Methods and apparatus for endovascularly replacing a patient's heart valve

Abstract
The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an anchor having an expandable braid. In some embodiments, the expandable braid is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one turn feature. The anchor and the valve preferably are configured for endovascular delivery and deployment.
Description
BACKGROUND OF THE INVENTION

Heart valve surgery is used to repair or replace diseased heart valves. Valve surgery is an open-heart procedure conducted under general anesthesia. An incision is made through the patient's sternum (sternotomy), and the patient's heart is stopped while blood flow is rerouted through a heart-lung bypass machine.


Valve replacement may be indicated when there is a narrowing of the native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates. When replacing the valve, the native valve is excised and replaced with either a biologic or a mechanical valve. Mechanical valves require lifelong anticoagulant medication to prevent blood clot formation, and clicking of the valve often may be heard through the chest. Biologic tissue valves typically do not require such medication. Tissue valves may be obtained from cadavers or may be porcine or bovine, and are commonly attached to synthetic rings that are secured to the patient's heart.


Valve replacement surgery is a highly invasive operation with significant concomitant risk. Risks include bleeding, infection, stroke, heart attack, arrhythmia, renal failure, adverse reactions to the anesthesia medications, as well as sudden death. Two to five percent of patients die during surgery.


Post-surgery, patients temporarily may be confused due to emboli and other factors associated with the heart-lung machine. The first 2-3 days following surgery are spent in an intensive care unit where heart functions can be closely monitored. The average hospital stay is between 1 to 2 weeks, with several more weeks to months required for complete recovery.


In recent years, advancements in minimally invasive surgery and interventional cardiology have encouraged some investigators to pursue percutaneous replacement of the aortic heart valve. See, e.g., U.S. Pat. No. 6,168,614. In many of these procedures, the replacement valve is deployed across the native diseased valve to permanently hold the valve open, thereby alleviating a need to excise the native valve and to position the replacement valve in place of the native valve.


In the endovascular aortic valve replacement procedure, accurate placement of aortic valves relative to coronary ostia and the mitral valve is critical. Some self-expanding valve anchors have had very poor accuracy in deployment, however. In a typical deployment procedure, the proximal end of the stent is not released from the delivery system until accurate placement is verified by fluoroscopy. The stent often jumps to another position once released, making it impossible to know where the ends of the stent will be after release with respect to the native valve, the coronary ostia and the mitral valve.


Also, visualization of the way the new valve is functioning prior to final deployment is very desirable. Due to the jumping action of some self-expanding anchors, and because the replacement valve is often not fully functional before final deployment, visualization of valve function and position prior to final and irreversible deployment is often impossible with these systems.


Another drawback of prior art self-expanding replacement heart valve systems is their relative lack of radial strength. In order for self-expanding systems to be easily delivered through a delivery sheath, the metal needs to flex and bend inside the delivery catheter without being plastically deformed. Expandable stent designs suitable for endovascular delivery for other purposes may not have sufficient radial strength to serve as replacement heart valve anchors. For example, there are many commercial arterial stent systems that apply adequate radial force against the artery wall to treat atherosclerosis and that can collapse to a small enough of a diameter to fit inside a delivery catheter without plastically deforming. However when the stent has a valve fastened inside it, and that valve must reside within the heart, as is the case in aortic valve replacement, the anchoring of the stent to vessel walls takes significantly more radial force, especially during diastole. The force to hold back arterial pressure and prevent blood from going back inside the ventricle during diastole will be directly transferred to the stent/vessel wall interface. Therefore, the amount of radial force required to keep the self-expanding stent/valve in contact with the vessel wall and not sliding is much higher than in stents that do not have valves inside of them. Moreover, a self-expanding stent without sufficient radial force will end up dilating and contracting with each heartbeat, thereby distorting the valve, affecting its function and possibly causing it to migrate and dislodge completely. Simply increasing strut thickness of the self-expanding stent is not a good solution as it increases profile and/or a risk of plastic deformation of the self-expanding stent.


In view of drawbacks associated with previously known techniques for endovascularly replacing a heart valve, it would be desirable to provide methods and apparatus that overcome those drawbacks.


SUMMARY OF THE INVENTION

One aspect of the present invention provides an apparatus for endovascularly replacing a patient's native heart valve. The apparatus comprises an anchor having an expandable braid and a replacement valve adapted to be secured within the patient. In some embodiments, the expandable braid of the anchor is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one edge feature. The anchor and the replacement valve preferably are configured for endovascular delivery and deployment.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A and 1B are schematic top views of an anchor and valve apparatus in accordance with the present invention. FIG. 1 illustrates the apparatus in a collapsed delivery configuration within a delivery system. FIG. 1B illustrates the apparatus in an expanded configuration partially deployed from the delivery system.



FIGS. 2A-2F are schematic isometric views detailing an anchor of the apparatus of FIG. 1 in the collapsed delivery configuration and the expanded deployed configuration, as well as the full apparatus in the deployed configuration.



FIG. 3 is a schematic top view of an apparatus for fabricating braided anchors in accordance with the present invention.



FIGS. 4A-4D are schematic top views illustrating a method of using the apparatus of FIG. 3 to fabricate a braided anchor of the present invention.



FIGS. 5A-5O are schematic detail views illustrating features of braid cells at an anchor edge.



FIGS. 6A-6E illustrate further features of braid cells at an anchor edge.



FIGS. 7A-7J are schematic detail views terminations for one or more wire strands forming anchors of the present invention.



FIGS. 8A and 8B are schematic side views of alternative embodiments of the anchor portion of the apparatus of the present invention.



FIGS. 9A-9E are schematic side views of further alternative embodiments of the of the anchor portion of the apparatus of the present invention.



FIGS. 10A-10D are schematic views of different weave configurations.



FIGS. 11A-11E are schematic side views of various braided anchor configurations.



FIGS. 12A-12E are schematic side views of a deployment process.



FIGS. 13A and 13B illustrate a braided anchor in the heart.



FIGS. 14A and 14B illustrate a bilaterally symmetrical anchor and an asymmetric anchor, respectively.





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a delivery system, apparatus and methods for endovascularly delivering and deploying an aortic prosthesis within a patient's native heart valve, referred to here out as replacing a patients heart valve. The delivery system includes a sheath assembly and a guide wire for placing the apparatus endovascularly within a patient and a user control allowing manipulation of the aortic prosthesis. The apparatus includes an anchor and a replacement valve. The anchor includes an expandable braid. In preferred embodiments, the expandable braid includes closed edges. The replacement valve is adapted to be secured within the anchor, and as such, be delivered endovascularly to patient's heart to replace the patient's native heart valve. More preferably, the apparatus and methods of the present invention contemplate the replacement of a patient's aortic valve.



FIGS. 1A and 1B illustrate one embodiment of a delivery system and apparatus in accordance with the present invention is described. As illustrated by FIG. 1A, apparatus 10 may be collapsed for delivery within a delivery system 100. Delivery system 100 includes a guidewire 102, a nosecone 104, control tubes 106 coupled to a multi-lumen shaft 108, an external sheath 110 having a proximal handle 111, and a control handle 120. Delivery system 100 further comprises distal region control wires (not shown), which pass through one or more lumens of shaft 108 and are reversibly coupled to posts 32 of anchor 30 for manipulating a distal region of apparatus 10. The delivery system also comprises proximal region control wires 112 that pass through one or more lumens of shaft 108 and control tubes 106 (also known as fingers) to reversibly couple the control tubes to a proximal region of anchor 30. The control wires may comprise, for example, strands of suture, or metal or polymer wires.


Control handle 120 is coupled to multi-lumen shaft 108. A knob 122 disposed in slot 123 is coupled to the distal region control wires for controlling movement of the distal region of apparatus 10. Likewise, a knob 124 disposed in slot 125 is coupled to proximal region control wires 112 for control of the proximal region of apparatus 10. Handle 120 may also have a knob 126 for, e.g., decoupling the proximal and/or distal region control wires from apparatus 10, or for performing other control functions.


Apparatus 10 has an anchor 30 and a replacement valve 20. Anchor 30 preferably comprises a braid. Such braid can have closed ends at either or both its ends. Replacement valve 20 is preferably coupled to the anchor along posts 32. Post 32 therefore, may function as valve support and may be adapted to support the replacement valve within the anchor. In the embodiment shown, there are three posts, corresponding to the valve's three commissure points. The posts can be attached to braid portion of anchor 30. The posts can be attached to the braid's distal end, as shown in FIG. 2A, central region, or proximal end. Replacement valve 20 can be composed of a synthetic material and/or may be derived from animal tissue. Replacement valve 20 is preferably configured to be secured within anchor 30.


Anchor 30 has also a plurality of buckles 34 attached to its proximal region, one for each post 32. Posts 32 and buckles 34 form a two-part locking mechanism for maintaining anchor 30 in a deployed or expanded configuration (e.g., as illustrated in FIGS. 1B, 2B and 2C).


