The present invention relates to methods and apparatus for dental implantation.
The following patent documents, the disclosures of which are hereby incorporated by reference, are believed to represent the current state of the art:
U.S. Pat. Nos. 6,902,401; 6,814,575; 6,382,977; 6,315,555; 5,927,982; 6,905,336; 5,993,211; 6,447,296; 6,640,128; 6,932,823; 6,497,134; 5,856,844; 6,402,707; 6,340,367; 5,867,696; 5,697,779; 7,006,085 and 6,434,507; and
Applicant/Assignee's Published PCT Application No. WO02/096261.
The present invention seeks to provide an improved apparatus and methods for operating on partially or fully edentulous patients.
There is thus provided in accordance with a preferred embodiment of the present invention a method for implanting a tooth implant in an at least partially edentulous patient including the steps of anchoring at least one attachment element in a patient's jaw bone, removably and replaceably mounting a carrier assembly bearing at least one fiducial marker onto the at least one attachment element in a precisely repeatable position with respect to the patient's jaw bone, employing the carrier assembly for providing registration between the at least one fiducial marker and the patient's jaw bone and implanting the tooth implant by employing a tracking system which uses the registration to guide a drilling assembly.
In accordance with a preferred embodiment of the present invention the at least one attachment element includes at least one jaw bone fastener. Preferably, the at least one attachment element includes three jaw bone fasteners each having a generally ball-shaped head. Additionally or alternatively, the jaw bone fasteners are bone screws.
In accordance with another preferred embodiment of the present invention the method also includes, following the anchoring and prior to the removably and replaceably mounting a carrier assembly, removeably and replaceably mounting at least one intermediate element on the at least one attachment element, taking an impression of the patient's jaw, employing the impression of the patient's jaw to provide a model of the patient's jaw, mounting at least one carrier mount onto the at least one intermediate element and mounting a fiducial carrier bearing the at least one fiducial marker onto the at least one carrier mount, thereby to provide the carrier assembly. Preferably, the removably and replaceably mounting at least one intermediate element includes removably and replaceably mounting at least one impression cap having a flat surface onto the at least one attachment element. Additionally or alternatively, the removably and replaceably mounting at least one intermediate element includes removably and replaceably mounting three impression caps, each having a flat surface onto each of the generally ball shaped heads.
In accordance with yet another preferred embodiment of the present invention the method also includes, prior to the anchoring, taking a preliminary impression of the patient's jaw and employing the preliminary impression for preparing a temporary base and rim suited to the patient's jaw. Preferably, the taking an impression includes employing the temporary base and rim as an impression tray while taking the impression. Additionally and preferably, the taking an impression includes taking an impression which has the at least one intermediate element adhered thereto.
In accordance with still another preferred embodiment of the present invention the employing the impression of the patient's jaw to provide a model includes employing the impression to provide the model, which has anchored therein at least one attachment element analog, removeably positioning radio-opaque artificial teeth on the model. Preferably, the removeably positioning radio-opaque artificial teeth includes removeably positioning radio-opaque artificial teeth on the model while the model is in an articulator. Additionally or alternatively, the mounting at least one carrier mount onto the at least one intermediate element includes adhering the at least one carrier mount to the at least one intermediate element, while the at least one intermediate element is mounted onto the at least one attachment element analog.
In accordance with a further preferred embodiment of the present invention the mounting a fiducial carrier includes employing a first adhesive to adhere the fiducial carrier to the at least one carrier mount. Preferably, the mounting a fiducial carrier includes employing a second adhesive to adhere the fiducial carrier to the radio-opaque artificial teeth. Additionally or alternatively, the removably and replaceably mounting a carrier assembly includes removably and replaceably mounting the at least one intermediate element, the at least one carrier mount, the radio-opaque artificial teeth and the fiducial carrier onto the at least one attachment element in a precisely repeatable position with respect to the patient's jaw bone.
In accordance with yet a further preferred embodiment of the present invention the employing the carrier assembly for providing registration includes providing at least one CT image of the patient's jaw while the carrier assembly is mounted onto the at least one attachment element. Preferably, the method also includes, prior to the implanting the tooth implant providing three-dimensional registration between the at least one fiducial marker, the tracking system and the drilling assembly. Additionally or alternatively, the method also includes, prior to the implanting the tooth implant and following the employing the carrier assembly for providing registration, removing the radio-opaque artificial teeth and the fiducial carrier from the carrier assembly.
In accordance with still a further preferred embodiment of the present invention the removing includes employing a cutting device to cut the first adhesive and the second adhesive.
There is also provided in accordance with a preferred embodiment of the present invention apparatus for use in implanting a tooth implant including at least one attachment element including an anchor portion configured for anchoring in a patient's jaw bone and an attachment portion and a fiducial marker carrier assembly containing a plurality of fiducial markers and including at least one mounting portion configured for removable and replaceable mounting onto the attachment portion of the at least one attachment element in a precisely repeatable position with respect to the patient's jaw bone.
