This invention relates to color image processing, particularly to methods and apparatus for electronically trapping digital color images to minimize image artifacts caused by mechanical registration errors in multiple separation color imaging devices.
Multiple-separation color imaging devices, such as color laser printers, copiers and offset printers, operate by transferring several image separations to a printing medium, such as paper, in stages. Each image separation is printed with a different colorant, such as ink or toner. For example, a four-color printer typically applies cyan (C), magenta (M), yellow (Y), and black (K) image separations during separate stages. These image separations can be created using a single drum for four-pass printers, or on four drums for in-line printers. The image separations can be transferred to an intermediate drum or belt, and then to the medium, or directly to the medium in four transfers.
Because the multiple image separations are created in separate mechanical steps, it is difficult to perfectly align the separations so that no gaps appear at edges between adjacent colors. Even very small gaps can form visible white lines in the printed image. Mechanical alignment of the image planes can reduce registration errors, but cannot completely eliminate such errors. Various techniques have been used to compensate for registration errors in multiple separation color imaging devices. Trapping is one such technique in which color areas in an image are intentionally overlapped so that small registration errors do not create visible gaps.
Previously known raster-based trapping techniques operate on images that have been first scanned or converted from a page description language to a sequence of high resolution scan lines, each line containing individual picture elements (“pixels”). Each pixel in each raster line is processed in sequence, and one or more adjacent pixels are compared to determine color boundaries. In particular, previously-known trapping processes typically perform the following steps: (1) identify edges in the image; (2) determine for each pair of colors on either side of the edge (a) whether trapping should be performed, (b) the color that should be used for the trapped pixels, and (c) where the color should be placed; and (3) modify the image accordingly.
In general, previously known raster-based trapping techniques utilize a “push” method, in which colorant value modifications are pushed from a trapping edge to many neighboring pixels along the edge. Referring to
As shown in
A disadvantage of such previously known push trapping techniques is that they are computationally inefficient to implement in hardware image processing circuitry. In particular, such previously known techniques typically require that the pixel data are first processed to identify edges between adjacent regions, and then reprocessed to push trap colors in one or both directions perpendicular to each identified edge. If the image includes a large array of pixels (e.g., a letter size image at a resolution of 1,200 dots per inch may include more than 134 million pixels), such previously known trapping techniques may take a considerable amount of time to process.
In view of the foregoing, it would be desirable to provide methods and apparatus to efficiently trap digital color images.
It further would be desirable to provide methods and apparatus that allow multiple trapping operations to be performed in parallel.
It also would be desirable to provide methods and apparatus for trapping that may be efficiently implemented in hardware image processing circuitry.
In view of the foregoing, it is an object of this invention to efficiently trap digital color images.
It further is an object of this invention to provide methods and apparatus that allow multiple trapping operations to be performed in parallel.
It also is an object of this invention to provide methods and apparatus for trapping that may be efficiently implemented in hardware image processing circuitry.
These and other objects of this invention are accomplished by providing methods and apparatus that electronically trap a selected digital color image pixel. In particular, methods and apparatus in accordance with this invention identify a plurality of pixels that surround the selected pixel. A colorant value of each of the surrounding pixels is compared with a corresponding colorant value of the selected pixel, and one of the surrounding pixels is identified to control trapping of the selected pixel. The selected pixel is trapped based on a relationship between a colorant value of the selected pixel and a corresponding colorant value of the identified controlling pixel. In this regard, the trap is pulled from the controlling pixel to the selected pixel.
The above-mentioned objects and features of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same elements throughout, and in which:
Referring to
Converter 24 may be used to convert color image data 32 into print image data 36 for output to trapping unit 26. For example, if color image data 32 are RGB data, converter 24 may convert the RGB data to CMYK data. Alternatively, if color image data 32 are CMYK data in a first color space, converter 24 may convert the data to CMYK data in a second color space. Methods and apparatus for converting RGB data to CMYK data, and CMYK data to CMYK data are well known, and typically include the use of one or more color conversion tables (not shown). Persons of ordinary skill in the art will understand that color image data 32 may be represented in a color space other than RGB or CMYK, and that converter 24 may convert the data to a color space other than CMYK. In addition, color image data 32 may not require any conversion (e.g., color image data 32 in computer 22 may be CMYK data that has already been converted to the color space of print engine 30). In such cases, converter 24 optionally may be removed from printing system 20, and computer 22 may be coupled directly to trapping unit 26.