In this embodiment, anchor 30 is formed from collapsible and expandable wire braid. Anchor braid 30 is preferably self-expanding and is preferably formed from a material such as Nitinol, cobalt-chromium steel or stainless steel wire using one or more strands of wire. While the illustrated embodiment is formed from a single strand of wire, in other embodiments may benefit from a wire braid formed of 2-20 wires, more preferably 3-15 wires, or more preferably 4-10 wires.


Delivery and deployment of braided anchor 30 is similar to the delivery and deployment of the anchors described in U.S. patent application Ser. No. 10/746,280 filed Dec. 23, 2003, the disclosure of which is incorporated herein by reference. Specifically, in one embodiment described below, during deployment braided anchor 30 is actively foreshortened by proximally retracting the distal region control wires relative to control tubes 106 to expand and lock the anchor in place. In some embodiments, foreshortening expands anchor 30 to a radially symmetrical, bilaterally symmetrical, or asymmetrical expanded shape (as further described below). The foreshortening step can include expanding a first region of the anchor to a first diameter and a second region of the anchor to a second diameter larger than the first diameter. A third region may also be expanded to a diameter larger than the first diameter. The expansion of various regions of the anchor (e.g., the distal region) can be especially useful in locating the aortic valve and centering the anchor within it. Preferably, the secured anchor does not interfere with the mitral valve or the ostias. In some embodiments, the anchor is allowed to self expand prior to the foreshortening step.


As seen in FIG. 1, after endovascular delivery through sheath 110 to the vicinity of the patient's native valve (such as the aortic valve), apparatus 10 may be expanded from the collapsed delivery configuration of FIG. 1A to the expanded deployed configuration of FIG. 1B using delivery system 100. To deploy apparatus 10, external sheath 110 may be retracted relative to apparatus 10 by proximally retracting sheath handle 111 relative to control handle 120. Sheath 110 is thereby removed from the exterior of apparatus 10, permitting the anchor 30 to self-expand. In preferred embodiments, anchor 30 includes sheathing features as depicted in FIGS. 5B thru 5M or FIG. 6, 7A, or 7D adapted to reduce sheathing force. Sheathing force is defined as the force required to push the sheath distally over the anchor or the force required to pull the anchor proximally into the sheath (as for purposes of retrieving the anchor). For example, if anchor braid 30 is composed of a shape memory material, it may self-expand to or toward its “at-rest” configuration. This “at rest” configuration of the braid can be, for example its expanded configuration, a collapsed configuration, or a partially expanded configuration between the collapsed configuration and the expanded configuration. In preferred embodiments, the anchor's at-rest configuration is between the collapsed configuration and the expanded configuration. Depending on the “at rest” diameter of the braid and the diameter of the patient's anatomy at the chosen deployment location, the anchor may or may not self-expand to come into contact with the diameter of the patient's anatomy at that location.


In its collapsed configuration, anchor 30 preferably has a collapsed delivery diameter between about 3 to 30 Fr, or more preferably 6 to 28 Fr, or more preferably 12 to 24 Fr. In some embodiments, anchor 30 in its collapsed configuration will have a length ranging from about 5 to about 170, more preferably from about 10 to about 160, more preferably from about 15 to about 150, more preferably from about 20 to about 140 mm, or more preferably from about 25 mm to about 130.


Similarly, in its expanded configuration, anchor 30 preferable has a diameter ranging between about 10 to about 36 mm, or more preferably from about 24 to about 33 mm, or more preferably from about 24 to about 30 mm. In some embodiments, anchor 30 in its expanded configuration will have a length ranging from about 1 to about 50, more preferably from about 2 to about 40, more preferably from about 5 to about 30, or more preferably from about 7 to about 20 mm.


Overall, the ratio of deployed to collapsed/sheathed lengths is preferably between about 0.05 and 0.5, more preferably about 0.1 to 0.35, or more preferably about 0.15 to 0.25. In any of the embodiments herein, anchor 30 in its expanded configuration preferably has a radial crush strength that maintains the anchor substantially undeformed in response to a pressure of up to 0.5 atm directed substantially radially inward toward the central axis, or more preferably up to 2 atm directed substantially radially inward toward the central axis. In addition, in any of the embodiments herein, the anchor has an axial spring constant of between about 10 to 250 g/cm, more preferably between about 20 to 200 g/cm, or more preferably between about 40 to 160 g/cm. In addition, in any of the embodiments herein, the anchor is preferably adapted to support the replacement valve at the anchor site in response to a differential pressure of up to 120 mm Hg, more preferably up to 240 mm Hg, or more preferably up to 320 mm Hg.


These parameters are not intended to be limiting. Additional parameters within the scope of the present invention will be apparent to those of skill in the art.


As seen in FIG. 1B, anchor 30 may be expanded to a fully deployed configuration from a partial deployed configuration (e.g., self-expanded configuration) by actively foreshortening anchor 30 during endovascular deployment. As described in more detail in U.S. patent application Ser. No. 10/746,280, the distal region of anchor 30 may be pulled proximally via a proximally directed force applied to posts 32 via a distal deployment system interface. The distal deployment system interface is adapted to expand radially during application of a proximally directed force on the distal end of the anchor. In some embodiments, foreshortening of the apparatus involves applying a proximally directed force on a deployment system interface at the distal end of the anchor. In other embodiments, foreshortening of the apparatus involves applying a distally directed force on a deployment system interface at the proximal end of the anchor. More preferably, proximally or distally directed forces on the deployment system interface do not diametrically constrain the opposite end of the anchor—distal or proximal end, respectively. When a proximally directed force is applied on the deployment system interface, it is preferably applied without passing any portion of a deployment system through a center opening of the replacement valve.


The distal deployment system interface may include control wires that are controlled, e.g., by control knob 122 of control handle 120. Similarly, the proximal regions of anchor 30 may be pushed distally via a proximal deployment system interface at the proximal end of the anchor. The proximal deployment system interface is adapted to permit deployment system to apply a distally directed force to the proximal end of anchor 30 through, e.g., fingers 106, which are controlled by, e.g., Control knob 124 of control handle 120. The proximal deployment system interface may be further adapted to expand radially during application of a distally directed force on the proximal end of the anchor. Preferably, the proximal deployment system interface is adapted to permit deployment system to apply a distally directed force on the proximal end of the anchor system through a plurality of deployment system fingers or tubes 160. Such expansion optionally may be assisted via inflation of a balloon catheter (not shown) reversibly disposed within apparatus 10, as described in U.S. patent application Ser. No. 10/746,280.


Once anchor 30 is fully deployed, posts 32 and buckles 34 of anchor 30 may be used to lock and maintain the anchor in the deployed configuration. In one embodiment, the control wires attached to posts 32 are threaded through buckles 34 so that the proximally directed force exerted on posts 32 by the control wires during deployment pulls the proximal locking end of posts 32 toward and through buckles 34. Such lock optionally may be selectively reversible to allow for repositioning and/or retrieval of apparatus 10 during or post-deployment. Apparatus 10 may be repositioned or retrieved from the patient until the two-part locking mechanism of posts 32 and buckles 34 of anchor 30 have been actuated. When the lock is selectively reversible, the apparatus may be repositioned and/or retrieved as desired, e.g., even after actuation of the two-part locking mechanism. Once again, further details of this and other anchor locking structures may be found in U.S. patent application Ser. No. 10/746,280. Locking mechanisms used herein may also include a plurality of levels of locking wherein each level of locking results in a different amount of expansion. For example, the proximal end of the post can have multiple configurations for locking within the buckle wherein each configuration results in a different amount of anchor expansion.


When apparatus 10 is placed across a patient's diseased heart valve, anchor 30 may be used to displace the patient's native valve leaflets, and replacement valve 20 will thereafter serve in place of the native valve. After final positioning and expansion, apparatus 10 may be decoupled from delivery system 100 by decoupling the proximal and distal region control wires from anchor 30. Decoupling may be actuated using knob 126 of handle 120. After decoupling, delivery system 100 then may be removed from the patient, thereby completing endovascular replacement of a patient's heart valve.


Prior to implantation of replacement valve apparatus described herein, it may be desirable to perform a valvuloplasty on the patient's diseased valve by inserting a balloon into the valve and expanding it using, e.g., saline mixed with a contrast agent. In addition to preparing the valve site for implant, fluoroscopic viewing of the valvuloplasty will help determine the appropriate size of replacement valve implant to use.



FIGS. 2A-F show further details of anchor 30 of apparatus 10. FIG. 2A shows the apparatus in a collapsed configuration, such as for delivery within a sheath or other lumen or for retrieval and recapture into a sheath or other lumen. FIGS. 2B and 2C show the anchor and valve in an expanded and locked configuration.


