Methods and apparatus for fixing sheet-like materials to a target tissue

Information

  • Patent Grant
  • 9033201
  • Patent Number
    9,033,201
  • Date Filed
    Wednesday, February 15, 2012
    12 years ago
  • Date Issued
    Tuesday, May 19, 2015
    9 years ago
Abstract
A device for attaching a sheet-like implant to a target tissue. The device includes a fastener push rod including a first portion, a second portion and a force limiting mechanism operably coupled between the first portion and the second portion. A fastener is carried by the second portion of the fastener push rod. The force limiting mechanism transmits longitudinal movement of the first portion to the second portion while the forces applied to the fastener by the fastener push rod are less than a predetermined value such that longitudinal movement of the first portion of the fastener push rod causes substantially equivalent longitudinal movement of the second portion. The force limiting mechanism allows relative longitudinal motion between the first and second portions while the forces applied to the fastener are equal to or greater than the predetermined value such that the application of undue forces to the fastener is prevented.
Description
FIELD

The present invention relates generally to orthopedic medicine and surgery. More particularly, the present invention relates to methods and apparatus for delivery and fixation of sheet-like materials, such as for treating articulating joints.


BACKGROUND

The glenohumeral joint of the shoulder is found where the head of the humerus mates with a shallow depression in the scapula. This shallow depression is known as the glenoid fossa. Six muscles extend between the humerus and scapula and actuate the glenohumeral joint. These six muscles include the deltoid, the teres major, and the four rotator cuff muscles. As disclosed by Ball et al. in U.S. Patent Publication No. U.S. 2008/0188936 A1 and as illustrated in FIG. 1 the rotator cuff muscles are a complex of four muscles. These four muscles are the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. The centering and stabilizing roles played by the rotator cuff muscles are critical to the proper function of the shoulder. The rotator cuff muscles provide a wide variety of moments to rotate the humerus and to oppose unwanted components of the deltoid and pectoralis muscle forces.


The four muscles of the rotator cuff arise from the scapula 12. The distal tendons of the rotator cuff muscles splay out and interdigitate to form a common continuous insertion on the humerus 14. The subscapularis 16 arises from the anterior aspect of the scapula 12 and attaches over much of the lesser tuberosity of the humerous. The supraspinatus muscle 18 arises from the supraspinatus fossa of the posterior scapula, passes beneath the acromion and the acromioclavicular joint, and attaches to the superior aspect of the greater tuberosity 11. The infraspinatus muscle 13 arises from the infraspinous fossa of the posterior scapula and attaches to the posterolateral aspect of the greater tuberosity 11. The teres minor 15 arises from the lower lateral aspect of the scapula 12 and attaches to the lower aspect of the greater tuberosity 11.


The mechanics of the rotator cuff muscles 10 are complex. The rotator cuff muscles 10 rotate the humerus 14 with respect to the scapula 12, compress the humeral head 17 into the glenoid fossa providing a critical stabilizing mechanism to the shoulder (known as concavity compression), and provide muscular balance. The supraspinatus and infraspinatus provide 45 percent of abduction and 90 percent of external rotation strength. The supraspinatus and deltoid muscles are equally responsible for producing torque about the shoulder joint in the functional planes of motion.


The rotator cuff muscles 10 are critical elements of this shoulder muscle balance equation. The human shoulder has no fixed axis. In a specified position, activation of a muscle creates a unique set of rotational moments. For example, the anterior deltoid can exert moments in forward elevation, internal rotation, and cross-body movement. If forward elevation is to occur without rotation, the cross-body and internal rotation moments of this muscle must be neutralized by other muscles, such as the posterior deltoid and infraspinatus. The timing and magnitude of these balancing muscle effects must be precisely coordinated to avoid unwanted directions of humeral motion. Thus the simplified view of muscles as isolated motors, or as members of force couples must give way to an understanding that all shoulder muscles function together in a precisely coordinated way—opposing muscles canceling out undesired elements leaving only the net torque necessary to produce the desired action. Injury to any of these soft tissues can greatly inhibit ranges and types of motion of the arm.


With its complexity, range of motion and extensive use, a fairly common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyperextension, from an acute traumatic tear or from overuse of the joint. With its critical role in abduction, rotational strength and torque production, the most common injury associated with the rotator cuff region is a strain or tear involving the supraspinatus tendon. A tear in the supraspinitus tendon 19 is schematically depicted in FIG. 2. A tear at the insertion site of the tendon with the humerus, may result in the detachment of the tendon from the bone. This detachment may be partial or full, depending upon the severity of the injury. Additionally, the strain or tear can occur within the tendon itself. Injuries to the supraspinatus tendon 19 and recognized modalities for treatment are defined by the type and degree of tear. The first type of tear is a full thickness tear as also depicted in FIG. 2, which as the term indicates is a tear that extends through the thickness of the supraspinatus tendon regardless of whether it is completely torn laterally. The second type of tear is a partial thickness tear which is further classified based on how much of the thickness is torn, whether it is greater or less than 50% of the thickness.


The accepted treatment for a full thickness tear or a partial thickness tear greater than 50% includes reconnecting the torn tendon via sutures. For the partial thickness tears greater than 50%, the tear is completed to a full thickness tear by cutting the tendon prior to reconnection. In contrast to the treatment of a full thickness tear or a partial thickness tear of greater than 50%, the treatment for a partial thickness tear less than 50% usually involves physical cessation from use of the tendon, i.e., rest. Specific exercises can also be prescribed to strengthen and loosen the shoulder area. In many instances, the shoulder does not heal and the partial thickness tear can be the source of chronic pain and stiffness. Further, the pain and stiffness may cause restricted use of the limb which tends to result in further degeneration or atrophy in the shoulder. Surgical intervention may be required for a partial thickness tear of less than 50%, however, current treatment interventions do not include repair of the tendon, rather the surgical procedure is directed to arthroscopic removal of bone to relieve points of impingement or create a larger tunnel between the tendon and bone that is believed to be causing tendon damage. As part of the treatment, degenerated tendon may also be removed using a debridement procedure in which tendon material is ablated. Again, the tendon partial tear is not repaired. Several authors have reported satisfactory early post operative results from these procedures, but over time recurrent symptoms have been noted. In the event of recurrent symptoms, many times a patient will “live with the pain”. This may result in less use of the arm and shoulder which further causes degeneration of the tendon and may lead to more extensive damage. A tendon repair would then need to be done in a later procedure if the prescribed treatment for partial tear was unsuccessful in relieving pain and stiffness or over time the tear propagated through injury or degeneration to a full thickness tear or a partial thickness tear greater than 50% with attendant pain and debilitation. A subsequent later procedure would include the more drastic procedure of completing the tear to full thickness and suturing the ends of the tendon back together. This procedure requires extensive rehabilitation, has relatively high failure rates and subjects the patient who first presented and was treated with a partial thickness tear less than 50% to a second surgical procedure.


As described above, adequate treatments do not currently exist for repairing a partial thickness tear of less than 50% in the supraspinatus tendon. Current procedures attempt to alleviate impingement or make room for movement of the tendon to prevent further damage and relieve discomfort but do not repair or strengthen the tendon. Use of the still damaged tendon can lead to further damage or injury. Prior damage may result in degeneration that requires a second more drastic procedure to repair the tendon. Further, if the prior procedure was only partially successful in relieving pain and discomfort, a response may be to use the shoulder less which leads to degeneration and increased likelihood of further injury along with the need for more drastic surgery. There is a large need for surgical techniques and systems to treat partial thickness tears of less than 50% and prevent future tendon damage by strengthening or repairing the native tendon having the partial thickness tear.


SUMMARY OF THE DISCLOSURE

The disclosure is directed to devices for attaching a sheet-like implant to a target tissue. One embodiment includes a fastener push rod including a first portion, a second portion and a force limiting mechanism operably coupled between the first portion and the second portion. A fastener is carried by the second portion of the fastener push rod. An actuator assembly coupled to the first portion of the fastener push rod is provided. The actuator assembly is capable of creating longitudinal movement of the first portion. The force limiting mechanism transmits longitudinal movement of the first portion to the second portion while the forces applied to the fastener by the fastener push rod are less than a predetermined value such that longitudinal movement of the first portion of the fastener push rod causes substantially equivalent longitudinal movement of the second portion. The force limiting mechanism allows relative longitudinal motion between the first portion and the second portion while the forces applied to the fastener are equal to or greater than the predetermined value such that the application of undue forces to the fastener is prevented.


Another embodiment includes a pronged sheath. The pronged sheath defines a lumen. The pronged sheath includes at least a pair of prongs extending distally beyond a distal end of the lumen such that the prongs form pilot holes when a distal portion of the pronged sheath is pressed against the target tissue. A fastener push rod extends into the lumen defined by the pronged sheath. The fastener push rod includes a first portion, a second portion and a force limiting mechanism operably coupled between the first portion and the second portion. A pair of stakes are disposed at a distal end of the second portion of the fastener push rod. The pair of stakes carries a fastener. An actuator assembly is coupled to the first portion of the fastener push rod and capable of creating longitudinal movement of the first portion of the fastener push rod relative to the pronged sheath. The force limiting mechanism transmits longitudinal movement of the first portion to the second portion while the forces applied to the fastener by the fastener push rod are less than a predetermined value such that longitudinal movement of the first portion of the fastener push rod causes substantially equivalent longitudinal movement of the second portion. The force limiting mechanism allowing relative longitudinal motion between the first portion and the second portion while the forces applied to the fastener are equal to or greater than the predetermined value such that the application of undue forces to the fastener is prevented. In some embodiments, the fastener comprises a staple and each stake has a distal portion and a proximal portion with each distal portion being dimensioned to extend into a passage defined by the staple. Each proximal stake portion has a width larger than a width of each distal portion so that a shoulder of each proximal portion contacts a proximal surface of the staple to apply pushing forces thereto.


In some exemplary embodiments, the force limiting mechanism comprises a constant force spring. A first end of the constant force spring may be coupled to the first portion of the fastener push rod and a second end of the constant force spring may be coupled to the second portion of the fastener push rod.


