Methods and apparatus for forming disposable products at high speeds with small machine footprint

Information

  • Patent Grant
  • 9907706
  • Patent Number
    9,907,706
  • Date Filed
    Friday, February 10, 2017
    7 years ago
  • Date Issued
    Tuesday, March 6, 2018
    6 years ago
Abstract
The present invention provides machinery used to create products (for instance disposable products). The machinery is operated at high speed, with the machine occupying a small footprint. Materials can be fed into the manufacturing process vertically (from above or below), using assembly stations to feed completed components into the system at appropriate stations. Additionally, restocking of raw components can be accomplished by robotic means of transferring the raw material from staging areas into infeeding or splicing stations, without the need for human operators.
Description
BACKGROUND OF THE INVENTION

The invention disclosed herein relates to an apparatus and methods for forming disposable products such as diapers at very high speeds, while significantly reducing the footprint of the machine, while also reducing waste. While the description provided relates to diaper manufacturing, the apparatus and method are easily adaptable to other applications.


Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in continuously fed fashion.


In the creation of a diaper, multiple roll-fed web processes are typically utilized. To create an absorbent insert, the cellulose pulp is unwound from the provided raw material roll and de-bonded by a pulp mill. Discrete pulp cores are created using a vacuum forming assembly and placed on a continuous tissue web. Optionally, super-absorbent powder may be added to the pulp core. The tissue web is wrapped around the pulp core. The wrapped core is debulked by proceeding through a calender unit, which at least partially compresses the core, thereby increasing its density and structural integrity. After debulking, the tissue-wrapped core is passed through a segregation or knife unit, where individual wrapped cores are cut. The cut cores are conveyed, at the proper pitch, or spacing, to a boundary compression unit.


While the insert cores are being formed, other insert components are being prepared to be presented to the boundary compression unit. For instance, the poly sheet is prepared to receive a cut core. Like the cellulose pulp, poly sheet material is usually provided in roll form. The poly sheet is fed through a splicer and accumulator, coated with an adhesive in a predetermined pattern, and then presented to the boundary compression unit. In addition to the poly sheet, which may form the bottom of the insert, a two-ply top sheet may also be formed in parallel to the core formation. Representative plies are an acquisition layer web material and a nonwoven web material, both of which are fed from material parent rolls, through a splicer and accumulator. The plies are coated with adhesive, adhered together, cut to size, and presented to the boundary compression unit. Therefore, at the boundary compression unit, three components are provided for assembly: the poly bottom sheet, the core, and the two-ply top sheet.


A representative boundary compression unit includes a profiled die roller and a smooth platen roller. When all three insert components are provided to the boundary compression unit, the nip of the rollers properly compresses the boundary of the insert. Thus, provided at the output of the boundary compression unit is a string of interconnected diaper inserts. The diaper inserts are then separated by an insert knife assembly and properly oriented, such as disclosed in U.S. application Ser. No. 61/426,891, owned by the assignee of the present invention and incorporated herein by reference. At this point, the completed insert is ready for placement on a diaper chassis.


A representative diaper chassis comprises nonwoven web material and support structure. The diaper support structure is generally elastic and may include leg elastic, waistband elastic and belly band elastic. The support structure is usually sandwiched between layers of the nonwoven web material, which is fed from material rolls, through splicers and accumulators. The chassis may also be provided with several patches, besides the absorbent insert. Representative patches include adhesive tape tabs and resealable closures.


The process utilizes two main carrier webs; a nonwoven web which forms an inner liner web, and an outer web that forms an outwardly facing layer in the finished diaper. In a representative chassis process, the nonwoven web is slit at a slitter station by rotary knives along three lines, thereby forming four webs. One of the lines is on approximately the centerline of the web and the other two lines are parallel to and spaced a short distance from the centerline. The effect of such slitting is twofold; first, to separate the nonwoven web into two inner diaper liners. One liner will become the inside of the front of the diaper, and the second liner will become the inside of the back of that garment. Second, two separate, relatively narrow strips are formed that may be subsequently used to cover and entrap portions of the leg-hole elastics. The strips can be separated physically by an angularly disposed spreader roll and aligned laterally with their downstream target positions on the inner edges of the formed liners. This is also done with turn bars upon entrance to the process.


After the nonwoven web is slit, an adhesive is applied to the liners in a predetermined pattern in preparation to receive leg-hole elastic. The leg-hole elastic is applied to the liners and then covered with the narrow strips previously separated from the nonwoven web. Adhesive is applied to the outer web, which is then combined with the assembled inner webs having elastic thereon, thereby forming the diaper chassis. Next, after the elastic members have been sandwiched between the inner and outer webs, an adhesive is applied to the chassis. The chassis is now ready to receive an insert.


In diapers it is preferable to contain elastics around the leg region in a cuff to contain exudates for securely within the diaper. Typically, strands of elastic are held by a non-woven layer that is folded over itself and contains the elastics within the overlap of the non-woven material. The non-woven is typically folded by use of a plow system which captures the elastics within a pocket, which is then sealed to ensure that the elastics remain in the cuff.


Most products require some longitudinal folding. It can be combined with elastic strands to make a cuff. It can be used to overwrap a stiff edge to soften the feel of the product. It can also be used to convert the final product into a smaller form to improve the packaging.


To assemble the final diaper product, the insert must be combined with the chassis. The placement of the insert onto the chassis occurs on a placement drum or at a patch applicator. The inserts are provided to the chassis on the placement drum at a desired pitch or spacing. The generally flat chassis/insert combination is then folded so that the inner webs face each other, and the combination is trimmed. A sealer bonds the webs at appropriate locations prior to individual diapers being cut from the folded and sealed webs.


Roll-fed web processes typically use splicers and accumulators to assist in providing continuous webs during web processing operations. A first web is fed from a supply wheel (the expiring roll) into the manufacturing process. As the material from the expiring roll is depleted, it is necessary to splice the leading edge of a second web from a standby roll to the first web on the expiring roll in a manner that will not cause interruption of the web supply to a web consuming or utilizing device.


In a splicing system, a web accumulation dancer system may be employed, in which an accumulator collects a substantial length of the first web. By using an accumulator, the material being fed into the process can continue, yet the trailing end of the material can be stopped or slowed for a short time interval so that it can be spliced to leading edge of the new supply roll. The leading portion of the expiring roll remains supplied continuously to the web-utilizing device. The accumulator continues to feed the web utilization process while the expiring roll is stopped and the new web on a standby roll can be spliced to the end of the expiring roll.


In this manner, the device has a constant web supply being paid out from the accumulator, while the stopped web material in the accumulator can be spliced to the standby roll. Examples of web accumulators include that disclosed in U.S. patent application Ser. No. 11/110,616, which is commonly owned by the assignee of the present application, and incorporated herein by reference.


As in many manufacturing operations, waste minimization is a goal in web processing applications, as products having spliced raw materials cannot be sold to consumers. Indeed, due to the rate at which web processing machines run, even minimal waste can cause inefficiencies of scale. In present systems, waste materials are recycled. However, the act of harvesting recyclable materials from defective product is intensive. That is, recyclable materials are harvested only after an identification of a reject product at or near the end of a process. The result is that recyclable materials are commingled, and harvesting requires the extra step of separating waste components. Therefore, the art of web processing would benefit from systems and methods that identify potentially defective product prior to product assembly, thereby eliminating effort during recyclable material harvesting.


Furthermore, to improve quality and production levels by eliminating some potentially defective product, the art of web processing would benefit from systems and methods that ensure higher product yield and less machine downtime.


Some diaper forming techniques are disclosed in co-pending U.S. application Ser. No. 12/925,033 which is incorporated herein by reference. As described therein, a process wherein a rotary knife or die, with one or more cutting edges, turns against and in coordination with a corresponding cylinder to create preferably trapezoidal ears. Ear material is slit into two lanes, one for a let side of a diaper and the other for a right side of a diaper. Fastening tapes are applied to both the right and the left ear webs. The ear material is then die cut with a nested pattern on a synchronized vacuum anvil.


The resulting discrete ear pieces however, due to the trapezoidal pattern of the ears, alternate between a correct orientation and an incorrect (reversed) orientation. The reversed ear is required to be rotated 180° into the correct orientation such that the ears and associated tape present a left ear and a right ear on the diaper.


To accomplish the reversal of the ear pattern, discrete ear pieces are picked up at the nested ear pitch by an ear turner assembly that will expand to a pitch large enough for ears to be unnested and allow clearance for every other ear to be rotated. The rotated ears are then unnested and into the correct orientation.


Two ear turner assemblies can be provided, to rotate every other ear applied to the right side of the product, and every other ear applied to the left side of the product. In this manner, for a single product, one of the two ears will have been rotated 180°.


