This invention relates generally to wet forming processes for making fluff pulp from soften wood pulps and, more particularly, to improved processes for making fluff pulp sheets which eliminate many of the unwanted fiber-to-fiber bonding (fiber bundles) that may be contained in the sheet to produce consistent and uniform quality fluff pulp. These improved processes also permit the manufacturer to control the consistency of the stock being formed by localized dilution to achieve a better cross-machine directional basis weight allowing the manufacturer to produce high quality fluff pulp while using low headbox consistency. Fluff pulp produced by the processes of the present invention is soft, flexible, and has a lower content of knots or hard spots. The processes of the present invention are capable of producing fluff pulp sheets having low variability in weight, moisture, Mullen strength and other physical sheet attributes. Accordingly, a fluff pulp sheet made in accordance with the present invention should have low shred energy while possessing high shred quality which results in significantly reduced fiberization energy when the sheets are ultimately processed. The invention is especially useful for the production of fluff pulp intended for use as the absorbent layer in disposable diapers, sanitary napkins, absorbent hygienic products and airlaid products.
Absorbent products employing fiberized wood pulp have been available for many years. This basic wood pulp used in such products is usually termed “fluff pulp.” In the United States, fluff pulp is most typically made from a fully bleached southern pine kraft process pulp produced in relatively heavy caliper, high basis weight sheets. The product is rewound into continuous rolls for shipment to the customer. Since the roll product is intended to be later reprocessed into individual fibers, low sheet strength is desirable and typically little or no refining is used prior to roll manufacturing. The requirements for surface uniformity and formation are similarly moderate.
At the customer's plant, the rolls are continuously fed into a device, such as a hammermill, to be reduced as much as reasonably possible to individual fibers. Defibration is the process of freeing the fibers from each other before the fluff pulp enters the product forming machinery. The fiberized product is generally termed a cellulose “fluff.” For example, the fluff pulp can then be continuously air laid into pads for inclusion in the intended product. The most demanding application of fluff pulps is in producing air-laid products, used, for example, in serving utensils and various towel applications in homes, industry and hospitals. As is mentioned above, fluff pulp sheets for air-laid products are usually defiberized in a hammermill. Fluff pulp sheets, however, may contain significant numbers of fiber bundles which are bonded together during the sheeting process. These unwanted fiber bundles, often referred to as knots, nits, bones and flock in the industry, present a problem during defibration. The hammermills used for fluff production are very large energy consumers and fiber bundles present in the fluff pulp sheets will increase the amount of energy expended during defibration. Also, while vigorous defiberizing can reduce the knot content, it is at the expense of considerable fiber breakage and a high resulting content of very fine dusty material. To offset this problem, the pulp mill may need to add chemical debonders prior to sheet formation. Therefore, important parameters that are considered for dry defibration are shredding energy, i.e., the amount of energy needed to shred the sheet and knot content, i.e., the amount of clumps of fibers bonded to each. In heavy manufacturing operations, reduction in energy consumption will ultimately lead to less costly products. Moreover, many manufacturers require high quality fluff pulp to be used in their products due to customer demands. Accordingly, manufacturers of fluff pulp sheets are concerned in creating sheets having low shredding energy while still providing high quality fluff. Lower quality fluff pulp sheets cannot be used in certain applications and as such are often discounted for use in manufacturing lower quality products.
Wood pulp softness can be expressed in terms of properties such as Mullen strength (the strength of pulp or a pulp product, measured in kilopascals (kPa)), and Kamas energy (the energy required to convert a given amount of pulp or pulp product to a fluff material, measured in watt hours per kilogram (Wh/kg)). Mullen strength can be thought of as the energy required to pop a hole in the sheet. Some in the industry refer to this energy as “burst energy.” Mullen strength is a good indicator (but not full proof) of the energy needed to shred the sheet (shred energy). Typically, the lower the Mullen strength, the easier it is to shred the fluff pulp sheet. Lower values of Mullen strength and Kamas energy also correlate to softer, increasingly debonded, pulp. While it is desirable to the manufacturer to decrease Mullen strength, it should not be done at the expense of shred quality.