In some exemplary embodiments, the first portion of the fastener push rod includes a first tubular member, the second portion of the fastener push rod includes a second tubular member, and a portion of one tubular member is slidingly received in a lumen defined by the other tubular member such that the first tubular member and the second tubular member can translate relative to each other. For instance, the first portion of the fastener push rod may include a first tubular member, the second portion of the fastener push rod may include a second tubular member, and a portion of the first tubular member may be slidingly received in a lumen defined by the second tubular member such that the first tubular member and the second tubular member can translate relative to each other. In some exemplary embodiments, the second tubular member defines a slot and the first tubular member carries a pin that is slidingly received in the slot such that relative rotation between the first tubular member and the second tubular member is prevented. The force limiting mechanism may include a constant force spring having a first end coupled to the first tubular member and a second end coupled to the second tubular member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified perspective view of the human rotator cuff and associated anatomical structure;



FIG. 2 is a schematic depiction of a full thickness tear in the supraspinatus tendon of the rotator cuff of FIG. 1;



FIG. 3 is a stylized anterior view of a patient with a shoulder of patient being shown in cross-section for purposes of illustration;



FIG. 4 is a stylized anterior view of a shoulder including a humerus and a scapula. The head of the humerus is shown mating with the glenoid fossa of the scapula at a glenohumeral joint and a sheet-like material is fixed to the tendon;



FIG. 5 is a stylized perspective view illustrating an exemplary procedure for treating a shoulder of a patient;



FIG. 6 is a stylized perspective view of a shoulder including a supraspinatus having a distal tendon with a sheet-like material fixed thereto. A proximal end of the supraspinatus is fixed to the scapula and the distal tendon of the supraspinatus is fixed to the humerus;



FIG. 7A, FIG. 7B, and FIG. 7C are multiple plan views illustrating an exemplary staple in accordance with the present detailed description;



FIG. 8 is a perspective view further illustrating the staple shown in the previous Figure;



FIG. 9 is a perspective view showing a staple push rod that may be used in conjunction with the staple shown in the previous Figure;



FIG. 10A and FIG. 10B illustrate multiple plan views of an exemplary fixation tool in accordance with the present detailed description;



FIG. 11A is a further enlarged partial cross-sectional view of a distal portion of the fixation tool shaft shown in the previous Figure;



FIG. 11B is an additional partial cross-sectional view showing a staple carried by a staple push rod and a fixation tool shaft disposed about the staple push rod;



FIG. 12A through FIG. 12C are a sequence of plan views illustrating an exemplary method and apparatus in accordance with the present detailed description;



FIG. 13A, FIG. 13B, FIG. 13C and FIG. 13D are multiview projections illustrating a fixation tool shaft shown in the previous figures;



FIG. 14 is an enlarged axial view of the fixation tool shaft shown in the previous Figure;



FIG. 15 is an additional enlarged axial view of the fixation tool shaft shown in the previous Figure;



FIG. 16 is an exploded isometric view of an exemplary fixation tool in accordance with the detailed description;



FIG. 17 is a perspective view showing an illustrative fixation tool assembly with overlying shaft removed in accordance with this detailed description;



FIG. 18A and FIG. 18B are plan views further illustrating the operation of the fixation tool assembly shown in the previous figure also with overlying shaft removed;



FIG. 19 is a perspective view showing an illustrative fixation tool assembly in accordance with this detailed description with overlying shaft removed; and



FIG. 20A and FIG. 20B are plan views further illustrating the operation of the fixation tool assembly shown in the previous figure also with overlying shaft removed.





DETAILED DESCRIPTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.


As used herein, the term “tissue” refers to soft tissue, such as a tendon, and/or bone tissue, depending on the context in which it is used.



FIG. 3 is a stylized anterior view of a patient 20. For purposes of illustration, a shoulder 22 of patient 20 is shown in cross-section in FIG. 3. Shoulder 22 includes a humerus 14 and a scapula 12. In FIG. 3, a head 24 of humerus 14 can be seen mating with a glenoid fossa of scapula 12 at a glenohumeral joint. With reference to FIG. 3, it will be appreciated that the glenoid fossa comprises a shallow depression in scapula 12. The movement of humerus 14 relative to scapula 12 is controlled by a number of muscles including: the deltoid, the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. For purposes of illustration, only the supraspinatus 26 is shown in FIG. 3.


With reference to FIG. 3, it will be appreciated that a distal tendon 28 of the supraspinatus 26 meets humerus 14 at an insertion point. Scapula 12 of shoulder 22 includes an acromium 32. In FIG. 3, a subacromial bursa 34 is shown extending between acromium 32 of scapula 12 and head 24 of humerus 14. In FIG. 3, subacromial bursa 34 is shown overlaying supraspinatus 26. Subacromial bursa 34 is one of the hundreds of bursae found the human body. Each bursa comprises a fluid filled sac. The presence of these bursae in the body reduces friction between bodily tissues. Injury and/or infection of the bursa can cause it to become inflamed. This condition is sometimes referred to as bursitis.


The exemplary methods and apparatus described herein may be used to fix tendon repair implants to various target tissues. For example, a tendon repair implant may be fixed to one or more tendons associated with an articulating joint, such as the glenohumeral joint. The tendons to be treated may be torn, partially torn, have internal micro-tears, be untorn, and/or be thinned due to age, injury or overuse. Applicants believe that the methods and apparatus of the present application and related devices may provide very beneficial therapeutic effect on a patient experiencing joint pain believed to be caused by partial thickness tears and/or internal microtears. By applying a tendon repair implant early before a full tear or other injury develops, the implant may cause the tendon to thicken and/or at least partially repair itself, thereby avoiding more extensive joint damage, pain, and the need for more extensive joint repair surgery.



FIG. 4 is a stylized anterior view of a shoulder 22 including a humerus 14 and a scapula 12. In FIG. 4, a head 24 of humerus 14 is shown mating with a glenoid fossa of scapula 12 at a glenohumeral joint. A supraspinatus 26 is also shown in FIG. 4. This muscle (along with others) control the movement of humerus 14 relative to scapula 12. A distal tendon 28 of supraspinatus 26 meets humerus 14 at an insertion point 30.


In the embodiment of FIG. 4, distal tendon 28 includes a first damaged portion 36. A number of loose tendon fibers 40 in first damaged portion 36 are visible in FIG. 4. First damaged portion 36 includes a first tear 42 extending partially through distal tendon 28. First tear 42 may therefore be referred to as a partial thickness tear. With reference to FIG. 4, it will be appreciated that first tear 42 begins on the side of distal tendon 28 facing the subacromial bursa (shown in the previous Figure) and ends midway through distal tendon 28. Accordingly, first tear 42 may be referred to as a bursal side tear.


With reference to FIG. 4, it will be appreciated that distal tendon 28 includes a second damaged portion 38 located near insertion point 30. In the embodiment of FIG. 4, second damaged portion 38 of distal tendon 28 has become frayed and a number of loose tendon fibers 40 are visible in FIG. 4. Second damaged portion 38 of distal tendon 28 includes second tear 44. With reference to FIG. 4, it will be appreciated that second tear 44 begins on the side of distal tendon 28 facing the humerus 14. Accordingly, second damaged portion 38 may be referred to as an articular side tear.


In the embodiment of FIG. 4, a sheet-like implant 50 has been placed over the bursal side of distal tendon 28. With reference to FIG. 4, it will be appreciated that sheet-like implant 50 extends over insertion point 30, first tear 42 and second tear 44. Some useful methods in accordance with this detailed description may include placing a tendon repair implant on the bursal side of a tendon regardless of whether the tears being treated are on the bursal side, articular side or within the tendon. In some cases the exact location and nature of the tears being treated may be unknown. A tendon repair implant may be applied to the bursal side of a tendon to treat shoulder pain that is most likely caused by one or more partial thickness tears in the tendon. In the embodiment of FIG. 4, sheet-like implant 50 is fixed to distal tendon 28 and to humerus 14 by a plurality of staples 100 as described herein in detail.



FIG. 5 is a stylized perspective view illustrating an exemplary procedure for treating a shoulder 22 of a patient 20. The procedure illustrated in FIG. 5 may include, for example, fixing tendon repair implants to one or more tendons of shoulder 22. The tendons treated may be torn, partially torn, have internal micro-tears, be untorn, and/or be thinned due to age, injury or overuse.


Shoulder 22 of FIG. 5 has been inflated to create a cavity therein. In the exemplary embodiment of FIG. 5A, a fluid supply 52 is pumping a continuous flow of saline into the cavity. This flow of saline exits the cavity via a fluid drain 54. A camera 56 provides images from inside the cavity. The images provided by camera 56 may be viewed on a display 58.


Camera 56 may be used to visually inspect the tendons of shoulder 22 for damage. A tendon repair implant in accordance with this disclosure may be fixed to a bursal surface of the tendon regardless of whether there are visible signs of tendon damage. Applicants believe that the methods and apparatus of the present application and related devices may provide very beneficial therapeutic effect on a patient experiencing joint pain believed to be caused by internal microtears, but having no clear signs of tendon tears. By applying a tendon repair implant early before a full tear or other injury develops, the implant may cause the tendon to thicken and/or at least partially repair itself, thereby avoiding more extensive joint damage, pain, and the need for more extensive joint repair surgery.


A delivery system 60 can be seen extending from shoulder 22 in FIG. 5. Delivery system 60 comprises a sheath that is fixed to a handle. The sheath defines a lumen and a distal opening fluidly communicating with the lumen. In the embodiment of FIG. 5, the distal opening of the sheath has been placed in fluid communication with the cavity created in shoulder 22.


A tendon repair implant is at least partially disposed in the lumen defined by the sheath of delivery system 60. Delivery system 60 can be used to place the tendon repair implant inside shoulder 22. Delivery system 60 can also be used to hold the tendon repair implant against the tendon. In some embodiments, the tendon repair implant is folded into a compact configuration when inside the lumen of the sheath. When this is the case, delivery system 60 may be used to unfold the tendon repair implant into an expanded shape.


The tendon repair implant may be fixed to the tendon while it is held against the tendon by delivery system 60. Various attachment elements may be used to fix the tendon repair implant to the tendon. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the exemplary embodiment of FIG. 5, the shaft of a fixation tool 70 is shown extending into shoulder 22. In one exemplary embodiment, fixation tool 70 is capable of fixing the tendon repair implant to the tendon with one or more staples while the tendon repair implant is held against the tendon by delivery system 60.



FIG. 6 is a stylized perspective view of a shoulder 22 including a supraspinatus 26 having a distal tendon 28. With reference to FIG. 6, it will be appreciated that a tendon repair implant 50 has been fixed to a surface of distal tendon 28. Tendon repair implant 50 may comprise, for example, various sheet-like structures without deviating from the spirit and scope of the present detailed description. In some useful embodiments, the sheet-like structure may comprise a plurality of fibers. The fibers may be interlinked with one another. When this is the case, the sheet-like structure may comprise a plurality of apertures comprising the interstitial spaces between fibers. Various processes may be used to interlink the fibers with one another. Examples of processes that may be suitable in some applications including weaving, knitting, and braiding. In some embodiment, the sheet-like structure may comprise a laminate including multiple layers of film with each layer of film defining a plurality of micro-machined or formed holes. The sheet-like structure can comprise collagen material having a porous structure such as reconstituted bovine collagen. The sheet-like structure of the tendon repair implant may also comprise a plurality of electro-spun nanofiber filaments forming a composite sheet. Additionally, the sheet-like structure may comprise a synthetic sponge material that defines a plurality of pores. The sheet-like structure may also comprise a reticulated foam material. Reticulated foam materials that may be suitable in some applications are available from Biomerix Corporation of Freemont, Calif. which identifies these materials using the trademark BIOMATERIAL™.


Various attachment elements may be used to fix tendon repair implant 50 to distal tendon 28 without deviating from the spirit and scope of this detailed description. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the exemplary embodiment of FIG. 6, a plurality of staples 100 are fixing tendon repair implant 50 to distal tendon 28. In some exemplary methods, a plurality of staples 100 may be applied using a fixation tool. The fixation tool may then be withdrawn from the body of the patient. Distal tendon 28 meets humerus 14 at an insertion point 30. With reference to FIG. 6, it will be appreciated that sheet-like implant 50 extends over insertion point 30. Tendon repair implant may be applied to distal tendon 28, for example, using the procedure illustrated in the previous Figure.