Converter 24 provides print image data 36 to trapping unit 26. In an exemplary embodiment of this invention, print image data 36 includes a bitmap array of pixels, wherein each pixel has associated multiple colorant values that define the amount of each colorant to be applied to a corresponding area or region on print media. For example, if print engine 30 is a four color CMYK engine, each pixel of print image data 36 has C, M, Y and K data values. Colorant values typically are represented as multi-bit digital data values. Thus, if eight bits are used for each colorant, the colorant values may range from 0-255. In this regard, 0 corresponds to no colorant, and 255 corresponds to 100% colorant. Persons of ordinary skill in the art will understand that more than or less than 8 bits may be used for each colorant, and that print image data 36 may also include additional data, such as data identifying the object type (e.g., background, text, graphics, or raster data) associated with each pixel.
Exemplary trapping unit 26 includes buffer 34 for storing print image data 36, and logic 38, described in more detail below, for implementing pull trapping techniques of this invention. Buffer 34 and logic 38 may be implemented together, such as in integrated circuitry, or may be implemented in separate hardware and/or software. Buffer 34 may be any conventional memory device, such as random access memory, read-only memory, optical memory, floppy disk, hard disk, field programmable gate array or other similar memory device.
Trapping unit 26 may be implemented in hardware, software, firmware, or any combination thereof. Persons of ordinary skill in the art will recognize that a purely software-based configuration may be employed using an associated processor (not shown) and memory. In such a configuration, the processor would be configured to operate in accordance with software instructions that implement all or part of trapping processes described herein. The software instructions may be provided via any applicable computer readable media or signal, such as, magnetically-read media, optically read media, solid state logic or memory, transmitted signal, or other similar media or signal.
Trapping unit 26 provides print image data 36 to halftone unit 28, which performs half-tone processing, and provides the resulting data to print engine 30. Print engine 30, which may be a color laser printer, color photocopier, printing press, or any similar multiple-stage printer unit, uses the information contained in the received print image data to selectively apply appropriate amounts of colorants, such as C, M, Y and K colorants, to a print medium to form a corresponding plane of printed image 40. Print engine 30 has an average mechanical misregistration equivalent to h horizontal pixels and v vertical pixels. Persons of ordinary skill in the art will understand that print engine 30 may include fewer than four colorants and may include colorants in place of or in addition to CMYK colorants. Persons of ordinary skill in the art also will understand that some print engines 30, such as higher-end laser printers and copiers, receive digital print image data and internally perform half-toning. Thus, halftone unit 28 may be unnecessary in such printing systems, and optionally may be removed from printing system 20.
Persons of ordinary skill in the art also will understand that although described and depicted separately, one or more of computer 22, converter 24, trapping unit 26, halftone unit 28 and print engine 30 may be combined or implemented in one or more devices. Thus, for example, one or more of the functions performed by converter 24, trapping unit 26, and halftone unit 28 may be performed by computer 22. Similarly, the functions of computer 22, converter 24, trapping unit 26, halftone unit 28 and print engine 30 may be combined into a single printer device. Further, computer 22, converter 24, trapping unit 26, halftone unit 28 and print engine may be located together, or may be distributed over multiple areas, such as in a networked printing system. All such possibilities are within the scope of this invention.
Referring now to
Referring now to
Equation (1) describes an elliptically-shaped trapping window, where a and b are the horizontal and vertical pixel dimensions, respectively, of the trapping window, and Δj and Δi are the horizontal and vertical displacements, respectively, measured from the edge of the square border at the center pixel of the trapping window. Mechanical misregistration typically occurs in both horizontal and vertical dimensions. In general, the amount of misregistration in one direction may differ from the amount in the other direction. For example, an imaging device may have a mechanical misregistration equivalent to h=2 horizontal pixels, and v=3 vertical pixels. To compensate for such misregistration, trapping methods and apparatus in accordance with this invention use elliptically-shaped trapping windows. Persons of ordinary skill in the art will understand that a circularly-shaped trapping window is a subset of such elliptically-shaped trapping windows, and may be used where a particular imaging device has equal horizontal and vertical misregistration.