Ear application to a chassis web can be by a bump method (described later) with intermittent adhesive applied to the chassis web, or can be by vacuum transfer.


The present invention also allows for two side panel assemblies, including fastening mechanisms, to be attached to two ears, the side panel assemblies attached in a pre-folded condition. Two more ears can coupled to a chassis web to create a front panel to wear about the waist of a user.


The present invention also allows for chips of material to be removed from the ears to provide a draper with contoured leg openings. In one embodiment, the chips may be removed from the ears before the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears after the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears and a portion of the chassis web removed after the ears are attached to the chassis web.


The invention disclosed herein also relates to apparatus and methods for waste reduction, such as disclosed in U.S. application Ser. No. 61/400,318, also incorporated herein by reference. Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion. As in many manufacturing operations, waste minimization is a goal in web processing applications, as products having spliced raw materials cannot be sold to consumers. Indeed, due to the rate at which web processing machines run, even minimal waste can cause inefficiencies of scale.


In present systems, waste materials are recycled. However, the ac of harvesting recyclable materials from defective product is intensive. That is, recyclable materials are harvested only after an identification of a reject product at or near the end of a process. The result is that recyclable materials are commingled, and harvesting requires the extra step of separating waste components. Therefore, it is beneficial to use up all of incoming rolls, so that a portion of the incoming rolls do not become waste. That objective is accomplished with the present invention


When manufacturing hygiene products, such as baby diapers, adult diapers, disposable undergarments, incontinence devices, sanitary napkins and the like, a common method of applying discrete pieces of one web to another is by use of a slip-and-cut applicator. A slip-and-cut applicator is typically comprised of a cylindrical rotating vacuum anvil, a rotating knife roll, and a transfer device. In typical applications, an incoming web is fed at a relatively low speed along the vacuum face of the rotating anvil, which is moving at a relatively higher surface speed and upon which the incoming web is allowed to “slip”. A knife-edge, mounted on the rotating knife roll, cuts a off a segment of the incoming web against the anvil face. This knife-edge is preferably moving at a surface velocity similar to that of the anvil's surface. Once cut, the web segment is held by vacuum drawn through holes on the anvil's face as it is carried at the anvil's speed downstream to the transfer point where the web segment is transferred to the traveling web.


Continual improvements and competitive pressures have incrementally increased the operational speeds of disposable diaper converters. As speeds increased, the mechanical integrity and operational capabilities of the applicators had to be improved accordingly.


Decreasing the footprint required by the manufacturing equipment is also desirable, as is increased automation, decreased system downtime, and increased manufacturing speeds. In typical disposable products manufacturing techniques, raw materials are fed into the manufacturing system at ground level, generally from the sides (and often perpendicular on the ground level) relative to the main machine direction on the ground.


The raw material supply system can also done manually. A forklift operator is typically required to constantly monitor supplies of raw materials, such as the non-woven materials, elastics, pulp, SAP, tape, poly, etc. and drive the forklift from a storage area containing these materials, and deposit those materials onto the system, where typically splicing systems are used to provide for continuous operation.


SUMMARY OF THE INVENTION

Provided are methods and apparatus for minimizing waste and improving quality and production in web processing operations in a high speed, small footprint environment. Materials can be fed into the manufacturing process vertically (from above or below), using assembly stations to feed completed components into the system at appropriate stations. Additionally, restocking of raw components can be accomplished by robotic means of transferring the raw material from staging areas into infeeding or splicing stations, without the need for human operators.


The present in allows for square, and non-square, and preferably trapezoidal, ear webs to be applied to a traveling web, with zero or minimized waste present in the incoming ear web. Zero material is wasted due to the geometry of the chosen ear pattern and its downstream processing.


An ear is a component of a diaper that is grasped and pulled around the waist of a wearer. Typically, ears are secured to the diaper at a first end, and a second free end is typically equipped with securing means, such as a pressure sensitive adhesive, or hook and loop material. As a user grasps an ear and pulls the ear, elasticity provided about the waist region of the diaper allows the free end to be snugly pulled about the waist of a wearer, and coupled to the diaper. Ears can be rectangular or made of irregular shapes.


The present, invention provides a process wherein a rotary knife or die, with one or more cutting edges, turns against and in coordination with a corresponding cylinder to create preferably trapezoidal ears. Ear material is slit into two lanes, one for a left side of a diaper and the other for a right side of a diaper. Fastening tapes are applied to both the right and the left ear webs. The ear material is then die cut with a nested pattern on a synchronized vacuum anvil.


The resulting discrete ear pieces however, due to the trapezoidal pattern of the ears, alternate between a correct orientation and an incorrect (reversed) orientation. The reversed ear is required to be rotated 180° into the correct orientation such that the ears and associated tape present a left ear and a right ear on the diaper.


To accomplish the reversal of the ear pattern, discrete ear pieces are picked up at the nested ear pitch by an ear turner assembly that will expand to a pitch large enough for ears to be unnested and allow clearance for every other ear to be rotated. The rotated ears are then unnested and into the correct orientation.


Two ear turner assemblies can be provided, to rotate every other ear applied to the right side of the product, and every other ear applied to the left side of the product. In this manner, for a single product, one of the two ears will have been rotated 180°.


Ear application to a chassis web can be by a bump method (described later) with intermittent adhesive applied to the chassis web, or can be by vacuum transfer.


The present invention also allows for two side panel assemblies, including fastening mechanisms, to be attached to two ears, the side panel assemblies attached in a pre-folded condition. Two more ears can coupled to a chassis web to create a front panel to wear about the waist of a user.


The present invention also allows for chips of material to be removed from the ears to provide a diaper with contoured leg openings. In one embodiment, the chips may be removed from the ears before the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears after the ears are attached to the chassis web. In an additional embodiment the chips may be removed from the ears and a portion of the chassis web removed after the ears are attached to the chassis web.


One aspect of the present invention is a novel machine layout. Materials are unwound from either an automated or a manned mezzanine level, and materials are transported and unwound vertically, preferably to a ground floor, to be used in manufacture of either brief type or pant type disposable products. A significantly compact floor plan is achieved which reduces machine footprint from prior standards to less than eighty (80) and preferably less than sixty (60) foot lengths from start of processing to finishing of the disposable products.


A multi-level machine for manufacturing disposable products is disclosed, the machine comprising a material unwinding level carrying unmanned, auto-fed material unwinding systems carrying materials. The auto-fed material unwinding systems are operatively connected to and feed materials to a main processing level for use in manufacturing a disposable product.


A material staging magazine is provided to carry waiting new material rolls from a ground level to a mezzanine level, the mezzanine level carrying a series of turret unwind systems for dispensing materials from the mezzanine level back to the ground level for use in diaper manufacturing operations. The material staging magazines contain a series of individual roll stabilization features which prevent waiting new material rolls from tipping during material transport and unloading. Waiting new material roils can include an inner non-woven material, an outer-non-woven material, a non-woven backsheet material, a non-woven topsheet material, a poly backsheet material, an acquisition layer material, and a tissue layer. The material staging magazine is loaded at the ground floor, transported to the unwind level, and then automatically transported roll-by-roll their respective unwind system for use in manufacturing the disposable products.


A vertical reciprocating conveyor or a robot is used to carry waiting new material rolls from the said main processing level to the material unwinding level. Once on the material unwinding level, the waiting new material rolls are staged at a material address dedicated to that particular material. A robotic assembly acquires a material roll from one of said material addresses and transports and places the material roll onto its appropriate auto-fed material unwinding system. The robotic assembly then obtains the expiring roll and discards the roll in a waste chute.


In another novel aspect of the present invention, a process interface module is provided vertically displaced between the unwind level and the main processing level, while the main level contains splice preparation equipment.


The material supply techniques and product layouts disclosed can be used to produce pant-type diapers, brief-type diapers, baby diapers, adult diapers, or any other types of disposable products using web processing machinery.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are a schematic of a representative web processing system;



FIG. 2 is a top view of a floorplan layout of the web processing system of the present invention;



FIG. 3 is a top view of a floorplan layout of the web processing system of the present invention;



FIG. 4 is a side view of the ground level and mezzanine levels of the web processing system of the present invention;



FIG. 5 is a side view of an extension panel construction section of the present invention;



FIG. 6 is a side view of a back ear final construction section of the present invention;



FIG. 7 is a side view of a soft backsheet lamination section of the present invention.



FIG. 8 is a perspective view of a mezzanine and floor level of a web processing system of the present invention used to create a pant-type product;



FIG. 9 is a perspective view of an alternate mezzanine and floor level of a web processing system of the present invention used to create a brief-type product;



FIG. 10 is a perspective view of a loaded material roll supply cart of the present invention;



FIG. 11 is a perspective view of a gantry crane system carrying a material roll used in the present invention, shown in a retracted position;



FIG. 12 is a perspective view of a gantry crane system carrying a material roll used in the present invention, shown in an extended position;



FIG. 13 is a side view of a turret unwind and splicing system for carrying expiring material rolls and waiting new material rolls.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.