As shown in FIG. 2C, anchor 30 has three posts and three buckles. As seen in FIG. 2C, the three leaflets of replacement valve 20 may be coupled to the three posts 32 also known as valve supports. The posts, unlike the braid, do not collapse or expand. In some embodiments a post 32 has one or more proximal slots 33, at least one proximal hole 36a and at least one distal hole 36b. Leaflet tissue may be passed through slot 33 and sutured in place via suture routed through one or more proximal holes 36a. Other means known in the art for fixing valve leaflets to posts may also be employed.


Posts 32 may be coupled to anchor braid 30 via one or more distal holes 36b. For example, anchor braid 30 may be woven through holes 36b, or a suture may be routed through holes 36b and tied to the braid. Buckles 34 may likewise be attached to anchor braid 30 via weaving or suturing.


Alternative locks may be used to lock the anchor of the present invention in the foreshortened configuration. Preferably, a locking mechanism of the present invention can have multiple locking options such that locking can confer a plurality of amounts of expansion. Furthermore, the locking option can be employed asymmetrically to confer non-cylindrical shapes to the anchor. In FIG. 2D, lock 40′ comprises male interlocking element 44 as described previously. However, female interlocking element 42′ illustratively comprises a triangular shape, as compared to the round shape of interlocking element 42 described previously. The triangular shape of female interlocking element 42′ may facilitate mating of male interlocking element 44 with the female interlocking element without necessitating deformation of the male interlocking element.


In FIG. 2E, lock 40″ comprises alternative male interlocking element 44′ having multiple in-line arrowheads 46 along posts 32. Each arrowhead comprises resiliently deformable appendages 48 to facilitate passage through female interlocking element 42. Appendages 48 optionally comprise eyelets 49, such that control wire 50 or a secondary wire may pass therethrough to constrain the appendages in the deformed configuration. To actuate lock 40″, one or more arrowheads 46 of male interlocking element 44′ are drawn through female interlocking element 42, and the wire is removed from eyelets 49, thereby causing appendages 48 to resiliently expand and actuate lock 40″.


Advantageously, providing multiple arrowheads 46 along posts 32 yields a ratchet that facilitates in-vivo determination of a degree of foreshortening imposed upon apparatus of the present invention. Furthermore, optionally constraining appendages 48 of arrowheads 46 via eyelets 49 prevents actuation of lock 40″ (and thus deployment of apparatus of the present invention) even after male element 44′ has been advanced through female element 42. Only after a medical practitioner has removed the wire constraining appendages 48 is lock 40″ fully engaged and deployment no longer reversible.


Lock 40″ of FIG. 11C is similar to lock 40″ of FIG. 2E, except that optional eyelets 49 on appendages 48 have been replaced by optional overtube 47. Overtube 47 serves a similar function to eyelets 49 by constraining appendages 48 to prevent locking until a medical practitioner has determined that apparatus of the present invention has been foreshortened and positioned adequately at a treatment site. Overtube 47 is then removed, which causes the appendages to resiliently expand, thereby fully actuating lock 40″.



FIG. 3 illustrates an exemplary apparatus for fabricating braided anchors. Such apparatus includes a cylindrical braiding fixture 200. The cylindrical braiding fixture 200 comprises proximal circumference of inner posts 202a separated by a distance x from distal circumference of inner posts 202b. x can be, for example, 10 to 60 mm, more preferably 20 to 50 mm, or more preferably 30 to 40 mm. Optionally, the fixture may also comprise proximal and distal circumferences of outer posts 204a and 204b, respectively. 204a and 204b can be situated about 2-10 mm from 202a and 202b, respectively. Posts 202a/b and 204a/b project from fixture 200 and may be used to route wire, e.g., for forming anchor braid 30. Inner posts 202a and 202b generally facilitate formation of a braid, while outer posts 204a and 204b generally facilitate formation of desired features at the ends of the braid, as described hereinafter with respect to FIGS. 5-8.


In some embodiments, fixture 200 comprises approximately 6-20 posts, more preferably 8-18 posts, or more preferably 10-16 posts around its circumference, though any alternative number of posts may be provided. Likewise, fixture 200 preferably has a diameter of about 2-40 mm, more preferably 4-30 mm, or more preferably 6-20 mm, though any alternative diameter may be provided. The diameter of fixture 200 preferably is the diameter of the braid in its “at rest” configuration.


Fixture 200 can optionally further comprise circumferential grooves 206 to facilitate interweaving of a first section of wire underneath an adjacent section of wire. The fixture optionally also may comprise localized depressions or holes 208 in addition, or as an alternative, to grooves 206. Depressions 208 may be provided at locations where wire segments cross to act as a visual guide for formation of anchor braid 30, as well as to facilitate the interweaving of a first section of wire beneath an adjacent section of wire.


Referring now to FIGS. 4A-D, an illustrative method of using fixture 200 to fabricate braided anchors in accordance with the present invention is described. FIG. 4A provides a detail view of a proximal front side region of fixture 200 during formation of a braided anchor. FIG. 4B shows a detail backside view of a central section of the fixture. FIG. 4C shows a full-length frontside view of the fixture and FIG. 4D shows the completed braid. In FIG. 4, anchor braid 30 is formed from a single strand of wrapped and interwoven wire W. However, it should be understood that anchor braid 30 alternatively may be formed from multiple strands of wire.


As seen in FIG. 4A, formation of anchor braid 30 begins with wire W being routed from starting position P near the proximal end of fixture 200 past outer proximal posts 204a and inner proximal posts 202a. Wire W preferably is formed from a superelastic and/or shape-memory material, such as Nitinol. However, alternative wire materials may be utilized, including Cobalt-Chromium, Steel and combinations thereof, as well as additional materials that will be apparent to those of skill in the art.


After passing inner proximal posts 202a, wire W encircles fixture 200 in a helical spiral while extending towards the distal posts, as seen in FIGS. 4B and 4C. The wire illustratively encircles fixture 200 a full 360.degree. revolution plus one additional post. However, any alternative degree of winding may be provided (e.g., a full 360.degree. plus 2 additional posts, a full 360.degree. plus 3 additional posts, or a number of posts less than a full 360.degree.). As will be apparent to those of skill in the art, altering the degree of winding will alter the expansion characteristics of the resultant braid in ways per se known.


At distal inner posts 202b, wire W forms turn Tu and is rerouted back towards proximal inner posts 202a. It should be noted that wire W can form turn Tu in either inner posts 202 or outer posts 204. Turn Tu forms a closed end of the braid. Additional sets of inner and outer posts are also contemplated. The wire once again encircles fixture 200 in a full 360.degree. helical revolution plus one additional post before reaching the proximal inner posts and being rerouted back towards the distal inner posts. This process is repeated with the wire repetitively interwoven at crossing locations between the proximal and distal posts, e.g., via grooves 206 and/or depressions 208, to define the cells of the braid that will provide anchor 30 with desired characteristics. As seen in FIG. 4D, wire W turns both proximally and distally in order to complete formation of the braid. In this embodiment, wire W terminates in the central portion of the braid at T. Termination T may be formed, for example, by welding the wires together, applying a shrink tube about the overlap, using a crimp, braising the wires, etc. Additional techniques will be apparent to those of skill in the art.


When anchor braid 30 is formed from a shape-memory material, the braid may be heat set such that it maintains a desired degree of expansion in an at-rest configuration. The heat set at-rest configuration may comprise, for example, the delivery configuration (e.g., collapsed configuration) of FIG. 2A, the deployed configuration (e.g., expanded configuration) of FIGS. 2B and 2C, or any desired configuration therebetween. In preferred embodiments, the anchor is heat-set in a configuration between the delivery configuration and the deployed configuration. Anchor braid 30 may be heat set while still disposed on fixture 200 to maintain an at-rest configuration as formed on the fixture, which preferably is a configuration between the delivery and deployed configurations. Alternatively, the braid may be heat set after complete or partial removal from the fixture. As yet another alternative, the braid may be initially heat set while still disposed on the fixture, but thereafter may be additionally heat set in a different shape, for example, a more expanded configuration. It is expected that heat setting anchor braid 30 will provide the braid with desired delivery and/or deployment characteristics.


Referring now to FIGS. 5A-5O, in conjunction with FIGS. 2C and 4, an anchor braid 30 may be defined by a set of cells that is different than other cells. Such cells may be formed to provide anchor braid 30 with one or more edge features (for either or both the distal and proximal ends). These edge features can, for example, reduce or relieve stress within the braid during delivery and deployment, which in turn may reduce the incidence of anchor material fatigue caused by the pulsatile anchor motion of the anchor site. As will be apparent to those of skill in the art, forming braid 31 from a single strand of wire W (or from multiple strands of wire W that form turns or that are joined together) may lead to stress concentration at turns Tu in the wire where the wire changes direction and extends back towards the opposite end of the braid. Such stress concentration may be most pronounced while the braid is disposed in its extreme configurations, i.e. when the braid is disposed in the collapsed delivery configuration of FIG. 2A or the expanded deployed configuration of FIGS. 2B and 2C.