In the art of making fine paper, stock is usually ejected from a device known in the industry as a headbox so as to land gently on the moving fabric loop, known as a forming wire, which moves at a speed typically between plus or minus 3% of the wire speed, called rush and drag respectively. In the manufacture of fluff pulp, the equipment is usually run at about +10% rush. Excessive j/w ratio helps the Mullen strength. Water drains from the stock through the forming wire so that a web is formed on the forming wire. Excessive rush or drag can cause more orientation of fibers of the web in the machine direction and can give differing and sometimes unwanted physical properties in machine and cross directions. Manufacturers, therefore, are concerned about fiber orientation and accordingly have to control the orientation of fibers being deposited on the forming wire in order to achieve the desired physical properties.
As was mentioned above, wood fibers have a tendency to attract to one another, forming clumps, the effect being called flocculation. Flocculation is lessened by lowering consistency and or by agitating the slurry entering or in the headbox. However, defloccullation becomes very difficult at much above 0.5% consistency. Minimizing the degree of flocculation is important to the physical properties of the fine paper or fluff pulp.
Usually, the stock is supplied at extremely high pressure to the headbox by means of pumping equipment and the stock is ejected from the headbox through a device known as slice lip. Accordingly, it is essential that the rate of flow of stock through a distributor tube disposed at one side of the headbox be the same as the rate of flow of stock moving through a distributor tube disposed at the opposite side of the headbox. The rate of flow of stock is usually defined as the number of cubic feet of the stock passing a particular point every minute. It is necessary that the rate of stock flow remain constant or as constant as possible throughout the headbox. The amount of fiber per unit area (basis weight) of the formed web should be ideally constant across the width of the machine and along the machine direction. If the stock has been thoroughly mixed and if the slice lip opening is the same along the entire cross-machine directional width of the headbox, then the weight of the fibers within the stock per inch of width across the ribbon of stock ejected through the slice lip should be substantially constant. The resulting web should then have a uniform basis weight in a cross-machine direction. However, in practice, it is often difficult to maintain a constant stock supply pressure and a uniform consistent in the stock. Accordingly, maintaining an even distribution of fibers within the stock present problems when endeavoring to maintain a uniform basis weight across the width of a formed web.
The manufacturers of fluff pulp also face the problem of maintaining a controlled cross-machine directional basis weight of the formed web. Manufacturers must control the basis weight of the formed web to improve the quality of the end product. Accordingly, the fluff pulp manufacturer must control the basis weight without compromising fiber orientation profile. Additionally, the manufacturer must also be mindful of the need to simultaneously minimize the degree of flocculation in order to attain the desired physical properties of the fluff pulp.
Accordingly, it would be desirable to provide processes for forming fluff pulp sheets having improved bulk, softness and reduced inter-fiber bonding without sacrificing the absorbent properties of the pulp. Also, there has been a need for processes for producing high quality fluff pulp sheets that have significantly lower Mullen strength (burst energy) without losing shred quality. There is also a need to achieve a more uniform basis weight profile without compromising the fiber orientation profile. An improved and more uniform cross-directional weight basis can promote more stable operation in the hammermill and uniform final user product. The novel processes of the present invention fill these and other needs.
The present invention provides novel processes for the manufacturing of fluff pulp sheets having a reduced number of fiber-to-fibers bonds (fiber bundles) and low variability in weight, moisture, Mullen strength and other physical sheet attributes. Fluff pulp sheets made in accordance with the present invention will possess low shred energy while retaining high shred quality. The present invention also utilizes processes and equipment having dilution control associated with a headbox to achieve a very uniform cross-directional basis weight across the width of the machine to thereby improve the quality of the end product and to run the paper forming equipment with lower headbox consistency. The use of dilution control with the headbox improves the basis weight profile to produce more stable operations in the hammermill and a more uniform final product.
