The technical field generally relates to radio communication network planning, and more particularly relates to methods and apparatus for determining wireless network sufficiency when utilizing vehicle-based relay nodes.
Communication with portable cellular telephones (“portable devices”) is often achieved with direct communication with the portable device and a base station, e.g., a “cellular tower”. However, such direct communication is often problematic due to any number of technical and environmental factors. For instance, in urban areas, buildings often block radio frequency (“RF”) signals that are emitted between the portable device and a base station, which may prevent a communications link from being established or may lead to a low quality link.
One potential improvement to the typical telecommunication system is to utilize relay nodes which can act as a relay or “repeater” between the portable devices and the base stations. These relay nodes may be a part of a vehicle, e.g., an automobile. Such vehicular relay nodes may change the dynamics of the telecommunications system by increasing capacity for each base station and/or limiting the amount of additional base stations that may be needed to anticipate future growth of the system.
Therefore, it is desirable to provide systems and methods for telecommunications network planning with vehicle-based relay nodes. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
In one embodiment, a method of planning communication network infrastructure is provided. The method includes calculating a potential capacity of a plurality of vehicular relay nodes in an area including employing a quantity of vehicles in the area, wherein the plurality of vehicular relay nodes relay data between a plurality of portable devices and at least one base station. The method also includes calculating a potential data demand in the area for transferring data between the plurality of portable devices and the at least one base station. The method further includes determining whether a number of the at least one base station serving the area is sufficient by utilizing the potential capacity of the plurality of vehicular relay nodes in the area and the potential data demand in the area.
In another embodiment, an apparatus is provided for assisting in planning communication network infrastructure. The apparatus includes a computer having a processor. The processor is configured to calculate a potential capacity of a plurality of vehicular relay nodes in an area, wherein the plurality of vehicular relay nodes relay data between a plurality of portable devices and at least one base station. The processor is also configured to calculate a potential data demand in the area for transferring data between the plurality of portable devices and the at least one base station. The processor is further configured to determine whether a number of the at least one base station serving the area is sufficient by utilizing the potential capacity of the plurality of vehicular relay nodes in the area and the potential data demand in the area.
The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Referring to the Figures, wherein like numerals indicate like parts throughout the several views, an exemplary system 100 of facilitating communications are shown and described herein. Furthermore, methods 300, 400 to determine infrastructure requirements to implement the system 100 in a geographic area 101 are shown and described herein. A computer 500 to implement one or more of the methods 300, 400 are also shown and described herein. It should be noted that the computer 500 and methods 300, 400 described herein may be implemented during (a) initial deployment planning of the system 100 (i.e., from “scratch”) or (b) subsequent deployment planning for upgrade and maintenance that typically happens on a regular basis.
One exemplary embodiment of the system 100 is shown in
Each base station 102 is in communication with a telecommunications network 109 and configured to transfer data to and from the telecommunications network 109, as is also appreciated by those skilled in the art. The telecommunications network 109 may utilize wireless communications techniques (e.g., RF signals and/or other wireless point-to-point communications) and/or physical links (e.g., electrically conductive wire and/or fiber-optic cables). Although not shown in
The system 100 also includes a plurality of vehicular relay nodes 112. The vehicular relay nodes 112 of the exemplary embodiments are each associated with a vehicle 114, such as an automobile. That is, the vehicular relay nodes 112 are supported by or carried by the vehicles 114. However, other suitable vehicles 114 may alternatively be utilized to carry the vehicular relay nodes 112, including, but not limited to, motorcycles, trains, boats, spacecraft, and aircraft. Furthermore, the vehicular relay nodes 112 need not necessarily be associated with vehicles 114. For instance, the vehicular relay nodes 112 may be carried by a person, a bicycle, a cart, etc.
The vehicular relay nodes 112 are configured to communicate via communications links 116 with the at least one base station 102. In the exemplary embodiment shown in
It should be appreciated that the communication links 116 between the vehicular relay nodes 112 and the at least one base station 102 may also be implemented with physical links (not shown), e.g., electrically conductive cable and/or fiber optics. For example, with an electric vehicle 114, the physical communication link 116 may be established when the vehicle 114 is plugged into a charging station (not shown).
The battery 124 of each vehicular relay node 112 is electrically connected to the radio 118 and the controller 122 for supplying power to each. The battery 124 may be the same battery used to provide power to other systems (not shown) of the vehicle 114. Alternatively, the battery 124 may be separate from the battery of the vehicle 114.
Each vehicular relay node 112 is configured to relay data between the base station 102 and at least one portable communications device 130, hereafter referred to simply as “the portable device 130” or “the portable devices 130”. The portable devices 130 of the exemplary embodiment are handheld devices allowing a user (not shown) to communicate with audio, video, and/or data with the vehicular relay node 112. The portable devices 130 may also be configured to wirelessly communicate directly with the base station 102.