FIG. 7A, FIG. 7B, and FIG. 7C are multiple plan views illustrating an exemplary staple 100 in accordance with the present detailed description. FIG. 7A, FIG. 7B, and FIG. 7C may be collectively referred to as FIG. 7. It is customary to refer to multi-view projections using terms such as front view, top view, and side view. In accordance with this convention, FIG. 7A may be referred to as a front view of staple 100, FIG. 7B may be referred to as a side view of staple 100, and FIG. 7C may be referred to as a bottom view of staple 100. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 7. It will be appreciated that the staple shown in FIG. 7 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims. A proximal direction is illustrated with an arrow P in FIG. 7. A distal direction is illustrated with a second arrow D in FIG. 7.


Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 7, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second arm 102B, respectively. With reference to FIG. 7, it will be appreciated that first fluke 106A has a lateral extent that is larger than a lateral extent of first arm 102A. First fluke 106A is mounted eccentrically to first arm 102A in the embodiment of FIG. 7. Second fluke 106B is mounted eccentrically to second arm 102B and second fluke 106B has a lateral extent that is larger than a lateral extent of second arm 102B. First fluke 106A includes a first proximal surface 108A projecting at an outward angle in a proximal direction away from the distal end of first arm 102A. Second fluke 106B includes a second proximal surface 108B projecting at an outward angle in a proximal direction away from the distal end of second arm 102B.


With reference to FIG. 7A, it will be appreciated that first fluke 106A includes a first point 120A and a first barb 122A. Second fluke 106B includes a second point 120B and a second barb 122B. The first barb 122A and second barb 122B each have a cleft barb with two points and a valley therebetween. In FIG. 7, first point 120A and second point 120B are shown generally pointing in the distal direction indicated by arrow D. Also in FIG. 7, first barb 122A and second barb 122B are shown generally pointing in the proximal direction indicated by arrow P.


With reference to FIG. 7A it will be appreciated that first fluke 106A defines a first passageway 124A and second fluke 106B defines a second passageway 124B. In the exemplary embodiment of FIG. 7, first passageway 124A extends through first fluke 106A and second passageway 124B extends through second fluke 106B. It will be appreciated, however, that first passageway 124A may extend through other portions of staple 100 in some embodiments. Similarly, second passageway 124B may extend through other portions of staple 100 in some embodiments. With reference to FIG. 7B it will be appreciated that, first passageway 124A and second passageway 124B each have a generally rectangular or square cross-sectional shape. It will be appreciated, however, that first passageway 124A and second passageway 124B may have various cross-sectional shapes without deviating from the spirit and scope of the present detailed description. Further, each passageway can extend partially through the length of each fluke rather than all the way through to provide a cavity rather than a passageway.


With reference to FIG. 7C, it will be appreciated that first barb 122A of first fluke 106A defines a first notch 126A. In the exemplary embodiment of FIG. 7, first notch 126A divides first barb 122A into a first sub-barb and a second sub-barb. Second barb 122B of second fluke 106B defines a second notch 126B. In the exemplary embodiment of FIG. 7, second notch 126B divides second barb 122B into a first sub-barb and a second sub-barb. The barbs are thus clefted to form two points for greater retention in tissue.



FIG. 8 is a perspective view showing staple 100 depicted in the previous Figure. Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. With reference to FIG. 8 it will be appreciated that first fluke 106A defines a first passageway 124A. In the exemplary embodiment of FIG. 8, first passageway 124A has a generally rectangular or square cross-sectional shape. It will be appreciated, however, that first passageway 124A may have various cross-sectional shapes without deviating from the spirit and scope of the present detailed description.


A second fluke 106B extends distally from second arm 102B with the proximal end of second fluke 106B abutting the distal end of second arm 102B. With reference to FIG. 8, it will be appreciated that second fluke 106B has a lateral extent that is larger than a lateral extent of second arm 102B. Second fluke 106B is mounted eccentrically to second arm 102B in the embodiment of FIG. 8. Similarly, first fluke 106A is mounted eccentrically to first arm 102A and first fluke 106A has a lateral extent that is larger than a lateral extent of first arm 102A.


A proximal direction is illustrated with an arrow P in FIG. 8. A distal direction is illustrated with a second arrow D in FIG. 8. With reference to FIG. 8A, it will be appreciated that first fluke 106A of first arm 102A includes a first point 120A and a first barb 122A. Second fluke 106B includes a second point 120B and a second barb 122B. In FIG. 8, first point 120A and second point 120B are shown generally pointing in the distal direction indicated by arrow D. Also in FIG. 8, first barb 122A and second barb 122B are shown generally pointing in the proximal direction indicated by arrow P. With reference to FIG. 8, it will be appreciated that first fluke 106A includes a first proximal surface 108A projecting at an outward angle in a proximal direction away from the distal end of first arm 102A. Second fluke 106B includes a second proximal surface 108B projecting at an outward angle in a proximal direction away from the distal end of second arm 102B.



FIG. 9 is a perspective view showing a staple push rod 130 that may be used in conjunction with staple 100 shown in the previous Figure. Staple push rod 130 includes a shaft 132 and a pair of stakes 134 extending distally beyond a distal end of shaft 132. The distal direction is indicated with an arrow D in FIG. 9. Stakes 134 include a first stake 134A and a second stake 134B. First stake 134A and second stake 134B form a fork 136.


In the embodiment of FIG. 9, each stake 134 has a distal portion 138 and a proximal portion 140. In some useful embodiments, each distal portion 138 is dimensioned to extend into a passage defined by a staple. In the embodiment of FIG. 9, each proximal portion 140 has a width larger than a width of each distal portion 138 so that a shoulder of each proximal portion 140 contacts a proximal surface of the staple to apply pushing forces thereto. First stake 134A comprises a first shoulder 142A and second stake 134B comprises a second shoulder 142B. Although depicted as a shoulder to provide pushing force to the staple, other designs can be utilized. For example, any larger cross section proximal portion can provide a pushing force, such as a conical increase in profile. In the embodiment of FIG. 9, proximal portion 140 of first stake 134A and the proximal portion 140 of second stake 134B diverge from one another as they extend in distal direction D away from shaft 132. In some applications, this arrangement may cause pushing forces applied to two flukes of a staple to have a laterally outward component.


In FIG. 9, first stake 134A and second stake 134B are shown assuming a substantially unstressed state. It will be appreciated that first stake 134A and second stake 134B can be resiliently urged to assume shapes other than the shape shown in FIG. 9. For example, first stake 134A and second stake 134B may be urged together so that fork 136 can be inserted into a lumen having a diameter smaller than the distance between the distal points of first stake 134A and second stake 134B shown in FIG. 9.



FIG. 10A and FIG. 10B illustrate multiple plan views of an exemplary fixation tool 144 in accordance with the present detailed description. Fixation tool 144 incorporates staple push rod 130 and is useful in delivering staple 100. FIG. 10A and FIG. 10B may be referred to collectively as FIG. 10. It is customary to refer to multi-view projections using terms such as front view, top view, and side view. In accordance with this convention, FIG. 10A may be referred to as a top view of fixation tool 144 and FIG. 10B may be referred to as a side view of fixation tool 144. The terms top view and side view are used herein as a convenient method for differentiating between the views shown in FIG. 10. It will be appreciated that the elements shown in FIG. 10 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view and side view should not be interpreted to limit the scope of the invention recited in the attached claims.


In the embodiment of FIG. 10, fixation tool 144 comprises a fixation tool shaft 146 that is attached to a handle 148. Fixation tool shaft 146 comprises a wall 150 defining a lumen 152. With reference to FIG. 10, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 154B that extend distally beyond a distal end 158 of lumen 152.


In FIG. 10, a staple 100 can be seen residing in lumen 152 of fixation tool shaft 146. For purposes of illustration, a distal portion of fixation tool shaft 146 is enlarged in FIG. 10 to better show staple 100. Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 10, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second arm 102B, respectively.


Staple push rod 130 includes a shaft 132 and a pair of stakes 134 extending distally beyond a distal end of shaft 132. The distal direction is indicated with an arrow D in FIG. 10. Stakes 134 include a first stake 134A and a second stake 134B. In FIG. 10, a distal portion of each stake 134 extends into a passageway defined by staple 100. In the embodiment of FIG. 10, a trigger 160 is pivotably coupled to handle 148 of fixation tool 144. Trigger 160 is operatively coupled to or in contact with staple push rod 130. In operation, staple push rod 130 will be advanced and/or retracted in an axial direction when trigger 160 is pivoted relative to handle 148.



FIG. 11A is a further enlarged top view of a distal portion of fixation tool shaft 146 shown in the previous Figure. For purposes of illustration, fixation tool shaft 146 is shown in partial cross-section in FIG. 11A so that staple 100 is visible residing in lumen 152. With reference to FIG. 11A, it will be appreciated that staple 100 is disposed on a distal portion of staple push rod 130. Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In FIG. 11, first fluke 106A and second fluke 106B are shown extending distally from first arm 102A and second arm 102B, respectively.


First fluke 106A and second fluke 106B define a first passageway 124A and a second passageway 124B, respectively. In FIG. 11A, distal portion 138 of first stake 134A of staple push rod 130 extends into first passageway 124A defined by first fluke 106A. A distal portion 138 of second stake 134B of staple push rod 130 extends into a second passageway 124B defined by second fluke 106B of staple 100. In FIG. 11A, a first shoulder 142A of first stake 134A is shown contacting proximal surface 108 of first fluke 106A. A second shoulder 142B of second stake 134B is shown contacting proximal surface 108 of second fluke 106 in FIG. 11A. The distal portion 138 of first stake 134A extends distally of first shoulder 142A and proximal portion 140 of first stake 134A extends proximally of first shoulder 142A. The distal portion 138 of second stake 134B extends distally of second shoulder 142B and a proximal portion 140 of second stake 134B extends proximally of second shoulder 142B.


With reference to FIG. 11A, it will be appreciated that there is a gap G between staple push rod 130 and bridge 104 of staple 100. In some applications, gap G allows staple 100 to be placed in tension without bridge 104 contacting staple push rod 130. Staple 100 may be placed in tension, for example, as staple 100 is advanced into a target tissue.



FIG. 11B is an additional top view showing a distal portion of fixation tool shaft 146, staple push rod 130, and staple 100. By comparing FIG. 11A and FIG. 11B, it will be appreciated that staple push rod 130 and staple 100 have been advanced in a distal direction D relative to fixation tool shaft 146. In FIG. 11B, staple 100 is shown extending out of lumen 152 defined by fixation tool shaft 146.


In FIG. 11B, a distal portion 138 of first stake 134A of staple push rod 130 extends into a first passageway 124A defined by first fluke 106A of staple 100. In FIG. 11B, a first shoulder 142A of first stake 134A is shown contacting proximal surface 108 of first fluke 106A. Distal portion 138 of first stake 134A extends distally of first shoulder 142A and proximal portion 140 of first stake 134A extends proximally of first shoulder 142A. In some useful embodiments, the proximal portion of first stake 134A has a first width and the distal portion of first stake 134A has a second width different from the first width. In some particularly useful embodiments, the first width is greater than the first width. The arrangement allows the proximal portion of stake to engage a proximal surface of the staple to apply pushing forces to the staple.