Stress concentration may increase the rigidity of an anchor braid and/or may impede delivery and deployment, as well as sheathing, of the braid. Thus, in preferred embodiments, a group of cells can be configured to reduce the sheathing force as described herein. Furthermore, to enhance deliverability, stress concentration may require that anchor braid 30 be fabricated from a relatively thin wire W. However, thin wire may not provide anchor braid 30 with adequate radial strength to displace a patient's diseased native heart valve leaflets and/or to anchor apparatus 10 against a patient's anatomy. Conversely, use of a relatively thick wire W may increase stiffness, thereby precluding retrograde delivery of apparatus 10, as well as a risk of kinking at turns in the braid. Thus, in some embodiments, wires varying in thickness may be used, or multiple wires having different thickness may be woven together. Also, wires made from different materials may be used to form an anchor braid.


It may be desirable to reduce stress concentration at the edges of anchor 30 where wire W changes direction and/or to reduce the circumferential stiffness of the anchor braid. The edge characteristics of the anchor may be altered by altering the shape of substantially all anchor braid cells at the anchor's edge (e.g., distal edge and/or proximal edge). Wire turns that control the shape of the edge cells may be formed within anchor braid 30 by routing wire W around optional outer posts 204 of fixture 200 during formation of the braid. FIG. 5A illustrates a detail view of a standard end turn Tu in an anchor braid resulting in a braid with substantially uniform cell size and shape. FIG. 5B illustrates a turn that has been elongated to lengthen the distance over which forces concentrated in the turn may be distributed, resulting in an anchor braid having edge cells that are longer along the anchor axis than the other cells defined by the braid. This elongated turn feature may be formed by routing the wire of braid about outer posts 204 of fixture 200, and then heat setting the wire.



FIG. 5C illustrates an alternative anchor edge cell configuration, wherein the tip of the elongated wire turn has been bent out of a cylindrical shape defined by the braid of anchor braid 30. This may be achieved, for example, via a combination of routing of wire W within fixture 200 and heat setting. The out-of-plane bend of turn Tu in the anchor edge cells in FIG. 5C may reduce stress in some configurations, and may also provide a lip for engaging the patient's native valve leaflets to facilitate proper positioning of apparatus 10 during deployment.


In FIG. 5D, a W-shaped turn feature has been formed at the wire turn, e.g., by routing the wire of anchor braid 30 about a central inner post 202 and two flanking outer posts 204 of fixture 200. As with the elongated braid cells of FIGS. 5B and 5C, the W-shape may better distribute stress about turn Tu. The anchor edge cell configuration in FIG. 5E includes a loop formed in braid 31 at the turn, which may be formed by looping wire W around an inner or outer post of fixture 200. FIG. 5F provides another alternative anchor edge cell configuration having a figure-eight shape. Such a shape may be formed, for example, by wrapping wire W about an inner post 202 and an aligned outer post 204 in a figure-eight fashion, and then heat setting the wire in the resultant shape.


In FIG. 5G, the edge cells of braid 31 include a heart-shaped configuration, which may be formed by wrapping the wire about an aligned inner and outer post of fixture 200 in the desired manner. In FIG. 5H, the edge cells of braid 31 have an asymmetric loop at turn Tu. The asymmetric loop will affect twisting of braid 31 during expansion and collapse of the braid, in addition to affecting stress concentration. In FIG. 5I, the anchor edge cells have a double-looped turn configuration, e.g. via wrapping about two adjacent inner or outer posts of fixture 200. Additional loops may also be employed. The double loop turn feature may be formed with a smooth transition between the loops, as in FIG. 5I, or may be heat set with a more discontinuous shape, as in FIG. 5J.



FIG. 5K illustrates that the edge cells of braid 31 may have multiple different configurations about the anchor's circumference. For example, the anchor edge cells shown in FIG. 5K have extended length cells as in FIG. 5B disposed adjacent to standard size edge cells, as in FIG. 5A: The anchor edge cells of FIG. 5L have an extended turn configuration having an extended loop. The anchor edge cells shown in FIG. 5M have an alternative extended configuration with a specified heat set profile. Finally, the anchor edge cells shown in FIG. 5N that overlap or are interwoven to be coupled to one another.


In preferred embodiments, the edge cells may be wrapped using wire, string, or sutures, at a location where the wire overlaps after an end turn as is illustrated in FIG. 5O. This tied-end turn feature prevents cells from interlocking with each other during deployment.


The edge cell configuration of FIG. 5 may be heat set independently of the rest of the braid. The anchor edge cell configurations of FIG. 5 are provided only for the sake of illustration and should in no way be construed as limiting. Additional turn features within the scope of the present invention will apparent to those of skill in the art in view of FIG. 5. Furthermore, combinations of any such turn features may be provided to achieve desired characteristics of anchor braid 30.


Referring now to FIGS. 6A-E, additional configurations for reducing stress concentration and/or circumferential stiffness of anchor braid 30 are illustrated. Such configurations can be used independently or in conjunction with other configurations disclosed herein. Such configurations are preferably used at the anchor's edges to locally reduce the cross-sectional area of substantially all cells or all cells in the anchor braid's edge (e.g., proximal and/or distal). As seen in FIGS. 6A and 6B, turns Tu, in wire W typically may have a substantially continuous (e.g., round) cross-sectional profile. As seen in FIG. 6C, modifying the edge cell configuration by locally reducing the thickness or cross-sectional area of wire W at turn(s) Tu will reduce stress concentration within the wire at the turns and facilitate collapse and/or expansion of anchor braid 30 from the delivery to the deployed configurations. Furthermore, it is expected that such localized reduction in thickness or cross-sectional area will reduce a risk of kinking, fatigue or other failure at turns Tu.


Localized reduction may be achieved via a localized etching and/or electropolishing process. Alternatively or additionally, localized grinding of the turns may be utilized. Additional processing techniques will be apparent to those of skill in the art. As seen in FIGS. 6D-6E, wire W may, for example, comprise an oval or rectangular cross-sectional profile, respectively, after localized reduction. The wire alternatively may comprise a round profile of reduced cross-sectional area (not shown). Additional profiles will be apparent. Localized reduction can take place at any time (e.g., before or after a braid is woven). Preferably, localized reduction occurs after weaving. However, in some embodiments, a wire of a given length may be etched or ground at preset segments and subsequently woven.


Referring now to FIGS. 7A-J, instead of terminating the beginning and end of wire W of braid 31 at an overlap within the braid, as discussed previously, the two ends of the wire may be terminated at the anchor's edge. Likewise, when braid 31 is fabricated from multiple wires W, the wires (or a subset of the wires) optionally may be joined together or terminated at turn(s) of the braid. In FIG. 7A, wire termination T at the ends of wire(s) W comprises a hinged termination with hinge post 38. In FIG. 7B termination T comprises a clipped or crimped termination with end cap 39. In FIG. 7C, cap 39 is wrapped about the ends of wire W to form wrapped termination T.


In FIG. 7D, cap 39 is placed over the wire ends, which are then bent to provide a swivel termination. In FIG. 7E, the wire ends are potted within cap 39 at termination T. In FIG. 7F, cap 39 is swaged about the wire ends. In FIG. 7G, the wire ends are welded or glued together. In FIG. 7G, the wire ends are spot welded together. Alternatively, the wire ends may be braised to form termination T, as in FIG. 7H. As yet another alternative, cap 39 may be placed about the wire ends, and kinks K may be formed in wire W to provide the ends of the wire with an over-center bias that maintains termination T, e.g., swivel termination T. Additional terminations will be apparent to those of skill in the art.


With reference now to FIGS. 8A-B, alternative anchors of the present invention are described having anchor edge features that facilitate sheathing of the apparatus and reduce the sheathing force. In FIG. 8A, the edge cells of anchor 30 have inwardly canted configurations at the wire turns Tu about a proximal circumference of the anchor. These edge cell configurations provide the proximal circumference with a conical profile that facilitates sheathing of the apparatus within a delivery system, e.g., previously described delivery system 100, by allowing collapse of anchor 30 to proceed in a more gradual and/or continuous manner, and funneling the anchor into the sheath.



FIG. 8B illustrates another alternative anchor 30 having edge cell configurations formed by wire turns Tu about its proximal circumference that first cant outward, and then cant inward. The inward cant provides the proximal circumference with a conical profile and may facilitate sheathing, while the outward cant may facilitate anchoring at a treatment site, e.g., may engage a patient's native valve leaflets. As will be apparent, the edge cell configurations of FIG. 8, as well as those of FIGS. 5-7, optionally may be provided at either the proximal or distal ends of the anchor, or both. The edge cell configurations of FIG. 8, as well as those of FIGS. 5 and 7, may, for example, be formed by heat setting braid 31 in the desired configuration.