It is noted that the present waste minimization techniques and apparatus are described herein with respect to products such as diapers, but as previously mentioned, can be applied to a wide variety of processes in which discrete components are applied sequentially.


Referring to FIGS. 1A and 1B, a two-level disposable product manufacturing process is disclosed. Portions of the disposable product are formed on a floor level, and other portions are formed on an upper or mezzanine level.


On the floor level, the web processing operation starts with incorporating raw materials such as paper pulp and super absorbent polymer (SAP) in a pulp mill. The mixture is sent to a core forming drum, where cores are formed for retaining liquids. A core can be placed on a tissue and processed as shown. Eventually, an additional tissue layer can be applied to sandwich the core. In the illustrated embodiment, two independent cores can be formed and joined together at a compression unit.


Simultaneously formed on the upper level are back ear and front ear portions of the disposable product, which can be formed with methods and apparatus such as those disclosed in the simultaneously pending U.S. patent application Ser. No. 12/925,033, incorporated herein by reference, and described in the schematic as the “NOSE unit.”


As disclosed therein, discrete preferably trapezoidal ear pieces are initially cut alternating between a correct orientation and an incorrect (reversed) orientation. The reversed car is required to be rotated 180° into the correct orientation such that the ears and associated tape present a left ear and a right ear on the diaper.


To accomplish the reversal of the ear pattern, discrete ear pieces are picked up at the nested ear pitch by an ear turner assembly that will expand to a pitch large enough for ears to be unnested and allow clearance for every other ear to be rotated. The rotated ears are then unnested and into the correct orientation.


Two ear turner assemblies can be provided, to rotate every other ear applied to the right side of the product, and every other ear applied to the left side of the product. In this manner, for a single product, one of the two ears will have been rotated 180°.


Ear application to a chassis web can be by a bump method with intermittent adhesive applied to the chassis web, or can be by vacuum transfer.


Still on the upper level, a cuff portion of the diaper can be supplied from the upper level, the top sheet can be stored and unwound, an acquisition layer can be stored and unwound, and a non woven backsheet/poly laminate can be stored, formed and unwound. All of the stored materials on the upper level can be retrieved automatically and mechanically to restock as the rolls are used up. Eventually the upper level materials, which generally overly the floor level machinery, are supplied down to the floor level for use in the diaper manufacturing process.


Together on the floor level, the back ear, front ear, cuff (now including cuff elastic), top sheet, acquisition layer, and backsheet poly laminate are preferably simultaneously placed and coupled together and coupled with the previously formed core. The web can undergo folding, extraction and trimming of excess material, and application of material to tighten the diaper about the waist. Eventually, the product is folded and packaged.


Referring now to FIGS. 2 and 4, a preferred floor plan of the present invention is shown both from a top view (FIG. 2) and a side view (FIG. 4). As indicated, pulp rolls 200 feed raw pulp into a pulp mill 204, where the pulp is de-bonded. Super absorbent polymer is added from station 12. The SAP/pulp mixture, or pulp/SAP blend, or pulp and SAP is fed onto core forming drum 14. The pulp/SAP mixture is introduced to a core forming apparatus. Cores are made by conveying the pulp/SAP mixture through a duct and into a vacuum forming drum. Cores from core forming drum 14 are conveyed by conveyor 18 and core accelerator 20 downline. A secondary core forming drum 16 is likewise employed if a secondary core is desired, and the secondary core is passed through the debulking unit 22, and onto the core accelerator 20 and placed atop the primary core. A compression conveyor 23 keeps control of the core to pass it through to the introduction of poly laminate backsheet. A backsheet laminate is comprised preferably of a continuous nonwoven layer (for soft, cloth like feel), along with a moisture barrier layer, generally made from polypropylene or polyethylene film. This layer can be glued, ultrasonically bonded over the length of the backsheet, or applied as a patch with glue using a slip/cut process.


Referring to FIG. 7, the formation of the soft backsheet lamination is shown in side view. A nonwoven backsheet roll is carried on the upper level along with its backup roll to be spliced in as inventories deplete (see FIG. 3) and laminated together at station 110.


Referring to FIGS. 4 and 7, it can be seen that a process interface module 110 is carried between said unwind level and said main processing level, said main level containing splice preparation equipment 110 located between the unwind level and the main process system level, for instance by hanging a process interface module 110 from a supplied I-beam. The process interface module can achieve many functions, such as slitting, laminating, and splice preparation. After being transported vertically, the poly laminated backsheet is introduced to the fed from the bottom, at station 25 (see FIGS. 3, 7). A nonwoven topsheet assembly, including a lycra and cuff portion and an absorbent distribution layer, enters the system prior to the boundary compression unit. Still referring to FIG. 3, it is noted that actual raw materials and the locations of those materials could vary in floor plan, but it is preferred that the materials remain on the vertical levels shown.


Referring back to FIG. 4, this poly laminate and core combination is passed to boundary compression unit 29. It is at unit 29 that other diaper elements are introduced in pre-formed fashion, from the upper level components on FIG. 1B. Also, lycra unwind unit 27 introduces lycra, in addition to the pre-formed upper level diaper components, at this point.


Referring to FIG. 2, the upper level components comprise the front ear non-woven supply unit 24, to supply the front ears, the acquisition layer provided from unwind unit 26, the top sheet supplied from the supply and unwind station 28, and the cuff components supplied from the cuff supply unit 30 to supply the cuff material for lower level slitting/spreading and introduction of lycra, and foldover of the lycra to form the cuff. These materials are fed in the pathways shown, and introduced to the boundary compression unit 29, in the sequence shown in FIGS. 1A and 1B.


Still referring to FIG. 2, on the upper level, the back ear and extension panel are formed at station 60. The back ear section is formed as shown in FIG. 6, using the methods and apparatus formed in U.S. application Ser. No. 12/925,033, disclosed herein by reference. The extension panel section is formed as shown in FIG. 5. In particular, the depiction and description shown in FIG. 19A-26 of U.S. application Ser. No. 12/925,033 results in the back ear/extension panel formation depicted in FIGS. 5 and 6. Ultimately the back ear/extension panel construction is transported as depicted, downwards toward the nested zero waste ear rotation unit 27 as shown on FIG. 4, also described in detail in U.S. application Ser. No. 12/925,033, for instance at FIG. 8A.


Still referring to FIG. 4, front ears are formed at unit 24 using preferably non-woven material, and are placed onto the chassis web preferably by slip-cut technique after being conveyed circuitously and downwardly towards the boundary compression unit 29.


Cuff unit 30 convoys, from the upper level, cuff material to the lower level where right and left cuffs are formed by passing the cuff material first through slitter 42, spreader 44. Lycra unwind unit 27 feeds strands of lycra onto the cuff material, and then a bonding/foldover unit 46 seals the lycra strands within a foldover portion of the non-woven material to create the cuff.


An additional bonding unit 48 couples the previously created cuff with the incoming topsheet material 28, fed from the upper level downwardly. The cuff/topsheet combination is fed toward incoming acquisition layer 26 for acquisition placement at station 50 and that combination is then fed toward the NOSE unit 32, where the previously formed materials will be joined with the cuff/topsheet/acquisition combination. After the NOSE limit, all of the materials are then joined at the boundary compression unit, including the nonwoven topsheet assembly, including a absorbent distribution layer, lycra and cuff portion, which have entered the system, prior to the boundary compression unit.


Now moving right to left on FIG. 4, the formed diaper can be subjected to folding plows 52 to fold over front ear and back ear/extension panels, passed through a die cut unit 56 to sever individual products from the previously continuous web, and then past tucker blades 54 to fold the products at the crotch region or elsewhere desired for packaging and bagging operations at station 00.


Referring now to FIG. 5, the extension panel construction is shown. The formation of side panel assemblies begins with an non-woven web material 318, supplied in primary and backup roll fashion, with splicer 320 and accumulator 322 used to provide a continuous web, which is slit and spread into discrete non-woven web portions (see FIG. 2), each of the non-woven web portions also preferably being cut in the cross-machine direction into the preferred size.


To each of the discrete non-woven web portions, one or more fastening mechanisms are applied. Fastening mechanisms can be tape tabs, covered tape tabs, strips of hook and loop material, continuous hook and loop material, patches of hook and loop material, etc. The fastening mechanisms will be unfastened and refastened about the waist of the user to tighten the disposable garment about the waist.


The fastening mechanisms are supplied by incoming web 62, slit and spread by units 64 and applied via slip cut unit 324 onto the non-woven 318.