In FIG. 11B, a distal portion 138 of second stake 134B of staple push rod 130 extends into a second passageway 124B defined by second fluke 106B of staple 100. In FIG. 11B, a second shoulder 142B of second stake 134B is shown contacting proximal surface 108 of second fluke 106B. In the embodiment of FIG. 11B, proximal portion 140 of second stake 134B may apply pushing force to proximal surface 108 of second stake 134B. Proximal portion 140 of second stake 134B extends proximally of second shoulder 142B and distal portion 138 of second stake 134B extends distally of second shoulder 142B. In the embodiment of FIG. 11B, proximal portion 140 of second stake 134B has a width larger than the width of distal portion 138 of second stake 134B so that the shoulder 142 of second stake 134B contacts proximal surface 108 of second fluke 106B to apply pushing forces thereto.


In the embodiment of FIG. 11B, first stake 134A and second stake 134B are in a substantially unstressed state. It will be appreciated that first stake 134A and second stake 134B can be resiliently urged to assume shapes other than the shape shown in FIG. 11. For example, first stake 134A and second stake 134B may be urged together so that fork 136 of staple push rod 130 and staple 100 can be inserted into lumen 152 defined by fixation tool shaft 146.


With reference to FIG. 11B, it will be appreciated that there is a gap G between staple push rod 130 and bridge 104 of staple 100. In some applications, gap G allows staple 100 to be placed in tension without bridge 104 contacting staple push rod 130. In some applications, placing staple 100 under tension may urge first fluke 106 and second fluke 106 into orientations which lock staple 100 into a target tissue. For example, first fluke 106A and second fluke 106B may be rotated so that a barb of each fluke engages the target tissue. When this is the case, the tension on the staple may keep first fluke 106A and second fluke 106B in the rotated position. Also when this is the case, the barbs of the rotated flukes may inhibit staple pullout.



FIG. 12A through FIG. 12C are a sequence of plan views illustrating an exemplary method in accordance with the present detailed description. FIG. 12A, FIG. 12B, and FIG. 12C may be collectively referred to as FIG. 12. The exemplary method illustrated in FIG. 12 may be used, for example, to fix a tendon repair implant 50 to a target tissue T using a staple 100.


At FIG. 12A, a fixation tool 144 has been used to form a first pilot hole 162A and a second pilot hole 162B in target tissue T. In the embodiment of FIG. 12, fixation tool 144 includes a fixation tool shaft 146 comprising a wall 150 defining a lumen 152. With reference to FIG. 12, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 154B that extend distally beyond a distal end 158 of lumen 152. In the embodiment of FIG. 12A, first prong 154A and second prong 154B have been urged into tissue T to form first pilot hole 162A and second pilot hole 162B. In FIG. 12A a distally directed force F applied to fixation tool shaft 146 is illustrated using an arrow. Force F may be produced, for example, by pushing on a handle that is fixed to a proximal portion of fixation tool shaft 146. It will be appreciated that in some embodiments, such as the embodiment depicted in FIG. 6, one of the first and second pilot holes may be formed through the sheet-like implant and the target tissue, and the other pilot hole may be formed directly in the target tissue without passing through the sheet-like implant. In other words, in various embodiments staples may straddle the perimeter edge of the sheet-like implant (as shown in FIG. 6), may be applied adjacent to the perimeter, and/or be applied to a central region of the implant. In some embodiments, the staples may be used to attach the implant to soft tissue and/or to bone. In FIG. 12A, a staple 100 can be seen residing in lumen 152 of fixation tool shaft 146. For purposes of illustration, fixation tool shaft 146 is shown in partial cross-section in FIG. 12A so that staple 100 is visible residing in lumen 152. With reference to FIG. 12, it will be appreciated that staple 100 is carried by a fork 136 comprising a first stake 134A and a second stake 134B. In FIG. 12A, a distal portion of first stake 134A of staple push rod 130 extends into a first passageway defined by first fluke 106A. A distal portion of second stake 134B of staple push rod 130 extends into a second passageway defined by second fluke 106B of staple 100.


In some useful embodiments, each stake is positioned relative to a prong along an inner surface of fixation tool shaft 146 so that the stakes advance into the pilot holes when the stakes are moved in a distal direction. Staple push rod 130 is slidably disposed within lumen 152 defined by fixation tool shaft 146. Fixation tool 144 includes a mechanism that is capable of creating relative axial motion between staple push rod 130 and fixation tool shaft 146 so that staple push rod 130 slides along fixation tool shaft 146.


At FIG. 12B, relative motion has been created between staple push rod 130 and fixation tool shaft 146 while distally directed force F has been continuously applied to fixation tool shaft 146. By comparing FIG. 12B and FIG. 12A, it will be appreciated that first stake 134A and second stake 134B have been advanced in a distal direction D. With reference to FIG. 12, it will also be appreciated that first stake 134A and second stake 134B have advanced into first pilot hole 162A and second pilot hole 162B, respectively. In FIG. 12B, first fluke 106A is shown residing in first pilot hole 162. Second fluke 106B is residing in second pilot hole 162 in the embodiment of FIG. 12B.


At FIG. 12C, additional relative motion has been created between staple push rod 130 and fixation tool shaft 146 while distally directed force F has been continuously applied to fixation tool shaft 146. By comparing FIG. 12C and FIG. 12B, it will be appreciated that the relative motion between staple push rod 130 and fixation tool shaft 146 has moved fixation tool shaft 146 in a proximal direction P.


By comparing FIG. 12C and FIG. 12B, it will also be appreciated that first arm 102A of staple 100 has been bent and first fluke 106A has been rotated to a toggled position. In the exemplary embodiment of FIG. 12C, force applied to first fluke 106A by first shoulder 142A has caused first fluke 106A to rotate. With continuing reference to FIG. 12C and FIG. 12B, it will be appreciated that second arm 102B of staple 100 has been bent and second fluke 106A has been rotated to a toggled position. In the exemplary embodiment of FIG. 12C, force applied to second fluke 106b by second shoulder 142B has caused second fluke 106B to rotate.


With reference to FIG. 12C, it will be appreciated that a first through hole 164A and a second through hole 164B have been formed in tendon repair implant 50. In the embodiment of FIG. 12, first through hole 164A and a second through hole 164B were created by urging first prong 154A and second prong 154B of fixation tool shaft 146 through tendon repair implant 50.



FIG. 13A, FIG. 13B, and FIG. 13C are multiview projections illustrating a fixation tool shaft 146 shown in the previous Figures. FIG. 13D is a cross-sectional view of fixation tool shaft 146 sectioned along cutting plane D-D illustrated in FIG. 13C. These Figures may be collectively referred to as FIG. 13. Fixation tool shaft 146 of FIG. 13 comprises a wall 150 defining a lumen 152. A first prong 154A and a second prong 154B of fixation tool shaft 146 extend distally beyond a distal end 158 of lumen 152.


With reference to FIG. 13, it will be appreciated that fixation tool shaft 146 comprises a proximal portion 170, a distal portion 168 and an intermediate portion 166 disposed between proximal portion 170 and distal portion 168. In the embodiment of FIG. 13, distal portion 168 has an axial extent DA, a major lateral extent LA and a minor lateral extent LB. With reference to FIG. 13, it will be appreciated that axial extent DA is greater than both minor lateral extent LB and major lateral extent LA.



FIG. 14 is an enlarged axial view of fixation tool shaft 146 shown in the previous Figure. With reference to FIG. 14, it will be appreciated that proximal portion 170 of fixation tool shaft 146 comprises a wall 150 having an outer surface 172. In FIG. 14, outer surface 172 is illustrated using a circle. Thus, it will be appreciated that proximal portion 170 of fixation tool shaft 146 has a generally cylindrical outer shape in the exemplary embodiment of FIG. 14. In the exemplary embodiment of FIG. 14, fixation tool shaft 146 has a generally uniform wall thickness. Accordingly, the shape of proximal portion 170 may be generally described as a cylindrical tube. The shape of distal portion 168 may be described as a cylindrical-tube that has been partially flattened. In the exemplary embodiment of FIG. 14, distal portion 168 of fixation tool shaft 146 has a major lateral extent LA and a minor lateral extent LB. With reference to FIG. 14, it will be appreciated that major lateral extent LA is greater than minor lateral extent LB.



FIG. 15 is an additional enlarged axial view of fixation tool shaft 146. With reference to FIG. 15, it will be appreciated that distal portion 168 of fixation tool shaft 146 comprises a first major side SA, a second major side SB, a first minor side SC, and a second minor side SD. In the exemplary embodiment of FIG. 15, each minor side has a first central radius RA and each major side has a second central radius RB. With reference to FIG. 15, it will be appreciated that second central radius RB is greater than first central radius RA. In the exemplary embodiment of FIG. 15, first major side SA, second major side SB, first minor side SC, and second minor side SD each have a generally convex shape. In the exemplary embodiment of FIG. 15, each minor side is generally more convex than each major side.



FIG. 16 is an exploded isometric view showing an exemplary fixation tool 144 in accordance with this detailed description. In the embodiment of FIG. 16, fixation tool 144 comprises a fixation tool shaft 146 and a handle 144. In FIG. 16, handle 148 is exploded into two pieces. A proximal portion of fixation tool shaft 146 is fixed to handle 148 when fixation tool 144 is in an assembled state. Fixation tool 144 also comprises a staple push rod 130. A distal portion of staple push rod 130 extends into a lumen 152 of fixation tool shaft 146 when fixation tool 144 is in the assembled state.


Fixation tool shaft 146 comprises a wall 150 defining a lumen 152. With reference to FIG. 16, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 154B that extend distally beyond a distal end 158 of lumen 152. In some useful embodiments, first prong 154A and second prong 154B form pilot holes in a target tissue when the distal portion of fixation tool shaft 146 is pressed against the target tissue.


A staple 100 of fixation tool 144 is carried by a fork 136 in the embodiment of FIG. 16, as with prior embodiments. A fluke of staple 100 may be advanced into each pilot hole formed by the prongs of fixation tool shaft 146. Fork 136 of fixation tool 144 comprises a first stake 134A and a second stake 134B. First stake 134A and second stake 134B are fixed to a distal end of a staple push rod 130 in the embodiment of FIG. 16.


Staple push rod 130 includes a first tubular member 182, a second tubular member 184 and a force limiting mechanism 186 operably coupled between first tubular member 182 and second tubular member 184. The proximal end of first tubular member 182 is coupled to a lever 174. Lever 174 is coupled to a trigger 160. Trigger 160 is pivotably supported by handle 148 of fixation tool 144 when fixation tool 144 is in an assembled state. Trigger 160 and lever 174 form part of an actuator assembly 176 that is capable of creating longitudinal movement of first tubular member 182 of staple push rod 130 relative to fixation tool shaft 146. In operation, first tubular member 182 of staple push rod 130 will be advanced and/or retracted in an axial direction when trigger 160 is pivoted relative to handle 148. In some cases, the motion produced by actuator assembly 176 is transferred to staple 100 carried by fork 136.