Referring now to FIG. 9, further alternative anchors are described having edge cell configurations adapted to lock the anchor in the deployed configuration to maintain expansion. In FIG. 9A, anchor 30 comprises elongated, hooked edge cells formed from wire turns Tu that are configured to snag braid 31 and maintain the anchor in the deployed configuration, as shown. In FIG. 9B, the hooked turn features have been elongated, such that the hooks are configured to snag the opposing end of anchor 30 to maintain expansion.


In FIG. 9C, anchor edge cells defined by wire turns TuP and distal turn features TuD are configured to interlock between the ends of anchor braid 30 in order to maintain the deployed configuration of anchor 30. The proximal edge cells form a hook adapted to engage elongated turns of the distal turn features. As will be apparent, the disposition of all or a portion of the proximal and distal edge cell configurations optionally may be reversed, i.e. the proximal edge cells may form hooks and the distal edge cells may be configured as elongated turns. FIG. 9D illustrates interlocking proximal and distal edge cell configurations of more complex geometry. FIG. 9E illustrates interlocking proximal and distal edge cell configurations while anchor 30 is disposed in the collapsed delivery configuration. The locking turn features of FIG. 9 may, for example, be formed by heat setting anchor braid 30 (or locking features only) in the desired configuration. Additional locking turn features will be apparent to those of skill in the art. In preferred embodiments, the anchor locking mechanism can be set to have alternative locking options that allow for various amounts of expansion.



FIGS. 10A-10D illustrate various embodiments of anchor braids. An anchor braid can be made of one or more wire and can be used to form various density braids. The density of the braid can be assessed by the size of cells formed by the weave. In some embodiments, two or more different density braids may be woven together. For example, FIG. 10A illustrates two groups of cells or two braids interwoven in the center. The top group of cells forms a more open weave than the bottom group of cells, which forms a denser weave. FIG. 10B illustrates another embodiment of an anchor braid having three groups of cells. The top and bottom (proximal and distal) edges of the anchor braid have denser cells than the central portion of the anchor. Also, the edges of the anchor are woven from a thinner filament than the central portion. In another embodiment illustrated by FIG. 10C, all three sections of an anchor valve are woven by more than one wire. The wires of each section are made of a different material and/or thickness. Wires at the sectional boundaries may or may not interconnect with wires from a different section. Each of the sections of the braid anchor may be composed of a different number of wires. FIG. 10D illustrates another embodiment of a braided anchor having three sections. In this embodiment, all sections are composed of a single wire. The proximal and distal sections/edges of the braided anchor have the same pitch. The central region of the braided anchor has a different pitch than the edge sections.



FIGS. 11A-11E illustrate side views of braided anchor having more than one braid pitch. Varying pitch within the anchor allows localized variations in foreshortening across the anchor, as greater foreshortening is achieved by higher pitch of the braid. Moreover, the localized foreshortening features allow for the design of a braid which incorporates various diameters depending upon the amount of foreshortening. (The greater the foreshortening, the greater the diameter increase upon deployment.)



FIG. 11A, for example, is a side view representation of braided anchor of FIG. 10D. On the left side of the figure, the expanded anchor is illustrated having a denser weave (shorter pitch) at the distal and proximal ends; hence the dots are located closer to each other. The middle section of the anchor is composed of a looser weave that is generated by a higher pitch braid and is represented by dots that are farther away from each other. On the right side of the figure, the braided anchor is foreshortened and the dots are collapsed closer to each other. In this case, the central portion of the anchor foreshortened more than the proximal and distal edges. FIG. 11B illustrates a side view of a foreshortened braided anchor that is created by low pitch at the edges and high pitch in the middle. FIG. 11C illustrates a side view of a foreshortened braided anchor that is created by high pitch edges and low pitch middle section. FIG. 11D illustrates a side view of a foreshortened braided anchor that includes a sealing feature or space filling feature at both ends. This type of anchor can be created by a high pitch braid at edges, low pitch braid in the middle and heat setting the edges to curl upon unsheathing. This end feature is useful in facilitating anchoring by functioning as a locator and sealing. FIG. 11E illustrates a side view of a foreshortened braided anchor that is associated with an everting valve or locational features.


In preferred embodiments, the middle section of the anchor may be composed of thicker wire(s) than edge section(s).



FIGS. 12A-12C illustrate an example of the process of deploying the anchor, such as the one illustrated in FIG. 11B above. FIG. 12A illustrates a braided anchor 30 in its expanded configuration. The anchor is composed of three sections. The distal and proximal sections of the anchor are made of a fine weave (low pitch) braid. The middle section of the anchor is made of a higher pitch braid and are preferably heat set to roll upon unsheathing. Furthermore, in preferred embodiments, the filaments of the distal and proximal sections may be thinner (e.g. 0.005 in thickness) than the filaments of the middle section (e.g., 0.010 in thickness). Posts 32 are coupled to the middle section of the anchor. For deployment, tubes 106 are coupled to the anchor's middle section. FIG. 12B illustrates the process of deployment. As the anchor is pushed distally by the tubes and pulled proximally by wires, it is unsheathed and begins foreshortening. The distal section rolls up and can act as a locator, assisting the operator in locating the aortic valve. It then functions as a seal preventing leakage. The proximal section may optionally also roll up. In FIG. 12C, the device may be configured such that the middle section of the valve may form an hour glass shape or a round shape. The tubes may subsequently be removed as described before. FIG. 12D is another illustration of the braided anchor in its elongated configuration. FIG. 12E is another illustration of the braided anchor in its foreshortened configuration.



FIGS. 13A-13B illustrate another embodiment of a braided anchor. In this embodiment, the anchor includes two sections—a distal section made of a fine weave and a higher pitch braid than the proximal section. In FIG. 13A the device is deployed such that the distal section made of the fine weave is distal to the aortic valve. In FIG. 13B, the distal section is foreshortened, either by heat set memory or actively. The foreshortening of the distal section allows the operator to locate the valve and situate the anchor prior to release.


The anchors described herein can be, for example, radially symmetrical, bilaterally symmetrical, or asymmetrical. A radially symmetrical anchor is one for which symmetry exists across any diameter. A bilaterally symmetrical anchor is one for which symmetry exists across a finite number if diameters). An asymmetrical anchor is one for which there exists no diameter across which a symmetry may be found. FIG. 2B illustrates one embodiment of a radially symmetrical anchor. FIG. 14A illustrates one embodiment of a bilaterally symmetrical anchor. FIG. 14B illustrates two embodiments (side and top views) of asymmetrical anchors. The benefits of bilaterally symmetrical an asymmetrical anchors is their ability to avoid interfering with anatomical features, such as, for example the coronary ostial and/or mitral valve. Thus, in preferred embodiments, a braided anchor includes a region adapted to prevent expansion of the anchor into the mitral valve, as is illustrated in FIG. 14A.


While preferred embodiments of the present invention are shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An apparatus for endovascularly replacing a heart valve, comprising: a delivery system comprising an outer sheath and a control handle coupled to a proximal end of the outer sheath; anda replacement heart valve implant comprising: an expandable anchor having a central longitudinal axis, a delivery configuration and a deployed configuration; anda replacement valve coupled to the expandable anchor;wherein the expandable anchor includes a plurality of edge cells attached at their respective distal ends to a proximal circumference of the expandable anchor, the plurality of edge cells being inwardly canted toward the central longitudinal axis in the deployed configuration with the proximal extent of each edge cell of the plurality of edge cells being located radially inward of the distal end thereof.
  • 2. The apparatus of claim 1, wherein a proximal portion of the expandable anchor forms a conical profile in the deployed configuration.
  • 3. The apparatus of claim 1, wherein the delivery system includes a plurality of fingers engaged with a proximal portion of the expandable anchor.
  • 4. The apparatus of claim 1, wherein the replacement heart valve implant is disposed within a distal end of the outer sheath in the delivery configuration.
  • 5. The apparatus of claim 4, wherein the expandable anchor is configured to radially expand from the delivery configuration to the deployed configuration after the outer sheath is removed from an exterior of the replacement heart valve implant.
  • 6. The apparatus of claim 1, wherein the replacement valve includes a plurality of valve leaflets.
  • 7. The apparatus of claim 1, wherein an overall length of the expandable anchor axially shortens as the expandable anchor is expanded from the delivery configuration to the deployed configuration.
  • 8. An apparatus for endovascularly replacing a heart valve, comprising: a delivery system comprising an outer sheath and a control handle coupled to a proximal end of the outer sheath; anda replacement heart valve implant comprising: an expandable anchor having a central longitudinal axis, a plurality of proximal edge cells attached at their respective distal ends to the proximal circumference of the expandable anchor, a delivery configuration and a deployed configuration; anda replacement valve coupled to the expandable anchor;wherein the expandable anchor in the deployed configuration includes a proximal edge cell configuration having an initial outward cant in a proximal direction from a body portion of the expandable anchor and an inward cant proximal of the initial outward cant with the proximal extent of each edge cell of the plurality of proximal edge cells being located radially inward of the distal end thereof.
  • 9. The apparatus of claim 8, wherein the inward cant provides a proximal circumference of the expandable anchor with a conical configuration in the deployed configuration.
  • 10. The apparatus of claim 8, wherein the initial outward cant is configured to engage native leaflets of the heart valve in the deployed configuration.
  • 11. The apparatus of claim 8, wherein the delivery system includes a plurality of fingers engaged with a proximal portion of the expandable anchor.
  • 12. The apparatus of claim 8, wherein the replacement heart valve implant is disposed within a distal end of the outer sheath in the delivery configuration.
  • 13. The apparatus of claim 12, wherein the expandable anchor is configured to radially expand from the delivery configuration to the deployed configuration after the outer sheath is removed from an exterior of the replacement heart valve implant.
  • 14. The apparatus of claim 8, wherein the replacement valve includes a plurality of valve leaflets.
  • 15. The apparatus of claim 8, wherein an overall length of the expandable anchor axially shortens as the expandable anchor is expanded from the delivery configuration to the deployed configuration.
CROSS REFERENCE

