journal of Sports Medicine; 17(2): 176-181; Mar-Apr. 1989.
Goodship et al.; An Assessment of Filamentous Carbon Fibre for the Treatment of Tendon Injury in the Horse; Veterinary Record; 106: 217-221; Mar. 8, 1980.
Hunter et al.; Flexor-Tendon Reconstruction in Severely Damaged Hands; The Journal of Bone and Joint Surgery (American Volume); 53-A(5): 329-358; Jul. 1971.
Johnstone et al.; Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System; Am. J. Opthalmology; 76(6): 906-917; Dec. 1973.
Kowalsky et al.; Evaluation of Suture Abrasion Against Rotator Cuff Tendon and Proximal Humerus Bone; Arthroscopy: The Journal of Arthroscopic and Related Surgery; 24(3): 329-334; Mar. 2008.
Lee et al.; Aqueous-Venous and Intraocular Pressure; Preliminary Report of Animal Studies; Investigative Ophthalmology; 5(1):59-64; Feb. 1966.
Maepea et al.; The Pressures in the Episcleral Veins, Schlemm's Canal and the Trabecular Meshwork in Monkeys: Effects of Changes in Intraocular Pressure; Exp. Eye Res.; 49: 645-663; Oct. 1989.
Nicolle et al.; A Silastic Tendon Prosthesis as an Adjunct to Flexor Tendon Grafting: An Experimental and Clinical Evaluation; British Journal of Plastic Surgery; 22(3-4): 224-236; 1969.
Rubin et al.; The Use of Acellular Biologic Tissue Patches in Foot and Ankle Surgery; Clinics in Podiatric Medicine and Surgery; 22: 533-552; Oct. 2005.
Schultz; Canaloplasty Procedure Shows Promise for Open-Angle Glaucoma in European Study; Ocular Surgery News; pp. 34-35; Mar. 1, 2007.
Spiegel et al.; Schlemm's Canal Implant: A New Method to Lower Intraocular Pressure in Patients with POAG; Ophthalmic Surgery and Lasers; 30(6): 492-494; Jun. 1999.
Stetson et al.; Arthroscopic Treatment of Partial Rotator Cuff Tears; Operative Techniques in Sports Medicine; 12 (2): 135-148; Apr. 2004.
Valdez et al.; Repair of Digital Flexor Tendon Lacerations in the Horse, Using Carbon Fiber Implants; JAYMA; 177 (5): 427-435; Sep. 1, 1980.
Wikipedia, The Free Encyclopedia; Rotator Cuff Tear; Downloaded from: <http://en.wikipedia.org/Rotator_cuff_tear> on Dec. 6, 2012; 14 pages.
Alexander et al.; Ligament and Tendon Repair with an Absorbable Polymer-Coated Carbon Fiber Stent; Bulletin of the Hospital for Joint Diseases Orthopaedic Institute; 46(2): 155-173; Fall 1986.
Related Publications (1)
Number Date Country
20150272573 A1 Oct 2015 US
Provisional Applications (3)
Number Date Country
61313051 Mar 2010 US
61253800 Oct 2009 US
61184198 Jun 2009 US
Continuations (2)
Number Date Country
Parent 13889687 May 2013 US
Child 14733458 US
Parent 12794551 Jun 2010 US
Child 13889687 US