Actuator assembly 176 may be used to control the motion of first tubular member 182. In the embodiment of FIG. 16, force limiting mechanism 186 will transmit longitudinal movement between first tubular member 182 and second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then force limiting mechanism 186 will allow relative longitudinal motion between first tubular member 182 and second tubular member 184. In some useful embodiments, this function of force limiting mechanism 186 prevents the application of undue forces to staple 100. Once the force applied to staple 100 reaches a pre-selected threshold, further rotation of trigger 160 will result in relative motion between first tubular member 182 and second tubular member 184 and will not result in the application of additional force to staple 100. Force limiting mechanism 186 is represented by a block in FIG. 16 and may comprise various force limiting arrangements without deviating from the spirit and scope of this detailed description.



FIG. 17 is a perspective view showing an illustrative fixation tool assembly 181 in accordance with this detailed description. In the embodiment of FIG. 17, fixation tool assembly 181 comprises a staple push rod 130 and a fixation tool shaft 146. A distal portion of staple push rod 130 extends into a lumen 152 defined by fixation tool shaft 146 when fixation tool assembly 181 is in an assembled state. Staple push rod 130 includes a first tubular member 182, a second tubular member 184 and a force limiting mechanism 186 operably coupled between first tubular member 182 and second tubular member 184.


In the exemplary embodiment of FIG. 17, a distal portion of first tubular member 182 is slidingly received in a lumen defined by second tubular member 184 such that first tubular member 182 and second tubular member 184 can translate relative to each other. Second tubular member 184 defines a slot 194. First tubular member 182 carries a pin 196 that is slidingly received in slot 194 such that relative rotation between first tubular member 182 and second tubular member 184 is prevented.


An actuator assembly 176 is coupled to the proximal end of first tubular member 182. Actuator assembly 176 is capable of creating longitudinal movement of first tubular member 182 of staple push rod 130 relative to fixation tool shaft 146. In the embodiment of FIG. 17, actuator assembly 176 comprises a lever 174 and a trigger 160. Lever 174 is pivotably coupled to a proximal end of first tubular member 182. Trigger 160 engages lever 174 such that rotation of trigger 160 causes rotation of lever 174.


In operation, first tubular member 182 of staple push rod 130 will be advanced and/or retracted in a longitudinal direction when trigger 160 and lever 174 are rotated. Under certain circumstances, the longitudinal motion of first tubular member 182 is transferred to second tubular member 184 by force limiting mechanism 186. When certain conditions are met, however, force limiting mechanism 186 does not transfer the longitudinal motion of first tubular member 182 to second tubular member 184.


A staple 100 is disposed at a distal end of second tubular member 184. In the embodiment of FIG. 17, force limiting mechanism 186 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. Accordingly, longitudinal movement of first tubular member 182 of staple push rod 130 will cause substantially equivalent longitudinal movement of second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than the predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then force limiting mechanism 186 will allow relative longitudinal motion between first tubular member 182 and second tubular member 184. In some useful embodiments, this function of force limiting mechanism 186 prevents the application of undue forces to staple 100. Once the maximum desired force is applied to staple 100, further rotation of trigger 160 will result in relative motion between first tubular member 182 and second tubular member 184 and will not result in the application of additional force to staple 100.


In the embodiment of FIG. 17, force limiting mechanism 186 comprises a spring 188. A first end of spring 188 is pivotably coupled to first tubular member 182 at a first joint 190A. A second end of spring 188 is pivotably coupled to second tubular 184 member at a second joint 190B. In some particularly useful embodiments, spring 188 comprises a constant force spring. Spring 188 may comprise various constant force springs without deviating form the spirit and scope of the present invention. One constant force spring that may be suitable in some applications is disclosed in U.S. Pat. No. 2,630,316. With reference to FIG. 17 it will be appreciated that spring 188 comprises a plurality of wire turns arranged to extend along a longitudinal axis 198. With reference of to FIG. 17, it will be appreciated that the wire turns of spring 188 are arranged so that spring 188 extends along a straight longitudinal axis in the illustrated embodiment. Spring 188 will maintain the straight shape shown in FIG. 17 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. In operation, spring 188 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than the predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then spring 188 will bend such that the wire turns of spring 188 extend along a curvilinear longitudinal axis. When spring 188 bends, spring 188 allows relative longitudinal motion between first tubular member 182 and second tubular member 184.


With reference to FIG. 17, it will be appreciated that staple 100 is carried by a pair of stakes 134 that extend distally beyond a distal end of second tubular member 184. The distal direction is indicated with an arrow D in FIG. 17. Stakes 134 include a first stake 134A and a second stake 134B. In FIG. 17, a distal portion of each stake 134 extends into a passageway defined by staple 100. Staple 100 comprises a first arm, a second arm, and a bridge 104 extending from the proximal end of the first arm to the proximal end of the second arm. The distal end of the first arm abuts the proximal end of a first fluke 106A of staple 100. Similarly, the distal end of the second arm abuts the proximal end of a second fluke 106B.


In the embodiment of FIG. 17, a distal portion of first stake 134A extends into a first passageway defined by first fluke 106A. Similarly, a distal portion of second stake 134B extends into a second passageway defined by second fluke 106B of staple 100. A first shoulder of first stake 134A contacts a proximal surface of first fluke 106A in the embodiment of FIG. 17. A second shoulder of second stake 134B contacts a proximal surface of second fluke 106B.


Fixation tool shaft 146 of FIG. 17 comprises a wall 150 defining a lumen 152. With reference to FIG. 17, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 154B that extend distally beyond a distal end 158 of lumen 152. In some useful embodiments, first prong 154A and second prong 154B form pilot holes in a target tissue when the distal portion of fixation tool shaft 146 is pressed against the target tissue. A fluke of staple 100 may be advanced into each pilot hole formed by the prongs of fixation tool shaft 146.



FIG. 18A and FIG. 18B are plan views further illustrating the operation of fixation tool assembly 181 shown in the previous figure. FIG. 18A and FIG. 18B may be collectively referred to as FIG. 18. Fixation tool assembly 181 comprises a staple push rod 130 including a first tubular member 182, a second tubular member 184 and a force limiting mechanism 186 operably coupled between first tubular member 182 and second tubular member 184. In the exemplary embodiment of FIG. 18, a distal portion of first tubular member 182 is slidingly received in a lumen defined by second tubular member 184 such that first tubular member 182 and second tubular member 184 can translate relative to each other.


An actuator assembly 176 including a lever 174 is coupled to the proximal end of first tubular member 182. Actuator assembly 176 is capable of creating longitudinal movement of first tubular member 182 of staple push rod 130. In operation, first tubular member 182 of staple push rod 130 will be advanced and/or retracted in a longitudinal direction when lever 174 of actuator assembly 176 is rotated. Under certain circumstances, the longitudinal motion of first tubular member 182 is transferred to second tubular member 184 by force limiting mechanism 186. When certain conditions are met, however, force limiting mechanism 186 does not transfer the longitudinal motion of first tubular member 182 to second tubular member 184.


A staple 100 is disposed at a distal end of second tubular member 184. In the embodiment of FIG. 18, force limiting mechanism 186 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. Accordingly, longitudinal movement of first tubular member 182 of staple push rod 130 will cause substantially equivalent longitudinal movement of second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than the predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then force limiting mechanism 186 will allow relative longitudinal motion between first tubular member 182 and second tubular member 184. In some useful embodiments, this function of force limiting mechanism 186 prevents the application of undue forces to staple 100. Once the maximum desired force is applied to staple 100, further rotation of lever 174 will result in relative motion between first tubular member 182 and second tubular member 184 and will not result in the application of additional force to staple 100.


In the embodiment of FIG. 18, force limiting mechanism 186 comprises a spring 188. A first end of spring 188 is pivotably coupled to first tubular member 182 at a first joint 190A. A second end of spring 188 is pivotably coupled to second tubular 184 member at a second joint 190B. In some particularly useful embodiments, spring 188 comprises a constant force spring. Spring 188 may comprise various constant force springs without deviating form the spirit and scope of the present invention. One constant force spring that may be suitable in some applications is disclosed in U.S. Pat. No. 2,630,316. With reference to FIG. 18 is will be appreciated that spring 188 comprises a plurality of wire turns arranged to extend along a longitudinal axis 198.


In the embodiment of FIG. 18A, the wire turns of spring 188 are arranged so that spring 188 extends along a straight longitudinal axis. Spring 188 will maintain the straight shape shown in FIG. 18A as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. In operation, spring 188 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value.


In the embodiment of FIG. 18B, spring 188 is bent so that the wire turns of spring 188 are arranged with spring 188 extending along a curvilinear longitudinal axis. If the forces applied to staple 100 are equal to or greater than the predetermined value, then spring 188 will bend such that the wire turns of spring 188 extend along a curvilinear longitudinal axis. The resistance to additional bending offered by spring 300 remains substantially constant as spring 300 is bent from the shape shown in FIG. 18A to the shape shown in FIG. 18B. When spring 188 bends, spring 188 allows relative longitudinal motion between first tubular member 182 and second tubular member 184. Dimension lines are used to illustrate an overall length LA and an overall length LB in FIG. 18A and FIG. 18B, respectively. With reference to FIG. 18, it will be appreciated that overall length LB is shorter than overall length LA. In the embodiment of FIG. 18, the difference between overall length LB and overall length LA is due to relative longitudinal motion between first tubular member 182 and second tubular member 184.



FIG. 19 is a perspective view showing an illustrative fixation tool assembly 180 in accordance with this detailed description. In the embodiment of FIG. 19, fixation tool assembly 180 comprises a staple push rod 130 and a fixation tool shaft 146. A distal portion of staple push rod 130 extends into a lumen 152 defined by fixation tool shaft 146 when fixation tool assembly is in an assembled state. Staple push rod 130 includes a first tubular member 182, a second tubular member 184 and a force limiting mechanism 186 operably coupled between first tubular member 182 and second tubular member 184. A staple 100 is disposed at the distal end of second tubular member 184 and a lever 174 is connected to the proximal end of first tubular member 182.


Staple 100 is carried by a fork 136 that extends distally beyond the distal end of second tubular member 184. The distal direction is indicated with an arrow D in FIG. 19. Fork 136 includes a first stake 134A and a second stake 134B. In FIG. 19, a distal portion of each stake extends into a passageway defined by staple 100. Staple 100 comprises a first arm, a second arm, and a bridge 104 extending from the proximal end of the first arm to the proximal end of the second arm. The distal end of the first arm abuts the proximal end of a first fluke 106A of staple 100. Similarly, the distal end of the second arm abuts the proximal end of a second fluke 106B.


In the embodiment of FIG. 19, a distal portion of first stake 134A extends into a first passageway defined by first fluke 106A. Similarly, a distal portion of second stake 134B extends into a second passageway defined by second fluke 106B of staple 100. A first shoulder of first stake 134A contacts a proximal surface of first fluke 106A in the embodiment of FIG. 19. A second shoulder of second stake 134B contacts a proximal surface of second fluke 106B.