Referring to
The specific trapping used depends on the desired misregistration compensation. For example, if it is determined that the misregistration of printer 30 requires a trapping width of two horizontal pixels and three vertical pixels, the trapping window of
Referring now to
Referring again to
For example, if pixels on a first side of an edge have colorant values C=100, M=80, Y=0, K=0, and pixels on a second side of the edge have colorant values C=150, M=110, Y=70, K=50, such an edge is not of trapping significance because the colorant values move in the same direction from the first side to the second side (i.e., all colorant values increase). If, however, pixels on a first side of an edge have colorant values C=100, M=0, Y=0, K=0, and pixels on a second side of the edge have colorant values C=0, M=110, Y=0, K=0, such an edge is of trapping significance because the colorant values on the first side of the edge move in opposite direction from colorant values on the second side of the edge (i.e., the C value increases while the M value decreases). In the event of a misregistration between the C and M colorant planes, a visible white gap may form between the two regions, which may be objectionable.
As described above, the trigger function also serves to quantify the need for trapping. A numerical value may be calculated to determine the need for trapping on an edge. An exemplary trigger function that may be used to detect the location of edges between adjacent color regions and quantify the need for trapping at such edges is:
where Trigger(x) is the trigger value of pixel x, x is a pixel in the region of interest, I(x) is the data value of colorant I of pixel x, ΔI(x) is the colorant difference of pixel x, ΔI(x)=I(x)−I(pivot pixel), and each summation is performed over all colorants that are used in the printing system. For example, in a CMYK printing system, the exemplary trigger function of equation (2) may be written as:
Trigger(x)=|ΔC(x)|+|ΔM(x)|+|ΔY(x)|+|ΔK(x)|−|ΔC(x)+ΔM(x)+ΔY(x)+ΔK(x)| (3)
where the colorant differences are given by:
ΔC(x)=C(x)−C(pivot pixel)
ΔM(x)=M(x)−M(pivot pixel)
ΔY(x)=Y(x)−Y(pivot pixel)
ΔK(x)=K(x)−K(pivot pixel) (4)
Note that the trigger function of equation (2) need not be evaluated for the pivot pixel. Persons of ordinary skill in the art will understand other trigger functions also may be used.
Referring again to
TriggerD(x)=Trigger(x)−Offset(x) (5)
where TriggerD(x) is a distance-adjusted trigger value of pixel x and Offset(x) is a distance-based offset function of pixel x. The values of Offset(x) preferably substantially monotonically increase with increasing distance from the pivot pixel.
Persons of ordinary skill in the art will understand that other values may be used for Offset(x), and that other methods may be used for adjusting trigger values based on distance from the pivot pixel. For example, an alternative exemplary method for adjusting the trigger values is to multiply each trigger value in the region of interest by a distance-based scale factor:
TriggerD(x)=Trigger(x)×Scale(x) (6)
where Scale(x) is a distance-based function of pixel x. The values of Scale(x) preferably substantially monotonically decrease with increasing distance from the pivot pixel.
Referring again to
|ΔI(x)|≦TSIM for all colorants (7)
An exemplary value of TSIM is 1.5% of a full scale value. Thus, in an 8-bit system, TSIM=4(4÷255≈1.5%). For each pixel in the region of interest, a “similar” flag may be set based on the results of equation (7). That is, the similar flag is true (“T”) if equation (7) is satisfied, and is false (“F”) otherwise.
Referring again to
With regard to the first goal, each pixel that has a distance-adjusted trigger value that exceeds TTHRESH, referred to herein as a “Significant Pixel,” indicates the existence of an edge that may require trapping. The value of TTHRESH is used to determine where the need for trapping is sufficiently great. For example, the value of TTHRESH may be set to 12.5% of a full scale value. In an 8-bit system, TTHRESH=32 (32÷255≈12.5%). Persons of ordinary skill in the art will understand that other values of TTHRESH alternatively may be used. To ensure that the trapping decision for the pivot pixel is based on the colorant values of pixels closest to an edge, pixels are removed from consideration that are “beyond” Significant Pixels. With regard to the second goal, pixels that have a false similar flag, referred to herein as “False Similar Pixels,” may indicate the existence of a barrier between colored regions. To ensure that a trap does not jump a barrier, pixels are removed from consideration that are beyond False Similar Pixels.