The portable device 130 may be referred to as a cellular phone, a cell phone, a smart phone, a mobile phone, a personal digital assistant, tablet, and/or a walkie-talkie. However, those skilled in the art appreciate other devices that may function as the portable communications device 130. The portable communications device 130 includes a radio 132 and an antenna 134 configured to transmit and receive RF signals via communications links 116. The radio 132 may alternatively be referred to as a transceiver, as is appreciated by those skilled in the art. The portable device 130 also includes a controller 136 in communication with the radio 132. The controller 136 is configured to control the radio 132 and transfer signals and/or data there between. The controller 136 may include any hardware, software, firmware, electronic control component, processing logic, and/or processor device, individually or in any combination, including without limitation: application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality. Those skilled in the art also appreciate that the radio 132, antenna 134, and/or controller 136 may be separate components or integrated with one another as a unitary component. The portable device 130 of this embodiment also includes a battery (not shown). The battery is electrically connected to the radio 132 and the controller 136 for supplying power to each.
In some embodiments, a communications protocol associated with communications between the base station 102 and the vehicular relay node 112 may be different from a communications protocol associated with communications between the vehicular relay node 112 and the portable device 130. Also, in some embodiments, a frequency band associated with communications between the base station 102 and the vehicular relay node 112 may be different from a frequency band associated with communications between the vehicular relay node 112 and the portable device 130.
For example, communications between the base station 102 and the vehicular relay node 112 may be implemented utilizing frequencies and protocols associated with GSM, UMTS, and/or LTE cellular standards, while communications between the vehicular relay node 112 and the portable device 130 may be implemented utilizing cellular protocols and standards as described above or a Wi-Fi connection (i.e., utilizing frequencies and protocols associated with one or more of the IEEE 802.11 family of standards). Of course numerous variations of the frequencies and protocols will be appreciated by those skilled in the art.
Utilizing the vehicular relay nodes 112 to relay data instead of direct connection between the portable devices 130 and the base stations 102 results in less base stations 102 in the geographic area 101 as well as less overall bandwidth needed at the base stations 102. A view of an exemplary geographic area 101 is shown in
In the exemplary embodiments shown in
Cp(t)=Nvehicles(t)×PVeRN×
wherein Nvehicles(t) is the number of vehicles 114 in the geographic area 101 during a certain time period; PVeRN is a penetration factor corresponding to the proportion of vehicles 114 in the geographic area 101 that are equipped with the vehicular relay node 112; and
The number of vehicles 114 in the geographic area 101 during a certain time period Nvehicles(t) may be estimated by multiplying the size ABS of the geographic area 101 with the number of parking spaces Nspace in the geographic area 101 and with the parking utilization U(t) during a certain time period. The parking utilization U(t) refers to the proportion of parking spaces Nspace that are occupied. The size ABS of the geographic area 101, the number of parking spaces Nspace in the geographic area 101, and the parking utilization U(t) during a certain time period may be determined by a physical study of the geographic area 101, known standards, and other resources as appreciated by those skilled in the art. Accordingly, the potential capacity Cp(t) of the vehicular relay nodes 112 at a certain time period may be calculated as follows:
Cp(t)=ABS×Nspace×U(t)×PVeRN×
The average capacity
wherein N is the number of vehicles 114 in the area 101, Nvehicles(di) is the number of vehicles 114 at a certain distance di from the at least one base station 102, and CVeRN(di) is the capacity at a certain distance di from the base station 102.
The method 300 further includes, at 304, calculating a potential data demand D(t) in the geographic area 101. The potential data demand D(t) refers to the maximum amount of data that is potentially sent or received by the plurality of portable devices 130 in the geographic area 101 in a certain time period. Calculating the potential data demand D(t) may utilize past data usage statistics, future growth predictions, and other data known to those skilled in the art. In another embodiment, the demand D(t) can be inferred from a statistical analysis of the past demands. As an example, one approach that illustrates the above mentioned technique is to estimate the demand distribution for a specific geographical area 101, where the actual demand metric D(t) is inferred out of the distribution function estimate (e.g., mean value+sigma, 90th percentile, etc.).
The method 300 also includes determining whether the number of base stations serving the area is sufficient by utilizing the potential capacity Cp(t) and the potential demand D(t). In the embodiment shown in
The method 300 shown in
In the method 400 shown in
The method 400 then compares, at 404, the potential capacity Cp(t) to the residual traffic demand Cr(t). If the residual traffic demand Cr(t) is greater than the potential capacity Cp(t), then the number of base stations 102 in the geographic area 101 should be increased, as shown at 405. If, at 404, the residual traffic demand Cr(t) is not greater than the potential capacity Cp(t), then, at 406, the method 400 includes subtracting the residual traffic demand Cr(t) from the potential capacity Cp(t) and comparing the result to a predetermined threshold TH. If the result is greater than the predetermined threshold TH, then the number of base stations 102 in the geographic area 101 should be reduced, as shown in 407. Otherwise, the method 400 ends at 408.