In accordance with a preferred embodiment of the present invention the at least one attachment element includes at least one jaw bone fastener. Preferably, the at least one jaw bone fastener includes three jaw bone fasteners, each having a generally ball-shaped head and the at least one mounting portion includes three mounting portions, each configured for removable and replaceable mounting onto the attachment portion of one of the three jaw bone fasteners in a precisely repeatable position with respect to the patient's jaw bone. Additionally or alternatively, the jaw bone fasteners are bone screws.
In accordance with another preferred embodiment of the present invention the apparatus also includes at least one intermediate element configured to be mounted onto the attachment portion of the at least one attachment element and to have the fiducial marker carrier assembly mounted thereon, at least one carrier mount configured to be mounted onto the at least one intermediate element and a fiducial carrier bearing the plurality of fiducial markers configured to be mounted onto the at least one carrier mount, thereby to provide the fiducial marker carrier assembly. Preferably, the at least one intermediate element includes at least one impression cap having a flat surface. Additionally or alternatively, the fiducial marker carrier assembly includes the at least one intermediate element, the at least one carrier mount, the fiducial carrier and a plurality of radio-opaque artificial teeth.
In accordance with still another preferred embodiment of the present invention the fiducial marker carrier assembly includes a first adhesive adhering the fiducial carrier to the at least one carrier mount and a second adhesive adhering the plurality of radio-opaque artificial teeth to the fiducial carrier. Preferably, the apparatus also includes a tracking system including at least one IR emitter configured for providing tracking of motions of a patient during implantation of the tooth implant. Additionally or alternatively, the apparatus also includes a dental surgery device including at least one IR emitter configured for providing tracking of motions of a dental surgeon during implantation of the tooth implant.
There is also provided in accordance with an additional preferred embodiment of the present invention a method for implanting a tooth implant in a patient including the steps of attaching at least one attachment element to a patient's teeth by exclusively chair-side configuring of at least a portion of the at least one attachment element to match the patient's teeth, mounting a carrier bearing at least one fiducial marker onto the at least one attachment element, employing the carrier for providing registration between the at least one fiducial marker and the patient's jaw bone and implanting the tooth implant by employing a tracking system which uses the registration to guide a drilling assembly.
In accordance with a preferred embodiment of the present invention the exclusively chair-side configuring includes molding and hardening to a rigid state of a precise tooth shape retaining material. Preferably, the attaching at least one attachment element includes fixedly attaching the at least one attachment element and the method also includes destroying the at least a portion of the at least at least one attachment element following the implanting, in order to remove the at least one attachment element from the patient's teeth. Additionally or alternatively, the attaching at least one attachment element includes removably and replaceably attaching the at least one attachment element to the patient's teeth at a precisely repeatable position with respect to the patient's jaw bone.
In accordance with another preferred embodiment of the present invention the employing the carrier for providing registration between the at least one fiducial marker and the patient's jaw bone includes providing at least one CT image of the patient's jaw while the at least one attachment element is attached to the patient's teeth and the at least one fiducial marker is mounted onto the at least one attachment element. Preferably, the method also includes prior to the implanting the tooth implant, providing three-dimensional registration between the at least one fiducial marker, the tracking system and the drilling assembly. Additionally or alternatively, the method also includes, prior to the implanting the tooth implant, removing the carrier from the at least one attachment element.
There is further provided in accordance with a further preferred embodiment of the present invention apparatus for implanting a tooth implant in a patient including a material useful for exclusively chair-side configuring of at least a portion of at least one attachment element to match the patient's teeth, a carrier assembly arranged for mounting onto the at least one attachment element and bearing at least one fiducial marker useful for providing registration between the at least one fiducial marker and the patient's jaw bone which is employed by a tracking system to guide an implant drilling assembly.
In accordance with a preferred embodiment of the present invention the material useful for exclusively chair-side configuring includes a precise tooth shape retaining material suitable for molding and hardening to a rigid state. Preferably, the at least one attachment element includes a fixedly attachable attachment element configured to be fixedly attached to the patient's teeth. Additionally or alternatively, the at least one attachment element is configured to be removably and replaceably attachable to the patient's teeth at a precisely repeatable position with respect to the patient's jaw bone.
In accordance with another preferred embodiment of the present invention the apparatus also includes a tracking system including at least one IR emitter configured for providing tracking of motions of the patient during implantation of the tooth implant. Preferably, the apparatus also includes a dental surgery device including at least one IR emitter configured for providing tracking of motions of a dental surgeon during implantation of the tooth implant.