This application is a continuation of U.S. Ser. No. 10/893,131, filed Jul. 15, 2004, now U.S. Pat. No. 9,526,609, which is a continuation-in-part application of U.S. Ser. No. 10/746,280, filed Dec. 23, 2003, now U.S. Pat. No. 8,840,663.

US Referenced Citations (870)
Number Name Date Kind
15192 Peale Jun 1856 A
2682057 Lord Jun 1954 A
2701559 Cooper Feb 1955 A
2832078 Williams Apr 1958 A
3099016 Edwards Jul 1963 A
3113586 Edmark, Jr. Dec 1963 A
3130418 Head et al. Apr 1964 A
3143742 Cromie Aug 1964 A
3334629 Cohn May 1967 A
3367364 Cruz, Jr. et al. Feb 1968 A
3409013 Berry Nov 1968 A
3445916 Schulte May 1969 A
3540431 Mobin-Uddin Nov 1970 A
3548417 Kischer et al. Dec 1970 A
3570014 Hancock Mar 1971 A
3587115 Shiley Jun 1971 A
3592184 Watkins et al. Jul 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos et al. May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4323358 Lentz et al. Apr 1982 A
4326306 Poler Apr 1982 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4484579 Meno et al. Nov 1984 A
4501030 Lane Feb 1985 A
4531943 Van Tassel et al. Jul 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4602911 Ahmadi et al. Jul 1986 A
4605407 Black et al. Aug 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4617932 Kornberg Oct 1986 A
4643732 Pietsch et al. Feb 1987 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten Apr 1987 A
4662885 Dipisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4680031 Alonso Jul 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4705516 Barone et al. Nov 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4755181 Igoe Jul 1988 A
4759758 Gabbay Jul 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4834755 Silvestrini et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4873978 Ginsburg Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4885005 Nashef et al. Dec 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4927426 Dretler May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4969890 Sugita et al. Nov 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5132473 Furutaka et al. Jul 1992 A
5141494 Danforth et al. Aug 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5159937 Tremulis Nov 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5209741 Spaeth May 1993 A
5215541 Nashef et al. Jun 1993 A
5217483 Tower Jun 1993 A
5258023 Reger Nov 1993 A
5258042 Mehta Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5409019 Wilk Apr 1995 A
5411552 Andersen et al. May 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5443449 Buelna Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5534007 St. Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5645559 Hachtman et al. Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5693310 Gries et al. Dec 1997 A
5695498 Tower Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713951 Garrison et al. Feb 1998 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5725549 Lam Mar 1998 A
5728068 Leone et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5749890 Shaknovich May 1998 A
5755783 Stobie et al. May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800456 Maeda et al. Sep 1998 A
5800531 Cosgrove et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5860966 Tower Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5873906 Lau et al. Feb 1999 A
5876419 Carpenter et al. Mar 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6010530 Goicoechea Jan 2000 A
6022370 Tower Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6051014 Jang Apr 2000 A
6059827 Fenton, Jr. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6093203 Uflacker Jul 2000 A
6096074 Pedros Aug 2000 A
6123723 Konya et al. Sep 2000 A
6132473 Williams et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6146366 Schachar Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6168614 Andersen et al. Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6221100 Strecker Apr 2001 B1
6231544 Tsuigita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6245103 Stinson Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6258129 Dybdal et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6319281 Patel Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352554 De Paulis Mar 2002 B2
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6364895 Greenhalgh Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6402736 Brown et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540768 Diaz et al. Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6572643 Gharibadeh Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6623521 Steinke et al. Sep 2003 B2
6632241 Hancock et al. Oct 2003 B1
6632243 Zadno-Azizi et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682543 Barbut et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712842 Gifford, III et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6719789 Cox Apr 2004 B2
6723116 Taheri Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6755854 Gillick et al. Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 St. Germain et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6773454 Wholey et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6837901 Rabkin et al. Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6866650 Stevens et al. Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872223 Roberts et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939352 Buzzard et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6953332 Kurk et al. Oct 2005 B1
6964673 Tsugita et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6972025 WasDyke Dec 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
7004176 Lau Feb 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7097658 Oktay Aug 2006 B2
7122020 Mogul Oct 2006 B2
7125418 Duran et al. Oct 2006 B2
7141063 White et al. Nov 2006 B2
7166097 Barbut Jan 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7175656 Khairkhahan Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7258696 Rabkin et al. Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7322932 Xie et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329279 Haug et al. Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7381220 Macoviak et al. Jun 2008 B2
7399315 Iobbi Jul 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7470285 Nugent et al. Dec 2008 B2
7473417 Zeltinger et al. Jan 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7510574 Lê et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7530995 Quijano et al. May 2009 B2
7544206 Cohn Jun 2009 B2
7601159 Ewers et al. Oct 2009 B2
7622276 Cunanan et al. Nov 2009 B2
7628802 White et al. Dec 2009 B2
7628803 Pavcnik et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7641687 Chinn et al. Jan 2010 B2
7674282 Wu et al. Mar 2010 B2
7712606 Salahieh et al. May 2010 B2
7722638 Deyette, Jr. et al. May 2010 B2
7722662 Steinke et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7758625 Wu et al. Jul 2010 B2
7763065 Schmid et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7799046 White et al. Sep 2010 B2
7799065 Pappas Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7833262 McGuckin, Jr. et al. Nov 2010 B2
7846204 Letac et al. Dec 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7892292 Stack et al. Feb 2011 B2
7914574 Schmid et al. Mar 2011 B2
7918880 Austin Apr 2011 B2
7927363 Perouse Apr 2011 B2
7938851 Olson et al. May 2011 B2
7947071 Schmid et al. May 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967853 Eidenschink et al. Jun 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8172896 McNamara et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8192351 Fishler et al. Jun 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8236049 Rowe et al. Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8277500 Schmid et al. Oct 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8348999 Kheradvar et al. Jan 2013 B2
8366767 Zhang Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377117 Keidar et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8512394 Schmid et al. Aug 2013 B2
8523936 Schmid et al. Sep 2013 B2
8540762 Schmid et al. Sep 2013 B2
8545547 Schmid et al. Oct 2013 B2
8579962 Salahieh et al. Nov 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8617235 Schmid et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8623076 Salahieh et al. Jan 2014 B2
8623078 Salahieh et al. Jan 2014 B2
8668733 Haug et al. Mar 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8840662 Salahieh et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8894703 Salahieh et al. Nov 2014 B2
8992608 Haug et al. Mar 2015 B2
20010002445 Vesely May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010032013 Marton Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson, IV et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020029981 Nigam Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020055767 Forde et al. May 2002 A1