Pixels in the region of interest that are farther away from Significant Pixels and False Similar Pixels are classified as “beyond pixels.” The beyond pixels collectively form a portion of the region of interest referred to herein as the “beyond region.” The beyond region of a pixel X may be identified as follows. A first imaginary line is drawn that connects the pivot pixel and pixel X. Next, a second imaginary line is drawn perpendicular to the first imaginary line and passing through pixel X. The beyond region includes the pixels on the side of the second imaginary line that is farther the pivot pixel. In addition, each beyond region is monotonic. That is, if pixel X is in the beyond region of pixel Z, pixel B is in the beyond region of pixel X if pixel B is also in the beyond region of pixel Z.
Referring now to
Referring now to
At this point, all pixels in the region of interest 94 except pixels 96, 98 and 100 are either similar to pivot pixel 90, have a distance-adjusted trigger value less than TTHRESH, or are beyond pixels. Referring again to
At step 78, a determination is made as to whether pivot pixel 90 is the last pixel of the page. If the answer is NO, at step 82, pivot pixel 90 is incremented to the next pixel in the image (e.g., the next pixel in the row currently being evaluated, or the first pixel in the next row if the current pixel is the last pixel in a row). If, however, the answer is YES, the process proceeds to step 80, at which a determination is made as to whether the current page being evaluated is the final page of the image. If the answer is NO, at step 84, the page is incremented, and pivot pixel 90 is reset to the first pixel of the page. If, however, the answer is YES, the process terminates. In this regard, all pixels in print image data 36 are evaluated for trapping.
Referring now to
Referring again to
Referring again to
Referring now to
Logic 38 includes processor 126 and trapping logic 128. Processor 126 may be any conventional computer processor, such as a personal computer, laptop computer, handheld computer, general purpose microprocessor, application-specific integrated circuit processor, field programmable gate array or other similar processing device that may be used to control data flow between, and the operation of, page buffer 122, ROI buffer 124 and trapping logic 128. Trapping logic 128 may be a personal computer, laptop computer, handheld computer, general purpose microprocessor, application-specific integrated circuit processor, field programmable gate array or other similar processing device that may be used perform pull trapping steps in accordance with this invention. Persons of ordinary skill in the art will understand that page buffer 122, ROI buffer 124, processor 126 and trapping logic 128 each may be implemented on separate hardware and/or software, or may be combined in one or more hardware and/or software devices.
In addition, trapping logic 128 may be implemented using pipelined processing techniques to reduce the time required to perform pull trapping steps in accordance with this invention. Referring now to
In the third clock cycle, Trigger Buffer 136 receives the distance-adjusted trigger values for pixels in ROI(i) calculated during the second clock cycle, Beyond Determination stage 138 receives the distance-adjusted trigger values and the similar flags for pixels in ROI(i) calculated during the second clock cycle, Trigger Calculation stage 132 and Similar Calculation stage 134 each receive the colorant difference values for ROI(i+1) calculated during the second clock cycle, and A Calculation stage 130 receives pixel data for region of interest ROI(i+2), including pivot pixel Pivot(i+2), where Pivot(i+2) is the next successive pixel in page buffer 122 and ROI(i+2) is the next successive region of interest in ROI buffer 124. Also during the third clock cycle, Beyond Determination stage 138 determines the beyond pixels for pixels in ROI(i) as described above, and accordingly resets the distance-adjusted trigger values in Trigger Buffer 136 for beyond pixels in ROI(i).
In the fourth clock cycle, TMAX Determination stage 140 receives the distance-adjusted trigger values for pixel in ROI(i) calculated during the third clock cycle, Trigger Buffer 136 receives the distance-adjusted trigger values for pixels in ROI(i+1) calculated during the third clock cycle, Beyond Determination stage 138 receives the distance-adjusted trigger values and the similar flags for pixels in ROI(i+1) calculated during the third clock cycle, Trigger Calculation stage 132 and Similar Calculation stage 134 each receive the colorant difference values for ROI(i+2) calculated during the third clock cycle, and Δ Calculation stage 130 receives pixel data for region of interest ROI(i+3), including pivot pixel Pivot(i+3), where Pivot(i+3) is the next successive pixel in page buffer 122 and ROI(i+3) is the next successive region of interest in ROI buffer 124. Also during the fourth clock cycle, TMAX Determination stage 140 identifies the maximum distance-adjusted trigger value TMAX(i) and the corresponding Trigger Pixel(i) for ROI(i).