There is also provided in accordance with another preferred embodiment of the present invention a method for implanting a tooth implant in a patient including the steps of exclusively chair-side attaching at least one radio-opaque tooth shape representation element to a patient's jaw, mounting a carrier bearing at least one fiducial marker onto the patient's jaw, employing the carrier and the at least one radio-opaque tooth shape representation element for providing registration between the at least one fiducial marker, the at least one radio-opaque tooth shape representation element and the patient's jaw bone and implanting the tooth implant by employing a tracking system which uses the registration to guide a drilling assembly.
In accordance with a preferred embodiment of the present invention the at least one radio-opaque tooth shape representation element represents a tooth which is to be replaced by the tooth implant. Alternatively the at least one radio-opaque tooth shape representation element represents a tooth opposed to a tooth which is to be replaced by the tooth implant. Preferably, the exclusively chair-side attaching includes the steps of placing a radiolucent hardenable molding material on the patient's jaw at a location of an intended tooth implant, causing the patient to bite down on the hardenable molding material to create an impression of at least one tooth opposed to a tooth which is to be replaced by the tooth implant and employing the impression, in vivo, to mold a radio-opaque material into the at least one radio-opaque tooth shape representation element.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
Prior to the stage illustrated in
Referring now specifically to
It is appreciated that due to the provision of the spherical head 104, the longitudinal axes of the bone screws 100, here designated by reference numeral 108, need not necessarily be parallel, although it is desirable that they be as parallel to each other as possible. It is preferred that the distribution of the bone screws 100 be generally as illustrated, with a center bone screw 100 preferably being located at the midline of the jaw and two additional bone screws 100 being located posterior to the most posterior of the implants to be placed.
As seen in
Referring now to
It is noted that preferably the impression caps 110 adhere to the impression material 114 and thus form part of the impression, which is designated by reference numeral 118.
Preferably, following the step shown in
At this stage, a conventional impression preferably is taken of the antagonist jaw.
Referring now to
Referring now to
Turning to
Preferably, as seen in
Reference is now made to
Referring now to
Reference is now made to
Three-dimensional spatial registration is then established between the IR emitters 172 of tracking device 170 and the fiducial markers 162 on carrier 160. This is preferably done by employing a conventional IR trackable handpiece 180, commercially available from Denx Ltd. under catalog number AIG 2400, and is described in applicant/assignee's published PCT application No. WO02/096261, which includes a multiplicity of IR emitters 182, typically 14 in number, and a three-dimensional IR imager 184, such as a tracking camera which is commercially available from Denx Ltd. under catalog number ATR0014.
Typically, as shown in
Reference is now made to
Referring now to
Reference is now made to
Reference is now made
Additionally in accordance with a preferred embodiment of the present invention,
Referring now specifically to
Multipurpose tooth engagement assembly 200 preferably includes a multipurpose tooth engagement element 208, which preferably comprises a trough-like portion 210 which preferably is integrally formed with a channel-defining portion 212 lying alongside the trough-like portion 210. The trough-like portion 210 preferably includes a base 214 which has a generally straight edge 216 and a somewhat curved edge 218. Extending in a plane which is inclined outwardly with respect to base 214 along generally straight edge 216 is a first, generally straight, trough wall 220, which lies adjacent channel-defining portion 212. Extending in a plane which is inclined outwardly with respect to base 214 along curved edge 218 is a curved trough wall 222. Trough wall 222 is of a height which is approximately one half of the height of straight trough wall 220.
Channel defining portion 212 preferably includes a base 224 which is coplanar with base 214, an inner side wall 226 which is at least partially common with trough wall 220, an outer side wall 228 and a wall 230, which is generally parallel to and spaced from base 224.
Formed in base 214 are a plurality of recesses 232 for retaining impression material 234, which is preferably Z100 restorative, commercially available from 3M, and a threaded aperture 236 which accommodates screw 204. Trough walls 220 and 222 are preferably formed with a plurality of apertures 240.
Base 224 and walls 226, 228 and 230 of channel defining portion 212 together define a channel 242 which is configured to accept a mounting rod of a patient tracking device, as described hereinbelow with reference to
It is appreciated that various types and configurations of multipurpose tooth engagement elements and assemblies may be provided to conform to various regions of a patient's jaws.
It is seen that an impression is taken of part of the patient's teeth, using impression material 234, at a region preferably as far as possible from an intended implantation site. The impression material 234 is hardened while on the patient's teeth, preferably by light curing. It is appreciated that since the impression material 234 is hardened and it is sought to be able to repeatedly remove and replace the impression onto the patient's teeth with a high level of accuracy, care must be taken to prevent the impression material from entering interstices of the patient's teeth, as by blocking with a suitable filler material (not shown), such as ORASEAL® putty, commercially available from Ultradent Products Inc. of Jordan, Utah USA. Alternatively, should the impression material have entered undercuts or interstices of the patient's teeth, those portions of the impression may be excised by cutting using conventional dental tools.