Neat, the non-woven webs 318 carrying fastening mechanisms 322 are folded over, creating a folded web 318 and folded-over fastening mechanisms. This causes the combination of the non-woven web 318 and the fastening mechanisms to be narrower than the discrete non-woven web portions. It is noted that the folded fastening mechanisms of web portions 318a and 318b will have opposing fastening mechanisms 322′ as they will become the right and left hip waist fastening mechanisms, respectively, once placed about the waist of a user (shown later in the process).


Referring now to FIG. 6, the back ear final construction is shown, a cross sectional view of the designated view of FIG. 2. This process is disclosed, e.g., in FIGS. 20-22 of simultaneously pending U.S. patent application Ser. No. 12/925,033, incorporated herein by reference.


The back ear final construction receives where indicated the partially completed extension panel assembly where indicated, which first pass through additional folding units 342. A back ear web 28 is provided upon which to attach the previously formed extension panel. This too can be slit and spread into discrete stretch laminate web portions.


Next, the non-woven web portions, including their respective fastening mechanisms, are slip/cut and bonded to stretch laminate web portions in a staggered relationship, forming the side panel assemblies in four different lanes. The non-woven web portions can be bonded to the stretch laminate web portions in any fashion, such as by ultrasonic bonding.


The stretch laminate portions can also be folded if desired, or the stretch laminate portions in combination with the non-woven web portions can all be folded together and again, by plows 52. The back ear/extension panel construction assembly is then conveyed to the floor level NOSE unit 32, ultimately for placement with the other components and the boundary compression unit 29.


Referring now to FIG. 8, a perspective view of a mezzanine ((or material unwinding) level 480 and floor (or main processing) level 482 of a web processing system used to create a pant-type product of the present invention is shown. The material unwinding level 480 is a human-free zone, intended for no human occupation during machine operation in areas accessible by a gantry crane 500.


On the floor level, a series of ground floor material access doors 464 are provided. These access doors 464 are each preferably dedicated to a single material. For example in a preferred embodiment, door address 416 is for transporting inner non-woven material from the ground level to the mezzanine level. Address 414 is for outer non-woven, address 412 for non-woven backsheet material, address 410 for non-woven topsheet material, address 408 for poly backsheet material, address 406 for acquisition layer material, and address 404 for tissue material. A vertical reciprocating conveyor (VRC) operates behind each access door 464 to lift a full rack of waiting new material rolls (FIG. 10) supplied into the addresses in magazines to the mezzanine level. Alternatively, descending robots can be used in place of the VRCs.


Preferably, when an access door 464 is open, a corresponding access door on the mezzanine level is closed, and vice versa.


On the material unwinding level 480, unmanned, auto-fed material unwinding systems are provided corresponding to the materials supplied to addresses above. In a preferred layout, turret unwind 424 is for a tissue unwind, corresponding to address 404 on the ground and mezzanine levels (turret unwind detail provided in FIG. 13). An acquisition layer unwind station 426 (corresponding to station 406) is provided, as are turret unwinds for poly backsheet unwind 428 (corresponding to station 408), non-woven topsheet layer 430 (corresponding to station 410), non-woven backsheet layer 422 (corresponding to station 412), outer chassis non-woven unwind 434 (corresponding to station 414), and inner chassis nonwoven unwind 436 (corresponding to station 416).


As material is unwound from the unwinds 424, 426, 428, 430, 432, 434, and 436, material is fed through material supply slots 462 in the floor of the mezzanine level, downward to the ground level 482. There, the materials are fed into and used by the system, as shown in FIGS. 1A and 1B, 2, and 4-7.


As a connected material roll feeds material from the mezzanine level through an opening 462 in the floor of the mezzanine level to the floor level, the material roll will eventually expire. Referring now to FIG. 13, a side view of a turret unwind and splicing system for carrying expiring material rolls and waiting news material rolls is shown.


Turret unwinds are described for exemplary purposes in U.S. Pat. Nos. 6,701,992, 3,655,143, 3,306,546, 3,460,775, which are incorporated herein by reference.


Still referring to FIG. 13, when the system detects that one of the expiring material rolls 602′ in the top position on unwinds 424, 426, 428, 430, 432, 434, and 436 is set to expire, a splice sequence is initiated between the expiring material roll 602′ and the waiting new material roll 602. In a preferable embodiment, a running or expiring roll 602′ is at a top position of the turret unwind of FIG. 13, with a waiting new material roll 602 placed by the gantry crane system located at a bottom position of the turret unwind on shaft 616. When it is detected that the running roll is coming close to expiration, the waiting new material roll 602 is driven up to a surface speed of expiring roll. A hot wire splicer arm 624 moves in adjacent to the walling new material roll, brings in the running web into close proximity to the waiting new material roll 602. At the moment of splice, the hot wire arm 624 bumps the expiring web 602′ to the waiting new material roll, and at the precise moment of contact, a splice tape is introduced to splice the waiting new material roll 602 and the expiring roll 602′ together, and at the same time as the bump, the hot wire arm 624 severs the running web with a hot wire. In this manner, the expiring web is instantly taped to the leading edge of the new roll.


Next, the rotating turret arm 622 rotates clockwise to place the waiting new material roll 602 into the expiring roll position 602′. A kicker ring 620 next bumps the remainder of the previously expiring roll 602′ off of shaft 616 for discard.


Next, the system demands a replacement waiting new material roll to place upon the shaft 616 at the bottom position of the turret unwind.


At the mezzanine level addresses 404, 406, 408, 410, 412, 414, and 416, magazines of waiting new material roll (FIG. 10) are received from the ground level, and wait for demand. The gantry crane 500 is summoned to pick up a material roll from a cart (FIG. 10) stationed at the dedicated VRC stations, and transport the full material roll to a turret unwind system dedicated to that particular material. The system detects which waiting new material roll requires replacement after its predecessor has been spliced and turned into an expiring roll, and then travels the crane/robot combination 500/502 to the appropriate mezzanine level address 404, 406, 408, 410, 412, 414, and 416 and obtains a replacement wailing new material roll.


The gantry robot is programmed to discard the remainder of the expiring roll into a waste chute (not shown) on the mezzanine level, and then to obtain a replacement waiting new material roll from the dedicated VRC from which the appropriate material is located on the cart. When the system detects that all rolls of waiting new material roll are used from a supply cart (FIG. 10), the VRC containing the empty cart is automatically transported to the floor level for replacement of all of the waiting new material rolls.


During machine operation, those portions of the mezzanine level accessible by a gantry crane system 500 are designed to operate without human occupation. This not only provides an added measure of safety, but an added measure of automation for the machine. A gantry crane system 500 operates robotically on an overhead system that allows movement across a horizontal plane. The present invention uses the gantry crane 500 for horizontal movement, and a robotic arm 502 capable of vertical movement and rotation, and equipped with a camera operated location system (see FIGS. 11 and 12) to detect the position of the core of waiting new material rolls for pickup, and to deposit precisely a core of a replacement waiting new material roll onto arms of turret unwinds for use in the system.


Gantry robots 500 are preferred for this pick and place applications because of positioning accuracy, aided by vision systems. Positional programming is done in reference to an X, Y, Z coordinate system.


Although humans can access the mezzanine level 480 by stairs 460 for equipment service, no human occupation during operation is intended. Humans can also access the mezzanine level 480 behind access door 452, this portion of the mezzanine level 480 is physically separated from the human-free zone of the other portions of the mezzanine level 480. Access door 452 is used to access physically divided power station and control station 450. This station is for control panels, ultrasonic bonder control, and drive controls.


Also evident on FIG. 8 are pulp rolls 402 supplying pump mill 400 at the beginning of the processing on the main floor, and a final knife unit 466, an car folding and horizontal pad turner 468, and lastly a cross-folder 470 which discharges the diapers to product packaging downstream.


This unique machine layout has achieved significant machine length decrease. Exemplary prior art diaper making machines for a pant process are approximately 44 meters, and his new machine layout can be achieved in less than 34 meters, a 23% shorter overall machine length from the beginning of the pulp unwind to the end of cross-folder 470. A range of 20-35% decrease in machine length can be achieved.


Referring now to FIG. 9, a perspective view of an alternate mezzanine and floor level of a web processing system of the present invention used to create a brief-type product is shown.


In this embodiment, carts of materials are staged initially on the ground floor. In an exemplary embodiment, loading carts are position at stations 510 (upper tissue), 512 (lower tissue), 514 (poly backsheet), 516 (non-woven backsheet), 518 (back ear), 520 (acquisition layer), 521 (front ear), 522 (non-woven topsheet), 524 (extension panel), and 526 (cuff). These materials are transported to and placed behind VRC door 464 and transported by VRC 550 to the mezzanine level 480. A similar demand/replacement system is employed in the brief-type product floor layout as in the pant-type product layout described in FIG. 8. Namely, expiring materials are fed through slots in the floor of the mezzanine level, a splicing sequence is initiated, and a material replacement sequence is initiated, whereby a material roll is acquired by crane/robot combination 500/502 and transported to and placed on the turret unwind systems.