Fixation tool shaft 146 of FIG. 19 comprises a wall 150 defining a lumen 152. With reference to FIG. 19, it will be appreciated that fixation tool shaft 146 includes a first prong 154A and a second prong 154B that extend distally beyond a distal end 158 of lumen 152. In some useful embodiments, first prong 154A and second prong 154B form pilot holes in a target tissue when the distal portion of fixation tool shaft 146 is pressed against the target tissue. A fluke of staple 100 may be advanced into each pilot hole formed by the prongs of fixation tool shaft 146.


An actuator assembly 176 is operably coupled to first tubular member 182 of staple push rod 130. Actuator assembly 176 is capable of moving first tubular member 182 in a longitudinal direction relative to fixation tool shaft 146. In the embodiment of FIG. 19, actuator assembly 176 comprises a lever 174 and a trigger 160. With reference to FIG. 19, it will be appreciated that lever 174 is pivotably coupled to the proximal end of first tubular member 182. Trigger 160 engages lever 174 in such a way that rotation of trigger 160 causes rotation of lever 174. In operation, first tubular member 182 of staple push rod 130 will be advanced and/or retracted in a longitudinal direction when trigger 160 and lever 174 are rotated.


In the embodiment of FIG. 19, force limiting mechanism 186 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. Accordingly, longitudinal movement of first tubular member 182 of staple push rod 130 will cause substantially equivalent longitudinal movement of second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than the predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then force limiting mechanism 186 will allow relative longitudinal motion between first tubular member 182 and second tubular member 184. In some useful embodiments, this function of force limiting mechanism 186 prevents the application of undue forces to staple 100. Once the maximum desired force is applied to staple 100, further rotation of trigger 160 will result in relative motion between first tubular member 182 and second tubular member 184 and will not result in the application of additional force to staple 100.


In the embodiment of FIG. 19, force limiting mechanism 186 comprises a spring 300. Spring 300 of FIG. 19, comprises ribbon 312 that forms a roll 314 when ribbon 312 is in an unstressed state. When fixation tool assembly 180 is in an assembled state, roll 314 is supported by a roller 316 that extends through a center opening of roll 314. Roller 316 is rotatably supported by a bracket that is fixed to second tubular member 184 when fixation tool assembly 180 is in an assembled state. Second tubular member 184 defines a slot 194. First tubular member 182 carries a pin 196 that extends through slot 194. When fixation tool assembly 180 is in an assembled state, free end 318 of spring 300 is affixed to pin 196. In the embodiment of FIG. 19, the arrangement of pin 196 extending through slot 194 prevents relative rotation between first tubular member 182 and second tubular member 184.


When spring 300 is in an unstressed state, ribbon 312 forms a roll 314 as illustrated in FIG. 19. Spring 300 will maintain the rolled shape shown in FIG. 19 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. In operation, spring 300 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then spring 300 will unroll. When spring 300 unrolls, spring 300 allows relative longitudinal motion between first tubular member 182 and second tubular member 184. As ribbon 312 of roll 314 is unrolled, the force produced by spring 300 comes primarily from the portion of ribbon 312 near roll 314. Because the geometry of that region remains nearly constant as ribbon 312 unrolls, the resulting force is nearly constant.



FIG. 20A and FIG. 20B are plan views further illustrating the operation of fixation tool assembly 180 shown in the previous figure. FIG. 20A and FIG. 20B may be collectively referred to as FIG. 20. Fixation tool assembly 180 comprises a staple push rod 130 including a first tubular member 182, a second tubular member 184 and a force limiting mechanism 186 operably coupled between first tubular member 182 and second tubular member 184. In the exemplary embodiment of FIG. 20, a distal portion of first tubular member 182 is slidingly received in a lumen defined by second tubular member 184 such that first tubular member 182 and second tubular member 184 can translate relative to each other.


An actuator assembly 176 including a lever 174 is coupled to the proximal end of first tubular member 182. Actuator assembly 176 is capable of creating longitudinal movement of first tubular member 182 of staple push rod 130 relative to fixation tool shaft 146. In operation, first tubular member 182 of staple push rod 130 will be advanced and/or retracted in a longitudinal direction when lever 174 of actuator assembly 176 is rotated. Under certain circumstances, the longitudinal motion of first tubular member 182 is transferred to second tubular member 184 by force limiting mechanism 186. When certain conditions are met, however, force limiting mechanism 186 does not transfer the longitudinal motion of first tubular member 182 to second tubular member 184.


A staple 100 is disposed at a distal end of second tubular member 184. In the embodiment of FIG. 20, force limiting mechanism 186 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. Accordingly, longitudinal movement of first tubular member 182 of staple push rod 130 will cause substantially equivalent longitudinal movement of second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than the predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then force limiting mechanism 186 will allow relative longitudinal motion between first tubular member 182 and second tubular member 184. In some useful embodiments, this function of force limiting mechanism 186 prevents the application of undue forces to staple 100. Once the maximum desired force is applied to staple 100, further rotation of lever 174 will result in relative motion between first tubular member 182 and second tubular member 184 and will not result in the application of additional force to staple 100.


In the embodiment of FIG. 20, force limiting mechanism 186 comprises a spring 300. Spring 300 of FIG. 20, comprises ribbon 312 that forms a roll 314 when ribbon 312 is in an unstressed state. When fixation tool assembly 180 is in an assembled state, roll 314 is supported by a roller 316 that extends through a center opening of roll 314. Roller 316 is rotatably supported by a bracket that is fixed to second tubular member 184. First tubular member 182 carries a pin 196 that extends through a slot defined by second tubular member 184. Free end 318 of spring 300 is affixed to pin 196 in the embodiment of FIG. 20.


When spring 300 is in an unstressed state, ribbon 312 forms a roll 314 as illustrated in FIG. 20A. Spring 300 will maintain the rolled shape shown in FIG. 20A as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. In operation, spring 300 will transmit the longitudinal movement of first tubular member 182 to second tubular member 184 as long as the forces applied to staple 100 by staple push rod 130 are less than a predetermined value. If the forces applied to staple 100 are equal to or greater than the predetermined value, then spring 300 will unroll. When spring 300 unrolls, spring 300 allows relative longitudinal motion between first tubular member 182 and second tubular member 184. In the embodiment of FIG. 20B, spring 300 has been partially unrolled relative to the unstressed state of spring 300. Dimension lines are used to illustrate an overall length LA and an overall length LB in FIG. 20A and FIG. 20B, respectively. With reference to FIG. 20, it will be appreciated that overall length LB is shorter than overall length LA. In the embodiment of FIG. 20, the difference between overall length LB and overall length LA is due to relative longitudinal motion between first tubular member 182 and second tubular member 184. As ribbon 312 of roll 314 is unrolled, the force produced by spring 300 comes primarily from the portion of ribbon 312 near roll 314. Because the geometry of that region remains nearly constant as ribbon 312 unrolls, the resulting force is nearly constant.


While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims and subsequently filed claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims
  • 1. A device for attaching a sheet-like implant to a target tissue, comprising: a fastener push rod including a first portion, a second portion and a force limiting mechanism operably coupled between the first portion and the second portion;a fastener carried by the second portion of the fastener push rod;an actuator assembly coupled to the first portion of the fastener push rod and capable of creating longitudinal movement of the first portion;the force limiting mechanism transmitting longitudinal movement of the first portion to the second portion while the forces applied to the fastener by the fastener push rod are less than a predetermined value such that longitudinal movement of the first portion of the fastener push rod causes substantially equivalent longitudinal movement of the second portion; andthe force limiting mechanism allowing relative longitudinal motion between the first portion and the second portion while the forces applied to the fastener are equal to or greater than the predetermined value such that the application of undue forces to the fastener is prevented.
  • 2. The device of claim 1, wherein the force limiting mechanism comprises a constant force spring, a first end of the constant force spring being coupled to the first portion of the fastener push rod, and a second end of the constant force spring being coupled to the second portion of the fastener push rod.
  • 3. The device of claim 1, wherein the first portion of the fastener push rod includes a first tubular member, the second portion of the fastener push rod includes a second tubular member, and a portion of one tubular member is slidingly received in a lumen defined by the other tubular member such that the first tubular member and the second tubular member can translate relative to each other.
  • 4. The device of claim 1, wherein the first portion of the fastener push rod includes a first tubular member, the second portion of the fastener push rod includes a second tubular member, and a portion of the first tubular member is slidingly received in a lumen defined by the second tubular member such that the first tubular member and the second tubular member can translate relative to each other.
  • 5. The device of claim 4, wherein the second tubular member defines a slot and the first tubular member carries a pin that is slidingly received in the slot such that relative rotation between the first tubular member and the second tubular member is prevented.
  • 6. The device of claim 5, wherein the force limiting mechanism comprises a constant force spring, a first end of the constant force spring being coupled to the first tubular member, and a second end of the constant force spring being coupled to the second tubular member.
  • 7. The device of claim 1, wherein the force limiting mechanism comprises a constant force spring, a first end of the constant force spring being coupled to the first portion of the staple push rod, and a second end of the constant force spring being coupled to the second portion of the staple push rod.
  • 8. The device of claim 1, wherein the first portion of the staple push rod includes a first tubular member, the second portion of the staple push rod includes a second tubular member, and a portion of one tubular member is slidingly received in a lumen defined by the other tubular member such that the first tubular member and the second tubular member can translate relative to each other.
  • 9. The device of claim 1, wherein the first portion of the staple push rod includes a first tubular member, the second portion of the staple push rod includes a second tubular member, and a portion of the first tubular member is slidingly received in a lumen defined by the second tubular member such that the first tubular member and the second tubular member can translate relative to each other.
  • 10. The device of claim 9, wherein the second tubular member defines a slot and the first tubular member carries a pin that is slidingly received in the slot such that relative rotation between the first tubular member and the second tubular member is prevented.
  • 11. The device of claim 10, wherein the force limiting mechanism comprises a constant force spring, a first end of the constant force spring being coupled to the first tubular member, and a second end of the constant force spring being coupled to the second tubular member.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/443,180 filed on Feb. 15, 2011.