Referring now to
As seen in
Reference is now made to
Referring now to
Reference is now made to
Three-dimensional spatial registration is then established between the IR emitters 276 of tracking device 270 and the fiducial markers 206 on carrier 202. This is preferably done by employing an IR trackable handpiece 280, commercially available from Denx Ltd. under catalog number AIG 2400, and is described in applicant/assignee's published PCT application No. WO02/096261, which includes a multiplicity of IR emitters 282, typically 14 in number, and a three-dimensional IR imager 284, such as a tracking camera which is commercially available from Denx Ltd. under catalog number ATR0014.
Typically, as shown, an operator places a tip of a contact bit 286 mounted in handpiece 280, onto each fiducial marker 206 and images the three dimensional spatial relationship between that IR emitters 276 of the tracking device 270 and the IR emitters 282 of the handpiece 280, thus establishing the three-dimensional spatial relationship between that fiducial marker 206 and IR emitters 276 of the tracking device 270. This process is carried out sequentially for each of the fiducial markers 206, thus establishing the fixed three-dimensional spatial relationship between the patient tracking device 270 and the patient's jaw.
Reference is now made to
Reference is now made to
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes combinations and subcombinations of various features of the present invention as well as modifications which would occur to persons reading the foregoing description and which are not in the prior art.
This application is the U.S. national phase of International Application No. PCT/IL2006/000473, filed Apr. 11, 2006, which claims priority from U.S. Provisional Patent Application No. 60/672,615, entitled IGI EDENTULOUS PATIENT KIT, filed Apr. 18, 2005 and to U.S. Provisional Patent Application No. 60/733,197, entitled ACCURATE REPEATABLE BITE SPLINT, filed Nov. 4, 2005, the disclosures of which are hereby incorporated by reference and priority of which is hereby claimed pursuant to 37 CFR 1.78(a)(4) and (5)(i). The International Application published in English on Oct. 26, 2006 as WO 2006/111964 under PCT Article 21(2). Reference is made to U.S. Provisional Patent Application No. 60/672,615, entitled IGI EDENTULOUS PATIENT KIT, filed Apr. 18, 2005, and to U.S. Provisional Patent Application No. 60/733,197, entitled ACCURATE REPEATABLE BITE SPLINT, filed Nov. 4, 2005, the disclosures of which are hereby incorporated by reference and priority of which is hereby claimed pursuant to 37 CFR 1.78(a) (4) and (5)(i).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2006/000473 | 4/11/2006 | WO | 00 | 4/4/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/111964 | 10/26/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3514858 | Silverman | Jun 1970 | A |
4325373 | Slivenko et al. | Apr 1982 | A |
5133660 | Fenick | Jul 1992 | A |
5343391 | Mushabac | Aug 1994 | A |
5383454 | Bucholz | Jan 1995 | A |
5688118 | Hayka et al. | Nov 1997 | A |
5697779 | Sachdeva et al. | Dec 1997 | A |
5770943 | Zhou | Jun 1998 | A |
5842858 | Truppe | Dec 1998 | A |
5856844 | Batterman et al. | Jan 1999 | A |
5859922 | Hoffmann | Jan 1999 | A |
5867696 | Okayama et al. | Feb 1999 | A |
5872829 | Wischmann et al. | Feb 1999 | A |
5885077 | Jeffer | Mar 1999 | A |
5927982 | Kruger | Jul 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5993211 | Broberg et al. | Nov 1999 | A |
6076008 | Bucholz | Jun 2000 | A |
6228089 | Wahrburg | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6315555 | Bortolotti et al. | Nov 2001 | B1 |
6340367 | Stinson et al. | Jan 2002 | B1 |
6382977 | Kumar | May 2002 | B1 |
6402707 | Ernst et al. | Jun 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6447296 | Worthington | Sep 2002 | B2 |
6497134 | Faul et al. | Dec 2002 | B1 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6814575 | Poirier et al. | Nov 2004 | B2 |
6902401 | Jorneus et al. | Jun 2005 | B2 |
6905336 | Summers | Jun 2005 | B2 |
6932823 | Grimm et al. | Aug 2005 | B2 |
7006085 | Acosta et al. | Feb 2006 | B1 |
7457443 | Persky | Nov 2008 | B2 |
7653455 | Cinader, Jr. | Jan 2010 | B2 |
7785108 | Tache et al. | Aug 2010 | B2 |
Number | Date | Country |
---|---|---|
19615456 | Oct 1997 | DE |
19750637 | Jul 1998 | DE |
0488987 | Jun 1992 | EP |
WO-9956156 | Nov 1999 | WO |
02096261 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080171305 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60672615 | Apr 2005 | US |