In the pictured embodiment, a lower tissue turret unwind 532 is provided as are turret unwind stations for upper tissue (530), poly backsheet (534), non-woven backsheet (536), back ear (538), acquisition layer (540), front ear (541), inner top-sheet non-woven extension panel (544), cuff (546). These materials are all fed downward to be used in a brief-type diaper.


This unique machine layout has achieved significant machine length decrease. Exemplary prior art diaper making machines for a brief process are approximately 41 meters, and this new machine layout can be achieved in less than 29 meters, a 30% shorter overall machine length from the beginning of the pulp unwind to the end of cross-folder 470. A range of 20-35% decrease in machine length can be achieved. A power station and control station 592 is provided. Additionally, certain components can be fed at the ground level, for instance an offline stretch material unwind 590.


Referring now to FIG. 10, a perspective view of a loaded material roll supply cart 600 or magazine of the present invention is shown. A material staging magazine 600 is provided to carry waiting new material rolls 602 from a ground level to a mezzanine level 480, the mezzanine level 480 carrying a series of turret unwind systems for dispensing materials from the mezzanine level back to the ground level. The material staging magazines 600 contain a series of individual roll stabilization features 604 which prevent waiting new material rolls 604 from tipping during material transport and unloading. The cart 600 is filled on the ground level, and rolled into the appropriate ground level addresses 404, 406, 408, 410, 412, 414, and 416, for transport to mezzanine level addresses 404, 406, 408, 410, 412, 414, and 416. The rolls are then summoned as described above.


Referring now to FIG. 11, a perspective view of a roll transfer device 700 comprising a gantry crane 500 system carrying a material roll 602 used in the present invention is shown in a retracted position. A camera 612 is used to detect the position of a core of a waiting new material roll during pickup of a waiting new material roll by the robot off of a cart 600, and also to detect the position of the shaft 616 on the turret unwind systems (FIG. 13) upon which to push the material roll 602 with roll bumper 610. Lasers, radar, or ultrasonics can also be used to measure distance and position, either in addition to or instead of camera 612.



FIG. 12 is a perspective view of a gantry crane 500 carrying a material roll 602 used in the present invention, the robotic arm 502 shown in an extended position.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Claims
  • 1. A multi-level machine for manufacturing disposable products, the machine comprising: a first floor surface carrying machinery for manufacturing a disposable product;a second floor surface vertically spaced apart from said first floor surface, said second floor surface carrying a plurality of auto-fed material unwinding systems;said auto-fed material unwinding systems comprising a plurality of turret systems, said turret systems carrying an expiring roll of material and a standby roll of material positioned at a standby location and selectively coupled to said expiring roll of material;said auto-fed material unwinding systems feeding materials from said expiring roll of material vertically through openings in the second floor to said machinery for manufacturing a disposable product on the first floor surfacea plurality of waiting new material rolls staged at material addresses corresponding to at least one of said turret systems;a demand and replacement system initiating a material replacement sequence of acquiring and transporting one of said waiting new material rolls from one of said material addresses to said standby location.
  • 2. A multi-level machine for manufacturing disposable products, the machine comprising: a first floor surface carrying machinery for manufacturing a disposable product comprising a plurality of infeeds of material components;a second floor surface vertically spaced apart from said first floor surface, said second floor surface carrying a plurality of material supply rolls carried by a plurality of turret systems;said plurality of material supply rolls positioned vertically proximally to said plurality of infeeds of material components;said plurality of turret systems feeding said plurality of material supply rolls to said machinery for manufacturing a disposable product on the first floor surface vertically through openings in the second floor surface.
RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 13/404,905, filed 24 Feb. 2012, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/446,537, filed 25 Feb. 2011.