US Referenced Citations (431)
Number Name Date Kind
511238 Hieatzman et al. Dec 1893 A
765793 Ruckel Jul 1904 A
1728316 von Wachenfeldt et al. Sep 1929 A
1855546 File Apr 1932 A
1868100 Goodstein Jul 1932 A
1910688 Goodstein May 1933 A
1940351 Howard Dec 1933 A
2034785 Wappler Mar 1936 A
2075508 Davidson Mar 1937 A
2131321 Hart Sep 1938 A
2158242 Maynard May 1939 A
2199025 Conn Apr 1940 A
2201610 Dawson, Jr. May 1940 A
2254620 Miller Sep 1941 A
2277931 Moe Mar 1942 A
2283814 La Place May 1942 A
2316297 Southerland et al. Apr 1943 A
2421193 Gardner May 1947 A
2571813 Austin Oct 1951 A
2630316 Foster Mar 1953 A
2684070 Kelsey Jul 1954 A
2744251 Vollmer May 1956 A
2790341 Keep et al. Apr 1957 A
2817339 Sullivan Dec 1957 A
2825162 Flood Mar 1958 A
2881762 Lowrie Apr 1959 A
2910067 White Oct 1959 A
3068870 Levin Dec 1962 A
3077812 Dietrich Feb 1963 A
3103666 Bone Sep 1963 A
3123077 Alcamo Mar 1964 A
3209754 Brown Oct 1965 A
3221746 Noble Dec 1965 A
3470834 Bone Oct 1969 A
3527223 Shein Sep 1970 A
3570497 Lemole Mar 1971 A
3577837 Bader, Jr. May 1971 A
3579831 Stevens et al. May 1971 A
3643851 Green et al. Feb 1972 A
3687138 Jarvik Aug 1972 A
3716058 Tanner, Jr. Feb 1973 A
3717294 Green Feb 1973 A
3740994 De Carlo, Jr. Jun 1973 A
3757629 Schneider Sep 1973 A
3777538 Weatherly et al. Dec 1973 A
3837555 Green Sep 1974 A
3845772 Smith Nov 1974 A
3875648 Bone Apr 1975 A
3960147 Murray Jun 1976 A
3976079 Samuels et al. Aug 1976 A
4014492 Rothfuss Mar 1977 A
4127227 Green Nov 1978 A
4259959 Walker Apr 1981 A
4263903 Griggs Apr 1981 A
4265226 Cassimally May 1981 A
4317451 Cerwin et al. Mar 1982 A
4400833 Kurland Aug 1983 A
4422567 Haynes Dec 1983 A
4454875 Pratt et al. Jun 1984 A
4480641 Failla et al. Nov 1984 A
4485816 Krumme Dec 1984 A
4526174 Froehlich Jul 1985 A
4549545 Levy Oct 1985 A
4570623 Ellison et al. Feb 1986 A
4595007 Mericle Jun 1986 A
4624254 McGarry et al. Nov 1986 A
4627437 Bedi et al. Dec 1986 A
4632100 Somers et al. Dec 1986 A
4635634 Santos Jan 1987 A
4635637 Schreiber Jan 1987 A
4669473 Richards et al. Jun 1987 A
4696300 Anderson Sep 1987 A
4719917 Barrows et al. Jan 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4762260 Richards et al. Aug 1988 A
4799495 Hawkins et al. Jan 1989 A
4809695 Gwathmey et al. Mar 1989 A
4851005 Hunt et al. Jul 1989 A
4858608 McQuilkin Aug 1989 A
4884572 Bays et al. Dec 1989 A
4887601 Richards Dec 1989 A
4924866 Yoon May 1990 A
4930674 Barak Jun 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays et al. Dec 1990 A
4994073 Green Feb 1991 A
4997436 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5013316 Goble et al. May 1991 A
5015249 Nakao et al. May 1991 A
5037422 Hayhurst et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5053047 Yoon Oct 1991 A
5059206 Winters Oct 1991 A
5062563 Green et al. Nov 1991 A
5100417 Cerier et al. Mar 1992 A
5102421 Anspach, Jr. Apr 1992 A
5116357 Eberbach May 1992 A
5122155 Eberbach Jun 1992 A
5123913 Wilk et al. Jun 1992 A
RE34021 Mueller et al. Aug 1992 E
5141515 Eberbach Aug 1992 A
5141520 Goble et al. Aug 1992 A
5156609 Nakao et al. Oct 1992 A
5156616 Meadows et al. Oct 1992 A
5167665 McKinney Dec 1992 A
5171259 Inoue Dec 1992 A
5174295 Christian et al. Dec 1992 A
5174487 Rothfuss et al. Dec 1992 A
5176682 Chow Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5203787 Noblitt et al. Apr 1993 A
5217472 Green et al. Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5242457 Akopov et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5251642 Handlos Oct 1993 A
5261914 Warren Nov 1993 A
5269753 Wilk Dec 1993 A
5269783 Sander Dec 1993 A
5282829 Hermes Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290217 Campos Mar 1994 A
5304187 Green et al. Apr 1994 A
5333624 Tovey Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5354292 Braeuer et al. Oct 1994 A
5364408 Gordon Nov 1994 A
5366460 Eberbach Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5372604 Trott Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5383477 Dematteis Jan 1995 A
5397332 Kammerer et al. Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5411522 Trott May 1995 A
5411523 Goble May 1995 A
5417691 Hayhurst May 1995 A
5417712 Whittaker et al. May 1995 A
5425490 Goble et al. Jun 1995 A
5439468 Schulze et al. Aug 1995 A
5441502 Bartlett Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456720 Schultz et al. Oct 1995 A
5464403 Kieturakis et al. Nov 1995 A
5478354 Tovey et al. Dec 1995 A
5486197 Le et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5503623 Tilton, Jr. Apr 1996 A
5505735 Li Apr 1996 A
5507754 Green et al. Apr 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5545180 Le et al. Aug 1996 A
5560532 Defonzo et al. Oct 1996 A
5562689 Green et al. Oct 1996 A
5569306 Thal Oct 1996 A
5582616 Bolduc et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5593421 Bauer Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5618314 Harwin et al. Apr 1997 A
5622257 Deschenes et al. Apr 1997 A
5628751 Sander et al. May 1997 A
5643319 Green et al. Jul 1997 A
5643321 McDevitt Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649963 McDevitt Jul 1997 A
5662683 Kay Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5674245 Ilgen Oct 1997 A
5681342 Benchetrit Oct 1997 A
5702215 Li Dec 1997 A
5713903 Sander et al. Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5741282 Anspach, III et al. Apr 1998 A
5766246 Mulhauser et al. Jun 1998 A
5782864 Lizardi Jul 1998 A
5797909 Michelson Aug 1998 A
5797931 Bito et al. Aug 1998 A
5797963 McDevitt Aug 1998 A
5807403 Beyar et al. Sep 1998 A
5830221 Stein et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5836961 Kieturakis et al. Nov 1998 A
5868762 Cragg et al. Feb 1999 A
5873891 Sohn Feb 1999 A
5885258 Sachdeva et al. Mar 1999 A
5885294 Pedlick et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5904696 Rosenman May 1999 A
5919184 Tilton, Jr. Jul 1999 A
5922026 Chin Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5948000 Larsen et al. Sep 1999 A
5957939 Heaven et al. Sep 1999 A
5957953 Dipoto et al. Sep 1999 A
5968044 Nicholson et al. Oct 1999 A
5980557 Iserin et al. Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
5997552 Person et al. Dec 1999 A
6063088 Winslow May 2000 A
6156045 Ulbrich et al. Dec 2000 A
6179840 Bowman Jan 2001 B1
6193731 Oppelt et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6302885 Essiger Oct 2001 B1
6312442 Kieturakis et al. Nov 2001 B1
6315789 Cragg Nov 2001 B1
6318616 Pasqualucci et al. Nov 2001 B1
6322563 Cummings et al. Nov 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6342057 Brace et al. Jan 2002 B1
6387113 Hawkins et al. May 2002 B1
6391333 Li et al. May 2002 B1
6413274 Pedros Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6436110 Bowman et al. Aug 2002 B2
6447522 Gambale et al. Sep 2002 B2
6447524 Knodel et al. Sep 2002 B1
6478803 Kapec et al. Nov 2002 B1
6482178 Andrews et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6506190 Walshe Jan 2003 B1
6511499 Schmieding et al. Jan 2003 B2
6517564 Grafton et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6527795 Lizardi Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6540769 Miller, III Apr 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6554852 Oberlander Apr 2003 B1
6569186 Winters et al. May 2003 B1
6575976 Grafton Jun 2003 B2
6599289 Bojarski et al. Jul 2003 B1
6620185 Harvie et al. Sep 2003 B1
6629988 Weadock Oct 2003 B2
6638297 Huitema Oct 2003 B1
6648893 Dudasik Nov 2003 B2
6666872 Barreiro et al. Dec 2003 B2
6673094 McDevitt et al. Jan 2004 B1
6685728 Sinnott et al. Feb 2004 B2
6692506 Ory et al. Feb 2004 B1
6723099 Goshert Apr 2004 B1
6726704 Loshakove et al. Apr 2004 B1
6726705 Peterson et al. Apr 2004 B2
6740100 Demopulos et al. May 2004 B2
6746472 Frazier et al. Jun 2004 B2
6764500 Van De Moer et al. Jul 2004 B1
6770073 McDevitt et al. Aug 2004 B2
6779701 Bailly et al. Aug 2004 B2
6800081 Parodi Oct 2004 B2
6835206 Jackson Dec 2004 B2
6849078 Durgin et al. Feb 2005 B2
6887259 Lizardi May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6932834 Lizardi et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6946003 Wolowacz et al. Sep 2005 B1
6949117 Gambale et al. Sep 2005 B2
6964685 Murray et al. Nov 2005 B2
6966916 Kumar Nov 2005 B2
6972027 Fallin et al. Dec 2005 B2
6984241 Lubbers et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
7008435 Cummins Mar 2006 B2
7021316 Leiboff Apr 2006 B2
7025772 Gellman et al. Apr 2006 B2
7033379 Peterson Apr 2006 B2
7037324 Martinek May 2006 B2
7048171 Thornton et al. May 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7083638 Foerster Aug 2006 B2
7087064 Hyde Aug 2006 B1
7112214 Peterson et al. Sep 2006 B2
7118581 Fridén Oct 2006 B2
7144413 Wilford et al. Dec 2006 B2
7144414 Harvie et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7160314 Sgro et al. Jan 2007 B2
7160326 Ball Jan 2007 B2
7163551 Anthony et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7169157 Kayan Jan 2007 B2
7189251 Kay Mar 2007 B2
7201754 Stewart et al. Apr 2007 B2
7214232 Bowman et al. May 2007 B2
7226469 Benavitz et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7247164 Ritchart et al. Jul 2007 B1
7303577 Dean Dec 2007 B1
7309337 Colleran et al. Dec 2007 B2
7320692 Bender et al. Jan 2008 B1
7320701 Haut et al. Jan 2008 B2
7322935 Palmer et al. Jan 2008 B2
7326231 Phillips et al. Feb 2008 B2
7343920 Toby et al. Mar 2008 B2
7368124 Chun et al. May 2008 B2
7377934 Lin et al. May 2008 B2
7381213 Lizardi Jun 2008 B2
7390329 Westra et al. Jun 2008 B2
7399304 Gambale et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7452368 Liberatore et al. Nov 2008 B2
7460913 Kuzma et al. Dec 2008 B2
7463933 Wahlstrom et al. Dec 2008 B2
7465308 Sikora et al. Dec 2008 B2
7481832 Meridew et al. Jan 2009 B1
7485124 Kuhns et al. Feb 2009 B2
7497854 Gill et al. Mar 2009 B2
7500972 Voegele et al. Mar 2009 B2
7500980 Gill et al. Mar 2009 B2
7500983 Kaiser et al. Mar 2009 B1
7503474 Hillstead et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7559941 Zannis et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7585311 Green et al. Sep 2009 B2
7766208 Epperly et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776057 Laufer et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7785255 Malkani Aug 2010 B2