In one particular aspect of the present invention, a pulp slurry made from fluff pulp fibers in an aqueous solution is deposited on the bottom wire (also known as a “forming wire”) of a paper manufacturing machine to create a stock web (also referred to as a “mat” in the industry). Due to its nature, the pulp slurry includes both individual fibers and fibers clumped together in fiber-to-fiber bonds forming “fiber bundles.” The presence of these fiber bundles is unwanted in the formation of the fluff pulp sheet since these fiber bundles will dry and remain in the finished sheet as unwanted clumps of fibers. Additional energy is usually needed to be expended by the product manufacturer when the fluff pulp sheets are being defiberized due to the presence of these unwanted clumps. Additionally, these fiber bundles reduce the quality of the fluff that will be produced. In one aspect of the present invention, the web is placed on a moving bottom wire and is subjected to high pulsating shear forces which act on the fiber bundles contained in the web to break a majority of them up into individual fibers or smaller sized bundles. The web is later dewatered and dried to produce a fluff pulp sheet having reduced number of unwanted fiber bundles.
In one aspect of the present invention, the web is advanced by the bottom wire and placed in contact with a top forming wire which cooperates with the bottom wire to press some of the liquid from the web. The top forming wire and bottom wire can be, for example, components of a paper forming machine known as a “top former” or “twin wire” machine. In this aspect of present invention, the web is placed between two wires and is subjected to up and down dewatering reducing tendency of fiber to fiber bonding. The use of a top and bottom wire allows the web to be dewatered from two sides, rather than one, which helps to decrease the size of the fiber bundles. The use of top and bottom wires also retains the web within a somewhat confined space to allow the web to be subjected to high pulsating shear forces which act to break up fiber bundles that have formed in the web. The top forming wire former promotes better distribution of the fibers and reduces localized area flock that create uneven strength characteristics to the fluff pulp.
In one aspect of the present invention, a pulsating shear force can be applied to the web in an area where the top forming wire is in contact with the web. The pulsating forces act on the fiber bundles contained in the formed web and are sufficiently large in magnitude to break a majority of these unwanted fiber bundles. The pulsating forces can be applied, for example, to the web in an area where the top forming wire makes contact with the web. The pulsating forces act on the fiber bundles contained in the formed web and are sufficiently large in magnitude to break a majority of these unwanted fiber bundles. Thereafter, the web is fed into a pressing machine which contacts the web to press additional liquid solution from the web. In one particular aspect of the invention, the pressing machine can be a paper forming machine known as a “shoe press.” A shoe press can be used since the press provides a larger “nip” area which removes liquid from the web under a lower pressure than conventional roll presses known in the art. The shoe press provides a greater nip area which allows a reduced pressure force to be applied to the fluff pulp stock web as it moves through the pressing machine. Since the fluff pulp stock web has a greater thickness than conventional fine paper stock, the shoe press allows for reduced forces which helps to prevent compression of the pulp fibers while still providing substantial dewatering capabilities. A single shoe press or multi shoe presses in series could be implemented for dewatering purposes. The shoe press could be combined with other pressing machines, such a roll presses, to progressive dewater the web. Lastly, after the web has been dewatered by the respective pressing machines, heat can be applied to the web (via driers) to evaporate additional liquid from the web.
In another aspect of the present invention, a vacuum can be applied to the web when the pulsating shear forces are being applied to the web. The vacuum can be applied at the same location where the pulsating shear forces are being applied to the web to increase the shearing action imparted on fiber bundles contained in the web. This increased shearing force created by the vacuum helps in the breaking of the fiber-to-fiber bonds found in the formed web.
In another aspect of the present invention, the pulp slurry can be deposited on the bottom wire using a headbox which has dilution control. In this particular aspect of the invention, a liquid, such as water, could be selectively added to the pulp slurry to adjust the consistency of the slurry being deposited on the bottom wire in allow the manufacturer to adjust the cross-directional basis weight of the web being formed. In this regard, a more uniform cross-machine directional weight basis can be attained without compromising fiber orientation.
In other aspects of the invention, more than one type of pulp slurry could be utilized to create a fluff pulp sheet having multiple layering. Additives, such as a colorant, could be added to the slurry(es) in other aspects of the invention. A multiple layering headbox with or without dilution control could be used to deposit the stock slurry on the bottom wire. Alternatively, multiple headboxes with or without dilution control could be used to create the multilayered fluff pulp sheet with additives. After the web has been subjected to the pulsating shear forces, it can be further dewatered in pressing equipment such as a shoe press or a series of shoe presses. In another aspect of the invention, additional pressing equipment such as roll presses could be used with the shoe press to further dewater the web.