US Referenced Citations (581)
Number Name Date Kind
135145 Murphy Jan 1873 A
293353 Purvis Feb 1884 A
312257 Cotton et al. Feb 1885 A
410123 Stilwell Aug 1889 A
432742 Stanley Jul 1890 A
643821 Howlett Feb 1900 A
1393524 Grupe Oct 1921 A
1431315 Le Moine Oct 1922 A
1605842 Jones Nov 1926 A
1610713 Scott Dec 1926 A
1613963 Scott Jan 1927 A
1686595 Belluche Oct 1928 A
1732740 Cline Oct 1929 A
1757935 Maas May 1930 A
1780469 Dinsmoor Nov 1930 A
1957651 Joa May 1934 A
2009857 Potdevin Jul 1935 A
2047769 Cullen Jul 1936 A
2054832 Potdevin Sep 1936 A
2097998 Dickhaut Nov 1937 A
2117432 Linscott May 1938 A
2128746 Joa Aug 1938 A
2131808 Joa Oct 1938 A
2164408 Joa Jul 1939 A
2167179 Joa Jul 1939 A
2171741 Cohn et al. Sep 1939 A
2213431 Joa Sep 1940 A
2254290 Joa Sep 1941 A
2254291 Joa Sep 1941 A
2282477 Joa May 1942 A
2286096 Joa Jun 1942 A
2296931 Joa Sep 1942 A
2304571 Joa Dec 1942 A
2324930 Joa Jul 1943 A
2345937 Joa Apr 1944 A
2466240 Joa Apr 1949 A
2481929 Joa Sep 1949 A
2510229 Joa Jun 1950 A
2540844 Strauss Feb 1951 A
2584002 Elser et al. Jan 1952 A
2591359 Joa Apr 1952 A
2618816 Joa Nov 1952 A
2627859 Hargrave Feb 1953 A
2671495 Iredell Mar 1954 A
2695025 Andrews Nov 1954 A
2702406 Reed Feb 1955 A
2721554 Joa Oct 1955 A
2730144 Joa Jan 1956 A
2769600 Nystrand Nov 1956 A
2772611 Heywood Dec 1956 A
2780253 Joa Feb 1957 A
2785609 Billeb Mar 1957 A
2788786 Dexter Apr 1957 A
2811905 Kennedy, Jr. Nov 1957 A
2828745 Deutz Apr 1958 A
2839059 Joa Jun 1958 A
2842169 Joa Jul 1958 A
2851934 Heywood Sep 1958 A
2875724 Joa Mar 1959 A
2890700 Lonberg-Holm Jun 1959 A
2913862 Sabee Nov 1959 A
2918105 Harris Dec 1959 A
2939461 Joa Jun 1960 A
2939646 Stone Jun 1960 A
2960143 Joa Nov 1960 A
2990081 De Neui et al. Jun 1961 A
2991739 Joa Jul 1961 A
3016207 Comstock, III Jan 1962 A
3016582 Joa Jan 1962 A
3017795 Joa Jan 1962 A
3020687 Joa Feb 1962 A
3021135 Joa Feb 1962 A
3024957 Pinto Mar 1962 A
3053427 Wasserman Sep 1962 A
3054516 Joa Sep 1962 A
3069982 Heywood et al. Dec 1962 A
3086253 Joa Apr 1963 A
3087689 Heim Apr 1963 A
3089494 Schwartz May 1963 A
3091408 Schoeneman May 1963 A
3114994 Joa Dec 1963 A
3122293 Joa Feb 1964 A
3128206 Dungler Apr 1964 A
3203419 Joa Aug 1965 A
3230955 Joa Jan 1966 A
3268954 Joa Aug 1966 A
3289254 Joa Dec 1966 A
3289552 Corazzo Dec 1966 A
3291131 Joa Dec 1966 A
3301114 Joa Jan 1967 A
3306546 Ryan Feb 1967 A
3318608 Smrekar May 1967 A
3322589 Joa May 1967 A
3336847 Johnson Aug 1967 A
3342184 Joa Sep 1967 A
3356092 Joa Dec 1967 A
3360103 Joa Dec 1967 A
3391777 Joa Jul 1968 A
3454442 Heller, Jr. Jul 1969 A
3460775 Bassett Aug 1969 A
3463413 Smith Aug 1969 A
3470848 Dreher Oct 1969 A
3484275 Lewicki, Jr. Dec 1969 A
3502322 Cran Mar 1970 A
3521639 Joa Jul 1970 A
3526563 Schott, Jr. Sep 1970 A
3538551 Joa Nov 1970 A
3540641 Besnyo Nov 1970 A
3575170 Clark Apr 1971 A
3607578 Berg et al. Sep 1971 A
3635462 Joa Jan 1972 A
3655143 Wallis Apr 1972 A
3656741 Macke et al. Apr 1972 A
3666611 Joa May 1972 A
3673021 Joa Jun 1972 A
3685818 Burger et al. Aug 1972 A
3728191 Wierzba et al. Apr 1973 A
3740296 McDonald Jun 1973 A
3751224 Wackerle Aug 1973 A
3758102 Munn et al. Sep 1973 A
3772120 Radzins Nov 1973 A
3776798 Milano Dec 1973 A
3783782 Hardt Jan 1974 A
3796360 Alexeff Mar 1974 A
3796388 Davis Mar 1974 A
3810344 Evans et al. May 1974 A
3811987 Wilkinson et al. May 1974 A
3816210 Aoko et al. Jun 1974 A
3836089 Riemersma Sep 1974 A
3847710 Blomqvist et al. Nov 1974 A
3854917 McKinney et al. Dec 1974 A
3883389 Schott, Jr. May 1975 A
3888400 Wiig Jun 1975 A
3892012 Keferstein Jul 1975 A
3901238 Geller et al. Aug 1975 A
3903768 Amberg et al. Sep 1975 A
3904147 Taitel et al. Sep 1975 A
3918968 Coast Nov 1975 A
3960646 Wiedamann Jun 1976 A
3971524 Nudinger et al. Jul 1976 A
3988194 Babcock et al. Oct 1976 A
3991994 Farish Nov 1976 A
4002005 Mueller et al. Jan 1977 A
4003298 Schott, Jr. Jan 1977 A
4009814 Singh Mar 1977 A
4009815 Ericson et al. Mar 1977 A
4053150 Lane Oct 1977 A
4056919 Hirsch Nov 1977 A
4081301 Buell Mar 1978 A
4082599 Kozima Apr 1978 A
4090516 Schaar May 1978 A
4094319 Joa Jun 1978 A
4103595 Corse Aug 1978 A
4106974 Hirsch Aug 1978 A
4108584 Radzins et al. Aug 1978 A
4136535 Audas Jan 1979 A
4141193 Joa Feb 1979 A
4141509 Radzins Feb 1979 A
4142626 Bradley Mar 1979 A
4157934 Ryan et al. Jun 1979 A
4165666 Johnson et al. Aug 1979 A
4168776 Hoeboer Sep 1979 A
4171239 Hirsch et al. Oct 1979 A
4205679 Repke et al. Jun 1980 A
4208230 Magarian Jun 1980 A
4213356 Armitage Jul 1980 A
4215827 Roberts et al. Aug 1980 A
4222533 Pongracz Sep 1980 A
4223822 Clitheroe Sep 1980 A
4231129 Winch Nov 1980 A
4236955 Prittie Dec 1980 A
4275510 George Jun 1981 A
4284454 Joa Aug 1981 A
4307800 Joa Dec 1981 A
4316756 Wilson Feb 1982 A
4325519 McLean Apr 1982 A
4331418 Klebe May 1982 A
4342206 Rommel Aug 1982 A
4364787 Radzins Dec 1982 A
4374576 Ryan Feb 1983 A
4379008 Gross et al. Apr 1983 A
4394898 Campbell Jul 1983 A
4411721 Wishart Oct 1983 A
4452597 Achelpohl Jun 1984 A
4492608 Hirsch et al. Jan 1985 A
4501098 Gregory Feb 1985 A
4508528 Hirsch et al. Apr 1985 A
4522853 Szonn et al. Jun 1985 A
4528798 Meier Jul 1985 A
4543152 Nozaka Sep 1985 A
4544109 Andreasson Oct 1985 A
4551191 Kock et al. Nov 1985 A
4586199 Birring May 1986 A
4587790 Muller May 1986 A
4589945 Polit May 1986 A
4603800 Focke et al. Aug 1986 A
4608115 Schroth et al. Aug 1986 A
4610681 Strohbeen et al. Sep 1986 A
4610682 Kopp Sep 1986 A
4614076 Rathemacher Sep 1986 A
4619357 Radzins et al. Oct 1986 A
4634482 Lammers Jan 1987 A
4641381 Heran et al. Feb 1987 A
4642150 Stemmler Feb 1987 A
4642839 Urban Feb 1987 A
4650530 Mahoney et al. Mar 1987 A
4663220 Wisneski et al. May 1987 A
4672705 Bors et al. Jun 1987 A
4675016 Meuli et al. Jun 1987 A
4675062 Instance Jun 1987 A
4675068 Lundmark Jun 1987 A
4686136 Homonoff et al. Aug 1987 A
4687153 McNeil Aug 1987 A
4693056 Raszewski Sep 1987 A
4701239 Craig Oct 1987 A
4707970 Labombarde et al. Nov 1987 A
4720415 Vander Wielen et al. Jan 1988 A
4723698 Schoonderbeek Feb 1988 A
4726725 Baker Feb 1988 A
4726874 Van Vliet Feb 1988 A
4726876 Tomsovic, Jr. Feb 1988 A
4743241 Igaue et al. May 1988 A
4751997 Hirsch Jun 1988 A
4753429 Irvine et al. Jun 1988 A
4756141 Hirsch et al. Jul 1988 A
4764325 Angstadt Aug 1988 A
4765780 Angstadt Aug 1988 A
4776920 Ryan Oct 1988 A
4777513 Nelson Oct 1988 A
4782647 Williams et al. Nov 1988 A
4785986 Daane et al. Nov 1988 A
4795451 Buckley Jan 1989 A
4795510 Wittrock et al. Jan 1989 A
4798353 Peugh Jan 1989 A
4801345 Dussaud et al. Jan 1989 A
4802570 Hirsch et al. Feb 1989 A
4840609 Jones et al. Jun 1989 A
4845964 Bors et al. Jul 1989 A
4864802 D'Angelo Sep 1989 A
4873813 Labombarde et al. Oct 1989 A
4880102 Indrebo Nov 1989 A