With reference to
The processor 502 may be configured, i.e., programmed, to execute the functions of one or more of the methods 300, 400 described above. As such, the apparatus 500 may be utilized to determine infrastructure requirements for the system 100, in particular, the number of and/or locations of base stations 102 of the system 100.
The computer may be in communications with a network 506, for example, the Internet, such that data and/or other information may be transferred to and from the network 506. For instance, features of the geographic area 101 being studied may be transferred from the network 506 to the computer 500. Additionally, information concerning data usage rates at particular base stations 102 may also be transferred from the network 506 to the computer 500. The output device 503, i.e., the display, may be utilized to show the outputs 308, 405, 407 of the methods 300, 400.
Although the apparatus 500 shown in
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the disclosure as set forth in the appended claims and the legal equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 14/228,759, filed Mar. 28, 2014, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
8804597 | Won et al. | Aug 2014 | B2 |
8995956 | Lavi et al. | Mar 2015 | B2 |
9386462 | Scheim | Jul 2016 | B2 |
20060199530 | Kawasaki et al. | Sep 2006 | A1 |
20070081479 | Kang et al. | Apr 2007 | A1 |
20080089288 | Anschutz et al. | Apr 2008 | A1 |
20080148374 | Spaur et al. | Jun 2008 | A1 |
20090073946 | Morita | Mar 2009 | A1 |
20090296626 | Hottinen et al. | Dec 2009 | A1 |
20090299857 | Brubaker | Dec 2009 | A1 |
20100020752 | Anschutz et al. | Jan 2010 | A1 |
20100027419 | Padhye et al. | Feb 2010 | A1 |
20100250106 | Bai et al. | Sep 2010 | A1 |
20110092237 | Kato et al. | Apr 2011 | A1 |
20110181106 | Kim | Jul 2011 | A1 |
20110235568 | Esteves et al. | Sep 2011 | A1 |
20110255481 | Sumcad et al. | Oct 2011 | A1 |
20110260884 | Yi et al. | Oct 2011 | A1 |
20110267205 | McClellan et al. | Nov 2011 | A1 |
20110269404 | Hu et al. | Nov 2011 | A1 |
20110294500 | Chang et al. | Dec 2011 | A1 |
20120158820 | Bai et al. | Jun 2012 | A1 |
20120165063 | Scalia | Jun 2012 | A1 |
20120196528 | Kazmi et al. | Aug 2012 | A1 |
20120196618 | Lowell et al. | Aug 2012 | A1 |
20120218886 | Van Phan et al. | Aug 2012 | A1 |
20120282932 | Yu et al. | Nov 2012 | A1 |
20120294275 | Krishnaswamy et al. | Nov 2012 | A1 |
20120314576 | Hasegawa | Dec 2012 | A1 |
20130069834 | Duerksen | Mar 2013 | A1 |
20130072112 | Gunnarsson et al. | Mar 2013 | A1 |
20130195005 | Al-Shalash | Aug 2013 | A1 |
20130331093 | Cho et al. | Dec 2013 | A1 |
20140004865 | Bhargava et al. | Jan 2014 | A1 |
20140049912 | Marshall et al. | Feb 2014 | A1 |
20140192781 | Teyeb et al. | Jul 2014 | A1 |
20140293852 | Watanabe et al. | Oct 2014 | A1 |
20140362688 | Zhang | Dec 2014 | A1 |
20150280805 | Scheim et al. | Oct 2015 | A1 |
20150282245 | Scheim et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
101958747 | Jan 2011 | CN |
102098708 | Jun 2011 | CN |
WO 2015010749 | Jan 2015 | SE |
2012096605 | Jul 2012 | WO |
2013116981 | Aug 2013 | WO |
2015010749 | Jan 2015 | WO |
Entry |
---|
USPTO, Office Action for U.S. Appl. No. 14/228,759 mailed May 28, 2015. |
USPTO, Response to Office Action for U.S. Appl. No. 14/228,759 mailed Jun. 25, 2015. |
USPTO, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/228,759 mailed Aug. 14, 2015. |
USPTO, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/228,759 mailed Feb. 12, 2016. |
USPTO, Office Action for U.S. Appl. No. 14/228,750 mailed Nov. 6, 2015. |
USPTO, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/228,750 mailed Mar. 14, 2016. |
Number | Date | Country | |
---|---|---|---|
20160262026 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14228759 | Mar 2014 | US |
Child | 15153609 | US |