In the fifth clock cycle, Trapping Determination stage 142 receives colorant values of pivot pixel Pivot(i) and Trigger Pixel(i) for ROI(i) identified during the fourth clock cycle, TMAX Determination stage 140 receives the distance-adjusted trigger values for pixel in ROI(i+1) calculated during the fourth clock cycle, Trigger Buffer 136 receives the distance-adjusted trigger values for pixels in ROI(i+2) calculated during the fourth clock cycle, Beyond Determination stage 138 receives the distance-adjusted trigger values and the similar flags for pixels in ROI(i+2) calculated during the fourth clock cycle, Trigger Calculation stage 132 and Similar Calculation stage 134 each receive the colorant difference values for ROI(i+3) calculated during the fourth clock cycle, and Δ Calculation stage 130 receives pixel data for region of interest ROI(i+4), including pivot pixel Pivot(i+4), where Pivot(i+4) is the next successive pixel in page buffer 122 and ROI(i+4) is the next successive region of interest in ROI buffer 124. Also during the fifth clock cycle, Trapping Determination stage 142 performs trapping on the colorant values of pivot pixel Pivot(i) based on the colorant values of Trigger Pixel(i), and provides trapped pivot pixel PivotT(i). Thus, each stage of exemplary trapping logic 128 operates in lockstep fashion with the other stages, and trapping calculations are concurrently performed with respect to five different regions of interest to reduce the time required to trap print image data 36.
To further reduce the time required to perform pull trapping steps in accordance with this invention, the various stages of trapping logic 128 may be implemented using parallel processing techniques. Referring now to
The output of Δ Calculation stage 130 includes pivot pixel Pivot and the two hundred seventy-two colorant differences for the pixels that surround Pivot. Trigger Calculation stage 132 receives the outputs of Δ Calculation stage 130, and includes sixty-eight trigger calculation circuits 152 that each calculate a distance-adjusted trigger value for a corresponding one of the sixty-eight pixels in the region of interest. The output of Trigger Calculation stage 132 includes pivot pixel Pivot and the sixty-eight distance-adjusted trigger values. Similar Calculation stage 134 receives the two hundred seventy-two colorant differences from Δ Calculation stage 130, and includes sixty-eight similar calculation circuits 154 that each determine the similar flag for a corresponding one of the sixty-eight pixels in the region of interest. The output of Similar Calculation stage 134 includes the sixty-eight similar flags.
As shown in
The foregoing merely illustrates the principles of this invention, and persons of ordinary skill in the art can make various modifications without departing from the scope and spirit of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4725966 | Darby et al. | Feb 1988 | A |
5542052 | Deutsch et al. | Jul 1996 | A |
5581667 | Bloomberg | Dec 1996 | A |
5848224 | Nhu | Dec 1998 | A |
6141462 | Yoshino et al. | Oct 2000 | A |
6345117 | Klassen | Feb 2002 | B2 |
6377711 | Morgana | Apr 2002 | B1 |
6549303 | Trask | Apr 2003 | B1 |
6556313 | Chang et al. | Apr 2003 | B1 |
6654145 | Speck | Nov 2003 | B1 |
6795214 | Weinholz et al. | Sep 2004 | B2 |
6813042 | Hawksworth et al. | Nov 2004 | B2 |
6844942 | Rumph et al. | Jan 2005 | B2 |
6970271 | Estrada et al. | Nov 2005 | B1 |
7116821 | Lane et al. | Oct 2006 | B2 |
20010033686 | Klassen | Oct 2001 | A1 |
20010055130 | Geurts et al. | Dec 2001 | A1 |
20020051156 | Weinholz et al. | May 2002 | A1 |
20030011796 | Kohn | Jan 2003 | A1 |
20030053159 | Ito | Mar 2003 | A1 |
20030063302 | Munger et al. | Apr 2003 | A1 |
20030090689 | Klassen | May 2003 | A1 |
20030128377 | Ebner | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050219631 A1 | Oct 2005 | US |