4888231 Angstadt Dec 1989 A
4892536 Des Marais et al. Jan 1990 A
4904440 Angstadt Feb 1990 A
4908175 Angstadt Mar 1990 A
4909019 Delacretaz et al. Mar 1990 A
4909697 Bernard et al. Mar 1990 A
4915767 Rajala et al. Apr 1990 A
4917746 Kons Apr 1990 A
4925520 Beaudoin et al. May 1990 A
4927322 Schweizer et al. May 1990 A
4927486 Fattal et al. May 1990 A
4927582 Bryson May 1990 A
4937887 Schreiner Jul 1990 A
4947536 Suzuki Aug 1990 A
4963072 Miley et al. Oct 1990 A
4987940 Straub et al. Jan 1991 A
4994010 Doderer-Winkler Feb 1991 A
5000806 Merkatoris et al. Mar 1991 A
5007522 Focke et al. Apr 1991 A
5021111 Swenson Jun 1991 A
5025910 Lasure et al. Jun 1991 A
5045039 Bay Sep 1991 A
5062597 Martin et al. Nov 1991 A
5064179 Martin Nov 1991 A
5064492 Friesch Nov 1991 A
5080741 Nomura et al. Jan 1992 A
5094658 Smithe et al. Mar 1992 A
5096532 Neuwirth et al. Mar 1992 A
5108017 Adamski, Jr. et al. Apr 1992 A
5109767 Nyfeler et al. May 1992 A
5110403 Ehlert May 1992 A
5127981 Straub et al. Jul 1992 A
5131525 Musschoot Jul 1992 A
5131901 Moll Jul 1992 A
5133511 Mack Jul 1992 A
5147487 Nomura et al. Sep 1992 A
5163594 Meyer Nov 1992 A
5171239 Igaue et al. Dec 1992 A
5176244 Radzins et al. Jan 1993 A
5183252 Wolber et al. Feb 1993 A
5188627 Igaue et al. Feb 1993 A
5190234 Ezekiel Mar 1993 A
5195684 Radzins Mar 1993 A
5203043 Riedel Apr 1993 A
5212002 Madrzak et al. May 1993 A
5213645 Nomura et al. May 1993 A
5219127 Boldrini Jun 1993 A
5222422 Benner, Jr. et al. Jun 1993 A
5223069 Tokuno et al. Jun 1993 A
5226992 Morman Jul 1993 A
5246433 Hasse et al. Sep 1993 A
5252228 Stokes Oct 1993 A
5267933 Precoma Dec 1993 A
5273228 Yoshida Dec 1993 A
5275676 Rooyakkers et al. Jan 1994 A
5308345 Herrin May 1994 A
5328438 Crowley Jul 1994 A
5340424 Matsushita Aug 1994 A
5368893 Sommer et al. Nov 1994 A
5383988 Herrmann Jan 1995 A
5389173 Merkotoris et al. Feb 1995 A
5393360 Bridges et al. Feb 1995 A
5407507 Ball Apr 1995 A
5407513 Hayden et al. Apr 1995 A
5415649 Watanabe et al. May 1995 A
5421924 Ziegelhoffer et al. Jun 1995 A
5424025 Hanschen et al. Jun 1995 A
5429576 Doderer-Winkler Jul 1995 A
5435802 Kober Jul 1995 A
5449353 Watanabe et al. Sep 1995 A
5464401 Hasse et al. Nov 1995 A
5472153 Crowley et al. Dec 1995 A
5486253 Otruba Jan 1996 A
5494622 Heath et al. Feb 1996 A
5500075 Herrmann Mar 1996 A
5513936 Dean May 1996 A
5516392 Bridges et al. May 1996 A
5518566 Bridges et al. May 1996 A
5525175 Blenke et al. Jun 1996 A
5531850 Hermann Jul 1996 A
5540647 Weiermann et al. Jul 1996 A
5545275 Herrin et al. Aug 1996 A
5545285 Johnson Aug 1996 A
5552013 Ehlert et al. Sep 1996 A
5556246 Broshi Sep 1996 A
5556360 Kober et al. Sep 1996 A
5556504 Rajala et al. Sep 1996 A
5560793 Ruscher et al. Oct 1996 A
3288037 Burnett Nov 1996 A
5575187 Dieterlen Nov 1996 A
5582497 Noguchi Dec 1996 A
5586964 Chase Dec 1996 A
5602747 Rajala Feb 1997 A
5603794 Thomas Feb 1997 A
5624420 Bridges et al. Apr 1997 A
5624428 Sauer Apr 1997 A
5628738 Suekane May 1997 A
5634917 Fujioka et al. Jun 1997 A
5643165 Klekamp Jul 1997 A
5643396 Rajala et al. Jul 1997 A
5645543 Nomura et al. Jul 1997 A
5659229 Rajala Aug 1997 A
5660657 Rajala et al. Aug 1997 A
5660665 Jalonen Aug 1997 A
5683376 Kato et al. Nov 1997 A
5683531 Roessler et al. Nov 1997 A
RE35687 Igaue et al. Dec 1997 E
5693165 Schmitz Dec 1997 A
5699653 Hartman et al. Dec 1997 A
5705013 Nease Jan 1998 A
5707470 Rajala et al. Jan 1998 A
5711832 Glaug et al. Jan 1998 A
5725518 Coates Mar 1998 A
5725714 Fujioka Mar 1998 A
5743994 Roessler et al. Apr 1998 A
5745922 Rajala et al. May 1998 A
5746869 Hayden et al. May 1998 A
5749989 Linman et al. May 1998 A
5766389 Brandon et al. Jun 1998 A
5788797 Herrin et al. Aug 1998 A
5817199 Brennecke et al. Oct 1998 A
5829164 Kotischke Nov 1998 A
5836931 Toyoda et al. Nov 1998 A
5855037 Wieloch Jan 1999 A
5858012 Yamaki et al. Jan 1999 A
5865393 Kreft et al. Feb 1999 A
5868727 Barr et al. Feb 1999 A
5868899 Gundersen Feb 1999 A
5876027 Fukui et al. Mar 1999 A
5876792 Caldwell Mar 1999 A
5879500 Herrin et al. Mar 1999 A
5881964 Fujikura Mar 1999 A
58819674 Fujikura Mar 1999
5897291 Gerwe et al. Apr 1999 A
5902431 Wilkinson et al. May 1999 A
5932039 Popp et al. Aug 1999 A
5938193 Bluemle et al. Aug 1999 A
5964390 Borresen et al. Oct 1999 A
5964970 Woolwine et al. Oct 1999 A
6022443 Rajala et al. Feb 2000 A
6036805 McNichols Mar 2000 A
6043836 Kerr et al. Mar 2000 A
6050517 Dobrescu et al. Apr 2000 A
6062794 Shiba May 2000 A
6074110 Verlinden et al. Jun 2000 A
6076442 Arterburn et al. Jun 2000 A
6098249 Toney et al. Aug 2000 A
6123792 Samida et al. Sep 2000 A
6171432 Brisebois Jan 2001 B1
6183576 Couillard et al. Feb 2001 B1
6195850 Melbye Mar 2001 B1
6210386 Inoue Apr 2001 B1
6212859 Bielik, Jr. et al. Apr 2001 B1
6214147 Mortellite et al. Apr 2001 B1
6216975 Schaub Apr 2001 B1
6217274 Svyatsky et al. Apr 2001 B1
6250048 Linkiewicz Jun 2001 B1
6264133 Herrmann Jul 2001 B1
6264784 Menard et al. Jul 2001 B1
6276421 Valenti et al. Aug 2001 B1
6276587 Borresen et al. Aug 2001 B1
6284081 Vogt et al. Sep 2001 B1
6287409 Stephany Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6309336 Muessig et al. Oct 2001 B1
6312420 Sasaki et al. Nov 2001 B1
6314333 Rajala et al. Nov 2001 B1
6315022 Herrin et al. Nov 2001 B1
6319347 Rajala Nov 2001 B1
6336921 Kato et al. Jan 2002 B1
6358350 Glaug et al. Mar 2002 B1
6369291 Uchimoto et al. Apr 2002 B1
6375769 Quereshi et al. Apr 2002 B1
6391013 Suzuki et al. May 2002 B1
6394384 Alday May 2002 B1
6416697 Venturino et al. Jul 2002 B1
6431038 Couturier Aug 2002 B2
6440246 Vogt et al. Aug 2002 B1
6443389 Palone Sep 2002 B1
6446795 Allen et al. Sep 2002 B1
6451145 Forbes Sep 2002 B1
6473669 Rajala et al. Oct 2002 B2
6475325 Parrish et al. Nov 2002 B1
6478786 Glaug et al. Nov 2002 B1
6482278 McCabe et al. Nov 2002 B1
6494244 Parrish et al. Dec 2002 B2
6514233 Glaug Feb 2003 B1
6521320 McCabe et al. Feb 2003 B2
6523595 Milner et al. Feb 2003 B1
6524423 Hilt et al. Feb 2003 B1
6533879 Quereshi et al. Mar 2003 B2
6540857 Coenen et al. Apr 2003 B1
6547909 Butterworth Apr 2003 B1
6551228 Richards Apr 2003 B1
6551430 Glaug et al. Apr 2003 B1
6554815 Umebayashi Apr 2003 B1
6569275 Popp et al. May 2003 B1
6572520 Blumle Jun 2003 B2
6581517 Becker et al. Jun 2003 B1
6585841 Popp et al. Jul 2003 B1
6589149 VanEperen et al. Jul 2003 B1
6596107 Stopher Jul 2003 B2
6596108 McCabe Jul 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605173 Glaug et al. Aug 2003 B2
6637583 Anderson Oct 2003 B1
6648122 Hirsch et al. Nov 2003 B1
6649010 Parrish et al. Nov 2003 B2
6656309 Parker et al. Dec 2003 B1
6659150 Perkins et al. Dec 2003 B1
6659991 Suckane Dec 2003 B2
6675552 Kunz et al. Jan 2004 B2
6684925 Nagate et al. Feb 2004 B2