20020055769 Wang May 2002 A1
20020058995 Stevens May 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020177766 Mogul Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040736 Stevens et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030069646 Stinson Apr 2003 A1
20030070944 Nigam Apr 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153971 Chandrasekaran Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030195609 Berenstein et al. Oct 2003 A1
20030199759 Richard Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Zadno-Azizi et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040073198 Gilson et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040087982 Eskuri May 2004 A1
20040088045 Cox May 2004 A1
20040093016 Root et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098098 McGuckin, Jr. et al. May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040199245 Lauterjung Oct 2004 A1
20040204755 Robin Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040243221 Fawzi et al. Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010287 Macoviak et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050033398 Seguin Feb 2005 A1
20050033402 Cully et al. Feb 2005 A1
20050043711 Corcoran et al. Feb 2005 A1
20050043757 Arad et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060016 Wu et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050090890 Wu et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 Wasdyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050131438 Cohn Jun 2005 A1
20050137683 Hezi-Yamit et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240262 White Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070061008 Salahieh et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070173918 Dreher et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203560 Forster et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033541 Gelbart et al. Feb 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090030512 Thielen et al. Jan 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090264759 Byrd Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090299462 Fawzi et al. Dec 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100094399 Dorn et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100161045 Righini Jun 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100191320 Straubinger et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100219092 Salahieh et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100268332 Tuval et al. Oct 2010 A1
20100280495 Paul et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110040366 Goetz et al. Feb 2011 A1
20110098805 Dwork et al. Apr 2011 A1
20110257735 Salahieh et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120022633 Olson et al. Jan 2012 A1
20120022642 Haug et al. Jan 2012 A1
20120029627 Salahieh et al. Feb 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120053683 Salahieh et al. Mar 2012 A1
20120059447 Zilla et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120089224 Haug et al. Apr 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120303113 Benichou et al. Nov 2012 A1
20120303116 Gorman, III et al. Nov 2012 A1
20120330409 Haug et al. Dec 2012 A1
20130018457 Gregg et al. Jan 2013 A1
20130030520 Lee et al. Jan 2013 A1
20130079867 Hoffman et al. Mar 2013 A1
20130079869 Straubinger et al. Mar 2013 A1
20130096664 Goetz et al. Apr 2013 A1
20130138207 Quadri et al. May 2013 A1
20130158656 Sutton et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130190865 Anderson Jul 2013 A1
20130245752 Goetz et al. Sep 2013 A1
20130253640 Meiri et al. Sep 2013 A1
20130289698 Wang et al. Oct 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304199 Sutton et al. Nov 2013 A1
20130310917 Richter et al. Nov 2013 A1
20130310923 Kheradvar et al. Nov 2013 A1
20130325101 Goetz et al. Dec 2013 A1
20130338755 Goetz et al. Dec 2013 A1
20140018911 Zhou et al. Jan 2014 A1
20140052239 Kong et al. Feb 2014 A1
20140094904 Salahieh et al. Apr 2014 A1
20140114405 Paul et al. Apr 2014 A1
20140114406 Salahieh et al. Apr 2014 A1
20140121766 Salahieh et al. May 2014 A1
20140135912 Salahieh et al. May 2014 A1
20140243962 Wilson et al. Aug 2014 A1
20140243967 Salahieh et al. Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20150012085 Salahieh et al. Jan 2015 A1
20150073540 Salahieh et al. Mar 2015 A1
20150073541 Salahieh et al. Mar 2015 A1
Foreign Referenced Citations (152)
Number Date Country
1338951 Mar 2002 CN
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 May 1988 EP
0144167 Nov 1989 EP
0409929 Apr 1997 EP
0850607 Jul 1998 EP
0597967 Dec 1999 EP
1000590 May 2000 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
1356793 Oct 2003 EP
1042045 May 2004 EP
0819013 Jun 2004 EP
1435879 Jul 2004 EP
1439800 Jul 2004 EP
1472996 Nov 2004 EP
1229864 Apr 2005 EP
1430853 Jun 2005 EP
1059894 Jul 2005 EP
1551274 Jul 2005 EP
1551336 Jul 2005 EP
1078610 Aug 2005 EP
1562515 Aug 2005 EP
1570809 Sep 2005 EP
1576937 Sep 2005 EP
1582178 Oct 2005 EP
1582179 Oct 2005 EP
1469797 Nov 2005 EP
1589902 Nov 2005 EP
1600121 Nov 2005 EP
1156757 Dec 2005 EP
1616531 Jan 2006 EP
1690515 Aug 2006 EP
1605871 Jul 2008 EP
2047824 May 2012 EP
2788217 Jul 2000 FR
2056023 Mar 1981 GB
2398245 Aug 2004 GB
1271508 Nov 1986 SU
1371700 Feb 1988 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9315693 Aug 1993 WO
9504556 Feb 1995 WO
9529640 Nov 1995 WO
9614032 May 1996 WO
9624306 Aug 1996 WO
9640012 Dec 1996 WO
9829057 Jul 1998 WO
9836790 Aug 1998 WO
9850103 Nov 1998 WO
9857599 Dec 1998 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9944542 Sep 1999 WO
9947075 Sep 1999 WO
0009059 Feb 2000 WO
0041652 Jul 2000 WO
0044308 Aug 2000 WO
0044311 Aug 2000 WO
0044313 Aug 2000 WO
0045874 Aug 2000 WO
0047139 Aug 2000 WO
0049970 Aug 2000 WO
0067661 Nov 2000 WO
0105331 Jan 2001 WO
0108596 Feb 2001 WO
0110320 Feb 2001 WO
0110343 Feb 2001 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0197715 Dec 2001 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
02056955 Jul 2002 WO
02100297 Dec 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
03028592 Apr 2003 WO
03030776 Apr 2003 WO
03047648 Jun 2003 WO
03015851 Nov 2003 WO
03094793 Nov 2003 WO
03094797 Nov 2003 WO
2004006803 Jan 2004 WO
2004006804 Jan 2004 WO
2004014256 Feb 2004 WO
2004019811 Mar 2004 WO
2004019817 Mar 2004 WO
2004021922 Mar 2004 WO
2004023980 Mar 2004 WO
2004026117 Apr 2004 WO
2004041126 May 2004 WO
2004043293 May 2004 WO
2004047681 Jun 2004 WO
2004058106 Jul 2004 WO
2004066876 Aug 2004 WO
2004082536 Sep 2004 WO
2004089250 Oct 2004 WO
2004089253 Oct 2004 WO
2004093728 Nov 2004 WO
2004105651 Dec 2004 WO
2005002466 Jan 2005 WO
2005004753 Jan 2005 WO
2005009285 Feb 2005 WO
2005011534 Feb 2005 WO
2005011535 Feb 2005 WO
2005023155 Mar 2005 WO
2005027790 Mar 2005 WO
2005046528 May 2005 WO
2005046529 May 2005 WO
2005048883 Jun 2005 WO
2005062980 Jul 2005 WO
2005065585 Jul 2005 WO
2005084595 Sep 2005 WO
2005087140 Sep 2005 WO
2005096993 Oct 2005 WO
2006005015 Jan 2006 WO
2006009690 Jan 2006 WO
2006027499 Mar 2006 WO
2006093795 Sep 2006 WO
2006138391 Dec 2006 WO
2007009117 Jan 2007 WO
2007033093 Mar 2007 WO
2007035471 Mar 2007 WO
2007044285 Apr 2007 WO
2007053243 Apr 2007 WO
2007058847 May 2007 WO
2007092354 Aug 2007 WO
2007097983 Aug 2007 WO
2008028569 Mar 2008 WO
2008035337 Mar 2008 WO
2010042950 Apr 2010 WO
2010098857 Sep 2010 WO
Non-Patent Literature Citations (77)
Entry
Salahieh, et al., U.S. Appl. No. 11/314,183, entitled “Medical Device Delivery,” filed Dec. 20, 2005.
Salahieh, et al., U.S. Appl. No. 11/314,969, entitled “Methods and Apparatus for Performing Valvuloplasty,” filed Dec. 20, 2005.
Salahieh, et al., U.S. Appl. No. 11/531,980, “Externally expandable heart valve anchor and method,” filled Sep. 14, 2006.
Salahieh, et al., U.S. Appl. No. 11/532,019, “Methods and apparatus for endovascularly replacing heat valve,” filed Sep. 14, 2006.
Salahieh, et al., U.S. Appl. No. 11/275,913, entitled “Two-Part Package for Medical Implant,” filed Feb. 2, 2006.
Haug, et al., U.S. Appl. No. 11/716,123, entitled “Methods and apparatus for endovascularly replacing a heart valve,” filed Mar. 9, 2007.
Salahieh, et al., U.S. Appl. No. 11/706,549, entitled “Systems and Methods for Delivering a Medical Implant,” filed Feb. 14, 2007.
Salahieh, et al., U.S. Appl. No. 11/732,906 entitled “Assessing the location and performance of replacement heart valves,” filed Apr. 4, 2007.
Salahieh, et al., U.S. Appl. No. 12/132,304 entitled “Low profile heart valve and delivery system,” filed Jun. 2, 2008.
Salahieh, et al., U.S. Appl. No. 10/746,280 entitled “Repositionable heart valve and method,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/893,151, entitled “Methods and apparatus for endovascularly replacing a patient's heart valve,” filed Jul. 15, 2004.