7807192 Li et al. Oct 2010 B2
7819880 Zannis et al. Oct 2010 B2
7819888 Johanson et al. Oct 2010 B2
7918879 Yeung et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
8114101 Criscuolo et al. Feb 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8894669 Nering et al. Nov 2014 B2
20020077687 Ahn Jun 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020123767 Prestel Sep 2002 A1
20020165559 Grant et al. Nov 2002 A1
20030073979 Naimark et al. Apr 2003 A1
20030125748 Li et al. Jul 2003 A1
20030212456 Lipchitz et al. Nov 2003 A1
20040059416 Murray et al. Mar 2004 A1
20040138705 Heino et al. Jul 2004 A1
20040167519 Weiner et al. Aug 2004 A1
20050015021 Shiber Jan 2005 A1
20050049618 Masuda et al. Mar 2005 A1
20050051597 Toledano Mar 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050060033 Vacanti et al. Mar 2005 A1
20050107807 Nakao May 2005 A1
20050113736 Orr et al. May 2005 A1
20050171569 Girard et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050240222 Shipp Oct 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20060074423 Alleyne et al. Apr 2006 A1
20060178743 Carter Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060293760 Dedeyne Dec 2006 A1
20070078477 Heneveld, Sr. et al. Apr 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070112361 Schonholz et al. May 2007 A1
20070179531 Thornes Aug 2007 A1
20070185506 Jackson Aug 2007 A1
20070190108 Datta et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070270804 Chudik Nov 2007 A1
20070288023 Pellegrino et al. Dec 2007 A1
20080027470 Hart et al. Jan 2008 A1
20080051888 Ratcliffe et al. Feb 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080090936 Fujimura et al. Apr 2008 A1
20080125869 Paz et al. May 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080173691 Mas et al. Jul 2008 A1
20080188874 Henderson Aug 2008 A1
20080188936 Ball et al. Aug 2008 A1
20080195119 Ferree Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080241213 Chun et al. Oct 2008 A1
20080272173 Coleman et al. Nov 2008 A1
20080306408 Lo Dec 2008 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090012521 Axelson, Jr. et al. Jan 2009 A1
20090030434 Paz et al. Jan 2009 A1
20090069806 De La Mora Levy et al. Mar 2009 A1
20090076541 Chin et al. Mar 2009 A1
20090105535 Green et al. Apr 2009 A1
20090112085 Eby Apr 2009 A1
20090134198 Knodel et al. May 2009 A1
20090156986 Trenhaile Jun 2009 A1
20090156997 Trenhaile Jun 2009 A1
20090182245 Zambelli Jul 2009 A1
20090242609 Kanner Oct 2009 A1
20100145367 Ratcliffe Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100191332 Euteneuer et al. Jul 2010 A1
20100241227 Euteneuer et al. Sep 2010 A1
20100249801 Sengun et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100292715 Nering et al. Nov 2010 A1
20100292791 Lu et al. Nov 2010 A1
20100312250 Euteneuer et al. Dec 2010 A1
20100312275 Euteneuer et al. Dec 2010 A1
20100327042 Amid et al. Dec 2010 A1
20110000950 Euteneuer et al. Jan 2011 A1
20110004221 Euteneuer et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110034942 Levin et al. Feb 2011 A1
20110040310 Levin et al. Feb 2011 A1
20110040311 Levin et al. Feb 2011 A1
20110066166 Levin et al. Mar 2011 A1
20110106154 DiMatteo et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110224702 Van Kampen et al. Sep 2011 A1
20110264149 Pappalardo et al. Oct 2011 A1
20120100200 Belcheva et al. Apr 2012 A1
20120160893 Harris et al. Jun 2012 A1
20120193391 Michler et al. Aug 2012 A1
20120248171 Bailly et al. Oct 2012 A1
20120316608 Foley Dec 2012 A1
Foreign Referenced Citations (37)
Number Date Country
2390508 May 2001 CA
0142225 May 1985 EP
0298400 Jan 1989 EP
0390613 Oct 1990 EP
0543499 May 1993 EP
0548998 Jun 1993 EP
0557963 Sep 1993 EP
0589306 Mar 1994 EP
0908152 Apr 1999 EP
1491157 Dec 2004 EP
1559379 Aug 2005 EP
2030576 Mar 2009 EP
2154688 Sep 1985 GB
2397240 Jul 2004 GB
58-188442 Nov 1983 JP
2005506122 Mar 2005 JP
2006515774 Jun 2006 JP
WO 8505025 Nov 1985 WO
WO 0176456 Oct 2001 WO
WO 0234140 May 2002 WO
WO 03105670 Dec 2003 WO
WO 2004000138 Dec 2003 WO
WO 2004093690 Nov 2004 WO
WO 2005016389 Feb 2005 WO
WO 2006086679 Aug 2006 WO
WO 2007014910 Feb 2007 WO
WO2007030676 Mar 2007 WO
WO 2007078978 Jul 2007 WO
WO 2007082088 Jul 2007 WO
WO 2008111073 Sep 2008 WO
WO 2008111078 Sep 2008 WO
WO 2008139473 Nov 2008 WO
WO 2009079211 Jun 2009 WO
WO 2009143331 Nov 2009 WO
WO 2010141907 Dec 2010 WO
WO 2011095890 Aug 2011 WO
WO2011128903 Oct 2011 WO
Non-Patent Literature Citations (35)
Entry
Stetson et al.; Arthroscopic treatment of partial rotator cuff tears; Operative Techniques in Sports Medicine; vol. 12, Issue 2; pp. 135-148; Apr. 2004.
Wikipedia, the free encyclopedia; Rotator cuff tear; downloaded from <http://en.wikipedia.org/wiki/Rotator—cuff—tear> on Dec. 6, 2012; 14 pages.
Euteneuer et al.; U.S. Appl. No. 13/717,474 entitled “Apparatus and Method for Forming Pilot Holes in Bone and Delivering Fasteners Therein for Retaining an Implant,” filed Dec. 17, 2012.
Euteneuer et al.; U.S. Appl. No. 13/717,493 entitled “Fasteners and Fastener Delivery Devices for Affixing Sheet-Like Materials to Bone or Tissue,” filed Dec. 17, 2012.
Euteneuer et al.; U.S. Appl. No. 13/717,515 entitled “Fasteners and Fastener Delivery Devices for Affixing Sheet-Like Materials to Bone or Tissue ,” filed Dec. 17, 2012.
Euteneuer, Charles L.; U.S. Appl. No. 13/717,530 entitled “Fasteners and Fastener Delivery Devices for Affixing Sheet-Like Materials to Bone or Tissue,” filed Dec. 17, 2012.
Euteneuer et al.; U.S. Appl. No. 13/722,796 entitled “Methods and Apparatus for Delivering and Positioning Sheet-Like Materials in Surgery,” filed Dec. 20, 2012.
Euteneuer et al.; U.S. Appl. No. 13/722,865 entitled “Guidewire Having a Distal Fixation Member for Delivering and Positioning Sheet-Like Materials in Surgery,” filed Dec. 20, 2012.
Euteneuer et al.; U.S. Appl. No. 13/722,940 entitled “Anatomical Location Markers and Methods of Use in Positioning Sheet-Like Materials During Surgery,” filed Dec. 20, 2012.
Euteneuer et al.; U.S. Appl. No. 13/763,414 entitled “Implantable Tendon Protection Systems and Related Kits and Methods,” filed Feb. 8, 2013.
Alexander et al.; Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent; Bulletin of the Hospital for Joint Diseases Orthopaedic Institute; vol. 46; No. 2; pp. 155-173; Fall 1986.
Bahler et al.; Trabecular bypass stents decrease intraocular pressure in cultured himan anterior segments; Am. J. Opthalmology; vol. 138; No. 6; pp. 988-994; Dec. 2004.
Chamay et al.; Digital contracture deformity after implantation of a silicone prosthesis: Light and electron microscopic study; The Journal of Hand Surgery; vol. 3; No. 3; pp. 266-270; May 1978.
D'Ermo et al.; Our results with the operation of ab externo; Ophthalmologica; vol. 168; pp. 347-355; (month unavailable) 1971.
France et al.; Biomechanical evaluation of rotator cuff fixation methods; The American Journal of Sports Medicine; vol. 17; No. 2; Mar.-Apr. 1989.
Goodship et al.; An assessment of filamentous carbon fibre for the treatment of tendon injury in the horse; Veterinary Record; vol. 106; pp. 217-221; Mar. 8, 1980.
Hunter et al.; Flexor-tendon reconstruction in severely damaged hands; The Journal of Bone and Joint Surgery (American Volume); vol. 53-A; No. 5; pp. 329-358; Jul. 1971.
Johnstone et al.; Microsurgery of Schlemm's canal and the human aqueous outflow system; Am. J. Opthalmology; vol. 76; No. 6; pp. 906-917; Dec. 1973.
Kowalsky et al.; Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone; Arthroscopy: The Journal of Arthroscopic and Related Surgery; vol. 24; No. 3; pp. 329-334; Mar. 2008.
Lee et al.; Aqueous-venous and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966.
Maepea et al.; The pressures in the episcleral veins, Schlemm's canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663; Oct. 1989.
Nicolle et al.; A silastic tendon prosthesis as an adjunct to flexor tendon grafting: An experimental and clinical evaluation; British Joumal of Plastic Surgery; vol. 22; Issues 3-4; pp. 224-236; (month unavailable) 1969.
Rubin et al.; The use of acellular biologic tissue patches in foot and ankle surgery; Clinics in Podiatric Medicine and Surgery; nol. 22; pp. 533-552; Oct. 2005.
Schultz; Canaloplasty procedure shows promise for open-angle glaucoma in European study; Ocular Surgery News; pp. 34-35; Mar. 1, 2007.
Spiegel et al.; Schlemm's canal implant: A new method to lower intraocular pressure in patients with POAG; Ophthalmic Surgery and Lasers; vol. 30; No. 6; pp. 492-494; Jun. 1999.
Valdez et al.; Repair of digital flexor tendon lacerations in the horse, using carbon fiber implants; JAYMA; vol. 177; No. 5; pp. 427-435; Sep. 1, 1980.
Euteneuer et al.; U.S. Appl. No. 13/397,603 entitled “Methods and Apparatus for Delivering and Positioning Sheet-Like Materials,” filed Feb. 15, 2012.
Euteneuer et al.; U.S. Appl. No. 13/889,675 entitled “Methods and Apparatus for Fixing Sheet-Like Materials to a Target Tissue,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,687 entitled “Methods and Apparatus for Delivering Staples to a Target Tissue,” filed May 8, 2013.
Van Kampen et al.; U.S. Appl. No. 13/889,701 entitled “Tendon repair implant and method of arthroscopic implantation,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,722 entitled “Apparatus and Method for Forming Pilot Holes in Bone and Delivering Fasteners Therein for Retaining an Implant,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,737 entitled “Fasteners and Fastener Delivery Devices for Affixing Sheet-Like Materials to Bone or Tissue,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,757 entitled “Methods and Apparatus for Delivering and Positioning Sheet-Like Materials in Surgery,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,774 entitled “Guidewire Having a Distal Fixation Member for Delivering and Positioning Sheet-Like Materials in Surgery,” filed May 8, 2013.
Euteneuer et al.; U.S. Appl. No. 13/889,832 entitled “Anatomical location Markers and Methods of Use in Positioning Sheet-Like Materials During Surgery,” filed May 8, 2013.
Related Publications (1)
Number Date Country
20120211543 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
61443180 Feb 2011 US