6685130 Stauber et al. Feb 2004 B2
6701992 Pasquale Mar 2004 B1
6722494 Nakakado Apr 2004 B2
6730189 Franzmann May 2004 B1
6743324 Hargett et al. Jun 2004 B2
6750466 Song Jun 2004 B2
6758109 Nakakado Jul 2004 B2
6766817 da Silva Jul 2004 B2
6808582 Popp et al. Oct 2004 B2
D497991 Otsubo et al. Nov 2004 S
6814217 Blumenthal et al. Nov 2004 B2
6820671 Calvert Nov 2004 B2
6837840 Yonekawa et al. Jan 2005 B2
6840616 Summers Jan 2005 B2
6875202 Kumasaka et al. Apr 2005 B2
6893528 Middelstadt et al. May 2005 B2
6913718 Ducker Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6852186 Matsuda et al. Dec 2005 B1
6976521 Mlinar Dec 2005 B2
6978486 Zhou et al. Dec 2005 B2
6978964 Beccari Dec 2005 B2
7017820 Brunner Mar 2006 B1
7045031 Popp et al. May 2006 B2
7066586 da Silva Jun 2006 B2
7077393 Ishida Jul 2006 B2
7130710 Shechtman Oct 2006 B2
7172666 Groves et al. Feb 2007 B2
7195684 Satoh Mar 2007 B2
7201345 Werner Apr 2007 B2
7214174 Allen et al. May 2007 B2
7214287 Shiomi May 2007 B2
7247219 O'Dowd Jul 2007 B2
7303708 Andrews et al. Dec 2007 B2
7350740 Benvenuti Apr 2008 B2
7380213 Pesin May 2008 B2
7398870 McCabe Jul 2008 B2
7441579 Adami Oct 2008 B2
7449084 Nakakado Nov 2008 B2
7452436 Andrews Nov 2008 B2
7533709 Meyer May 2009 B2
7537215 Beaudoin et al. May 2009 B2
7587966 Nakakado et al. Sep 2009 B2
7618513 Meyer Nov 2009 B2
7638014 Coose et al. Dec 2009 B2
7640962 Meyer et al. Jan 2010 B2
7703599 Meyer Apr 2010 B2
7708849 McCabe May 2010 B2
7770712 McCabe Aug 2010 B2
7771407 Umebayashi Aug 2010 B2
7780052 McCabe Aug 2010 B2
7811403 Andrews Oct 2010 B2
7861756 Jenquin et al. Jan 2011 B2
7871400 Sablone et al. Jan 2011 B2
7909956 Coose et al. Mar 2011 B2
7975584 McCabe Jul 2011 B2
7987964 McCabe Aug 2011 B2
8007484 McCabe et al. Aug 2011 B2
8007623 Andrews Aug 2011 B2
8011493 Giuliani et al. Sep 2011 B2
8016972 Andrews et al. Sep 2011 B2
8261802 Aono Sep 2012 B2
9566193 Andrews Feb 2017 B2
20010012813 Bluemle Aug 2001 A1
20010013561 Wild Aug 2001 A1
20010017181 Otruba et al. Aug 2001 A1
20020046802 Tachibana et al. Apr 2002 A1
20020059013 Rajala et al. May 2002 A1
20020096241 Instance Jul 2002 A1
20020125105 Nakakado Sep 2002 A1
20020162776 Hergeth Nov 2002 A1
20030000620 Herrin et al. Jan 2003 A1
20030015209 Gingras et al. Jan 2003 A1
20030051802 Hargett et al. Mar 2003 A1
20030052148 Rajala et al. Mar 2003 A1
20030066585 McCabe Apr 2003 A1
20030083638 Molee May 2003 A1
20030084984 Glaug et al. May 2003 A1
20030089447 Molee et al. May 2003 A1
20030121614 Tabor et al. Jul 2003 A1
20030135189 Umebayashi Jul 2003 A1
20040007328 Popp et al. Jan 2004 A1
20040016500 Tachibana et al. Jan 2004 A1
20040044325 Corneliusson Mar 2004 A1
20040087425 Ng et al. May 2004 A1
20040112517 Groves et al. Jun 2004 A1
20040164482 Edinger Aug 2004 A1
20040182497 Lowrey Sep 2004 A1
20040228709 Ueda Nov 2004 A1
20050000628 Norrby Jan 2005 A1
20050022476 Hamer et al. Feb 2005 A1
20050077415 Hikita Apr 2005 A1
20050077416 Heikaus Apr 2005 A1
20050077418 Werner Apr 2005 A1
20050139713 Weber et al. Jun 2005 A1
20050196538 Sommer et al. Sep 2005 A1
20050230056 Meyer et al. Oct 2005 A1
20050230449 Meyer et al. Oct 2005 A1
20050233881 Meyer Oct 2005 A1
20050234412 Andrews et al. Oct 2005 A1
20050257881 Coose et al. Nov 2005 A1
20050275148 Beaudoin et al. Dec 2005 A1
20060021300 Tada et al. Feb 2006 A1
20060099055 Stefani May 2006 A1
20060137298 Oshita et al. Jun 2006 A1
20060222479 Shiwaku Oct 2006 A1
20060224137 McCabe et al. Oct 2006 A1
20060265867 Schaap Nov 2006 A1
20070044895 Nawano Mar 2007 A1
20070074953 McCabe Apr 2007 A1
20070131343 Nordang Jun 2007 A1
20070131817 Fromm et al. Jun 2007 A1
20070140817 Hansl Jun 2007 A1
20070204950 Tonohara Sep 2007 A1
20080223537 Wiedmann Sep 2008 A1
20090020211 Andrews et al. Jan 2009 A1
20100193155 Nakatani Jan 2010 A1
20100078119 Yamamoto Apr 2010 A1
20100078120 Otsubo Apr 2010 A1
20100078127 Yamamoto Apr 2010 A1
20100193138 Eckstein Aug 2010 A1
20110033270 Toncelli Feb 2011 A1
20110041997 Benner Feb 2011 A1
20120159753 Andrews Jun 2012 A1
20130056576 Andrews Mar 2013 A1
20160060060 Macura Mar 2016 A1
20170101281 Follen Apr 2017 A1
Foreign Referenced Citations (101)
Number Date Country
1007854 Nov 1995 BE
1146129 May 1983 CA
1153345 Sep 1983 CA
1190078 Jul 1985 CA
1210744 Sep 1986 CA
1212132 Sep 1986 CA
1236056 May 1988 CA
1249102 Jan 1989 CA
1292201 Nov 1991 CA
1307244 Sep 1992 CA
1308015 Sep 1992 CA
1310342 Nov 1992 CA
2023816 Mar 1994 CA
2404154 Oct 2001 CA
2541194 Oct 2006 CA
2559517 Apr 2007 CA
2337700 Aug 2008 CA
2407867 Jun 2010 CA
60123502 Oct 2006 DE
60216550 Dec 2006 DE
102005048868 Apr 2007 DE
102006047280 Apr 2007 DE
0044206 Jan 1982 EP
0048011 Mar 1982 EP
0089106 Sep 1983 EP
0099732 Feb 1984 EP
0206208 Dec 1986 EP
0304140 Feb 1989 EP
0439897 Aug 1991 EP
0455231 Nov 1991 EP
510251 Oct 1992 EP
0652175 May 1995 EP
0811473 Dec 1997 EP
0901780 Mar 1999 EP
0990588 Apr 2000 EP
1132325 Sep 2001 EP
1199057 Apr 2002 EP
1272347 Jan 2003 EP
1366734 Dec 2003 EP
1571249 Sep 2005 EP
1619008 Jan 2006 EP
1707168 Oct 2006 EP
1726414 Nov 2006 EP
1302424 Dec 2006 EP
1801045 Jun 2007 EP
1941853 Jul 2008 EP
1994919 Nov 2008 EP
2233116 Sep 2010 EP
2238955 Oct 2010 EP
509706 Nov 1982 ES
520559 Dec 1983 ES
296211 Dec 1987 ES
200601373 Jul 2009 ES
2311349 Sep 2009 ES
2177355 Nov 1973 FR
2255961 Jul 1975 FR
1132325 Oct 2006 FR
2891811 Apr 2007 FR
191101501 Jan 1912 GB
439897 Dec 1935 GB
856389 Dec 1960 GB
941073 Nov 1963 GB
1096373 Dec 1967 GB
1126539 Sep 1968 GB
1346329 Feb 1974 GB
1412812 Nov 1975 GB
2045298 Oct 1980 GB
2115775 Sep 1983 GB
2288316 Oct 1995 GB
1374910 May 2010 IT
1374911 May 2010 IT
428364 Jan 1992 JP
542180 Feb 1993 JP
576566 Mar 1993 JP
626160 Feb 1994 JP
626161 Feb 1994 JP
6197925 Jul 1994 JP
9299398 Nov 1997 JP
10035621 Feb 1998 JP
10-277091 Oct 1998 JP
0602047 May 2007 JP
0601003-7 Jun 2007 SE
0601145-6 Oct 2009 SE
WO08155618 Dec 1988 WO
WO9403301 Feb 1994 WO
WO9732552 Sep 1997 WO
WO9747265 Dec 1997 WO
WO9747810 Dec 1997 WO
WO9821134 May 1998 WO
WO9907319 Feb 1999 WO
WO9913813 Mar 1999 WO
WO9932385 Jul 1999 WO
WO9965437 Dec 1999 WO
WO0143682 Jun 2001 WO
WO0172237 Oct 2001 WO
WO04007329 Jan 2004 WO
WO05075163 Aug 2005 WO
WO07029115 Mar 2007 WO
WO07039800 Apr 2007 WO
WO2007126347 Nov 2007 WO
WO08001209 Jan 2008 WO
Non-Patent Literature Citations (2)
Entry
“Reciprocating Mechanisms”, Franklin Jones, vol. 1, date unknown, 2 pages.
International Search Report dated Jul. 31, 2012 regarding EP Application No. 12157191.3, 5 pages.
Related Publications (1)
Number Date Country
20170151098 A1 Jun 2017 US
Provisional Applications (1)
Number Date Country
61446537 Feb 2011 US
Continuations (1)
Number Date Country
Parent 13404905 Feb 2012 US
Child 15429674 US