Salahieh, et al., U.S. Appl. No. 10/893,143, entitled “Methods and apparatus for endovascularly replacing a patient's heart valve,” filed Jul. 15, 2004.
Salahieh, et al., U.S. Appl. No. 10/893,142, entitled “Methods and apparatus for endovascularly replacing a patient's heart valve,” filed Jul. 15, 2004.
Salahieh, et al., U.S. Appl. No. 10/920,736, entitled “Apparatus and methods for protecting against embolization during endovascular heart replacement,” filed Aug. 17, 2004.
Salahieh, et al., U.S. Appl. No. 10/746,240, entitled “Heart valve anchor and method,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/972,287, entitled “Leaflet engagement elements and methods for use thereof,” filed Oct. 21, 2004.
Salahieh, et al., U.S. Appl. No. 10/971,535 entitled “Leaflet engagement elements and methods for use thereof,” filed Oct. 21, 2004.
Salahieh, et al., U.S. Appl. No. 10/746,120, entitled “Externally expandable heart valve anchor and method,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/982,388, entitled “Methods and apparatus for endovascularly replacing a heart valve,” filed Nov. 5, 2004.
Salahieh, et al., U.S. Appl. No. 10/746,285, entitled “Retrievable heart valve anchor and method,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/982,692, entitled “Retrievable heart valve anchor and method,” filed Nov. 5, 2004.
Salahieh, et al., U.S. Appl. No. 10/746,887, entitled “Low profile heart valve and delivery system,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/746,872, entitled “Locking heart valve anchor,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/911,059, entitled “Replacement valve and anchor,” filed Aug. 3, 2004.
Salahieh, et al., U.S. Appl. No. 10/746,942, entitled “Two-piece heart valve and anchor,” filed Dec. 23, 2003.
Salahieh, et al., U.S. Appl. No. 10/870,340, entitled “Everting heart valve,” filed Jun. 16, 2004.
“Continuous,” Collins English Dictionary, accessed Mar. 18, 2014. pp. 1-3.
Laborde et al., “Percutaneous Implantation of the Corevalve Aortic Valve Prosthesis for Patients Presenting High Risk for Surgical Valve Replacement.” EuroIntervention: 472-474, Feb. 2006.
Supplemental Search Report from EP Patent Office, EP Application No. 04813777.2, dated Aug. 19, 2011.
“A Matter of Size.” Triennial Review of the National Nanotechnology Initiative, The National Academies Press, Washington DC, v-13, http://www.nap.edu/catalog/11752/a-matter-of-size-triennial-review-of-the-national-nanotechnology, 2006.
“Heart Valve Materials—Bovine (cow).” Equine & Porcine Pericardium, Maverick Biosciences Pty. Lt, http://maverickbio.com/biological-medical-device-materials.php?htm. 2009.
“Pericardial Heart Valves.” Edwards Lifesciences, Cardiovascular Surgery FAQ, http://www.edwards.com/products/cardiovascularsurgeryfaq.htm, Nov. 14, 2010.
Andersen et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J., 13:704-708, May 1992.
Atwood et al., “Insertion of Heart Valves by Catheterization.” Project Supervised by Prof. S. Muftu of Northeastern University 2001-2002: 36-40, May 30, 2002.
Atwood et al., “Insertion of Heart Valves by Catheterization.” The Capstone Design Course Report. MIME 1501-1502. Technical Design Report. Northeastern University, pp. 1-93, Nov. 5, 2007.
Bodnar et al., “Replacement Cardiac Valves R Chapter 13: Extinct Cardiac Valve Prostheses.” Pergamon Publishing Corporation. New York, 307-322, 1991.
Boudjemline et al., “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study.” Med Sci. Monit., vol. 8, No. 4: BR113-116, Apr. 12, 2002.
Boudjemline et al., “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” Euro. Heart J., 23: 1045-1049, Jul. 2002.
Boudjemline et al., “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study.” Journal of the American College of Cardiology, vol. 43(6): 1082-1087, Mar. 17, 2004.
Boudjemline et al., “Percutaneous Valve Insertion: A New Approach?” J. of Thoracic and Cardio. Surg, 125(3): 741-743, Mar. 2003.
Boudjemline et al., “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation, 105: 775-778, Feb. 12, 2002.
Cribier et al., “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio, 43(4): 698-703, Feb. 18, 2004.
Cribier et al., “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” Percutaneous Valve Technologies, Inc., 16 pages, Apr. 16, 2002.
Cribier et al., “Percutaneous Transcatheter Implementation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description.” Circulation, 106: 3006-3008, Dec. 10, 2002.
Cunanan et al., “Tissue Characterization and Calcification Potential of Commercial Bioprosthetic Heart Valves.” Ann. Thorac. Surg., S417-421, May 15, 2001.
Cunliffe et al., “Glutaraldehyde Inactivation of Exotic Animal Viruses in Swine Heart Tissue.” Applied and Environmental Microbiology, Greenport, New York, 37(5): 1044-1046, May 1979.
EP Search Report for EP Application No. 06824992.9, dated Aug. 10, 2011.
Examiner's First Report on AU Patent Application No. 2011202667, dated May 17, 2012.
Ferrari et al., “Percutaneous Transvascular Aortic Valve Replacement with Self-Expanding Stent-Valve Device.” Poster from the presentation given at SMIT 2000, 12th International Conference. Sep. 5, 2000.
Helmus, “Mechanical and Bioprosthetic Heart Valves in Biomaterials for Artificial Organs.” Woodhead Publishing Limited: 114-162, 2011.
Hijazi, “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio., 43(6): 1088-1089, Mar. 17, 2004.
Hourihan et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks.” JACC, Boston, Massachusetts, 20(6): 1371-1377, Nov. 15, 1992.
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 754-759, Jan. 23, 2004.
Knudsen et al., “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs, 16(5): 253-262, May 1993.
Kort et al., “Minimally Invasive Aortic Valve Replacement: Echocardiographic and Clinical Results.” Am. Heart J., 142(3): 476-481, Sep. 2001.
Levy, “Mycobacterium chelonei Infection of Porcine Heart Valves.” The New England Journal of Medicine, Washington DC, 297(12), Sep. 22, 1977.
Love et al., The Autogenous Tissue Heart Valve: Current Status. Journal of Cardiac Surgery, 6(4): 499-507, Mar. 1991.
Lutter et al., “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation.” J. of Thoracic and Cardio. Surg., 123(4): 768-776, Apr. 2002.
Moulopoulos et al., “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg., 11(5): 423-430, May 1971.
Paniagua et al., “Heart Watch.” Texas Heart Institute. Edition: 8 pages, Spring, 2004.
Paniagua et al., “Percutaneous Heart Valve in the Chronic in Vitro Testing Model.” Circulation, 106: e51-e52, Sep. 17, 2002.
Pavcnik et al., “Percutaneous Bioprosthetic Venous Valve: A Long-term Study in Sheep.” J. of Vascular Surg., 35(3): 598-603, Mar. 2002.
Phillips et al., “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg., 21(2): 134-136, Feb. 1976.
Sochman et al., “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol., 23: 384-388, Sep. 2000.
Southern Lights Biomaterials Homepage, http://www.slv.co.nz/, Jan. 7, 2011.
Stassano, “Mid-term Results of the Valve-on-Valve Technique for Bioprosthetic Failure.” European Journal of Cardiothoracic Surgery: vol. 18, 453-457, Oct. 2000.
Stuart, “In Heart Valves, A Brave, New Non-Surgical World.” Start-Up. Feb. 9-17, 2004.
Supplemental Search Report from EP Patent Office, EP Application No. 04815634.3, dated Aug. 19, 2011.
Supplemental Search Report from EP Patent Office, EP Application No. 05758878.2, dated Oct. 24, 2011.
Topol, “Percutaneous Expandable Prosthetic Valves.” Textbook of Interventional Cardiology, W.B. Saunders Company, 2: 1268-1276, 1994.
Vahanian et al., “Percutaneous Approaches to Valvular Disease.” Circulation, 109: 1572-1579, Apr. 6, 2004.
Van Herwerden et al., “Percutaneous Valve Implantation: Back to the Future?” Euro. Heart J., 23(18): 1415-1416, Sep. 2002.
Zhou et al, “Self-expandable Valved Stent of Large Size: Off-Bypass Implantation in Pulmonary Position.” Eur. J. Cardiothorac, 24: 212-216, Aug. 2003.
Fawi, et al., U.S. Appl. No. 11/155,309, entitled “Apparatus and methods for intravascular embolic protection.” filed Jun. 16, 2005.
Salahieh, et al., U.S. Appl. No. 11/232,441, entitled “Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements,” filed Sep. 20, 2005.
Salahieh, et al., U.S. Appl. No. 11/232,444, entitled “Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements,” filed Sep. 20, 2005.
Salahieh, et al., U.S. Appl. No. 11/274,889, entitled “Medical implant deployment tool,” filed Nov. 14, 2005.
Related Publications (1)
Number Date Country
20170189176 A1 Jul 2017 US
Continuations (1)
Number Date Country
Parent 10893131 Jul 2004 US
Child 15380135 US
Continuation in Parts (1)
Number Date Country
Parent 10746280 Dec 2003 US
Child 10893131 US