Other features and advantages of the present invention will become more apparent from the following detailed description of the invention, when taken in conjunction with the accompanying exemplary drawings.
The term “wire” is well known in the art and generally refers to a specially woven plastic or fabric mesh conveyor belt which is used to create a continuous paper web that transforms the source of wood pulp into a sheet of paper. It should be appreciated that many different types of wires could be used in accordance with the processes of the present invention.
It should be appreciated that the bottom forming wire 18 is shown schematically since any one of a number of paper forming equipment could be implemented in accordance with the present invention. The pulp slurry is deposited at a speed typically about plus 10% rush. The higher rush percentage helps to produce a suitable Mullen strength in the fluff pulp. Water drains from the stock through the forming wire so that a web 20 is formed on the bottom forming wire. Excessive rush or drag will cause more orientation of fibers of the web 20 in the machine direction and typically creates very poor contact between fibers which would produce in fine paper manufacturing differing and sometimes unwanted physical properties in the machine and cross directions of the fine paper, but with fluff pulp will reduce shredding energy and fiber to fiber bonds. Manufacturers, therefore, are concerned about fiber orientation and accordingly have to control the orientation of fibers being deposited on the forming wire in order to achieve the desired physical properties.
To achieve a better cross direction weight basis, the process of the present invention utilizes a headbox 14 may include dilution controls (not shown) which allow the operator to dilute the consistency of the pulp slurry as it exists the headbox 14 and is deposited onto the bottom wire 18. Accordingly, the headbox 14 would include dilution lines (not shown) or other liquid supply equipment for controlling the dilution of the pulp slurry flowing through the headbox in order to control the cross-machine direction basis weight of the web 20 that is being produced. The use of dilution control associated with the headbox 14 achieves a very uniform cross-directional basis weight across the width of the machine to thereby improve the quality of the end product and allows the manufacturer to run the equipment with lower headbox consistency. This part of the process allows the slurry of pulp fibers to be filtered out onto the continuous bottom forming wire 18 to form a wet web of fiber having a specific basis weight. In this manner, the present invention is capable of controlling the basis weight of the formed web to improve the quality of the end product. This aspect of the present invention thus controls the basis weight without compromising fiber orientation profile.
The stock web 20 which is initially deposited on the bottom wire 18 is quite soft and wet due to the presence of a high amount of the liquid making up the pulp slurry. Accordingly, as is known in paper-making art, the liquid must be drained from the web 20 (referred to as “dewatering”) in order to ultimately produce a dry fluff pulp sheet. In this regard, drainage units 22 can be located under the table where the web 20 is initially deposited on the bottom wire 18 to allow liquid to drain through the small openings formed in the bottom wire 18. However, these drainage units 22, which may include vacuum or suction devices to draw out the liquid, are not capable of completely drying the web 20. Additional drying equipment must be used to progressively dewater the stock web 20. The web 20 moves along with the bottom wire in the direction depicted by arrow 24. The web 20 is the fed into a top former 26 which includes a second top forming wire 28 that contacts the top of the web 20 and, in conjunction with the bottom wire 18, helps to press additional liquid from the wet web 20. The web 20 entering the top former 26 typically has a dryness of about 2-4%.
As can be best seen in
The top wire 28 of the top former 26 and bottom wire 18 converge together by utilizing a set of top blades 36 located beneath the dewatering chambers 30 along with preferably a set of bottom loadable blades 38 located directly beneath the bottom wire 18. These blades 36 and 38 can be made from materials such as ceramics. These loadable blades 38 (the loading element) are designed to move the bottom wire 18 upward so that the top wire 28 comes in contact with the top blades 36. This and vacuum between blades 36 results in a pinching effect which causes some of the liquid to be squeezed from the web 20 and forming a fiber layer against top wire 40 which is separate from formed layer in the bottom 42. These separately formed layers have a low tendency of fiber to fiber bonding. As can best be seen in
It should be appreciated that in the art of forming fine paper stock, a very low load is normally applied by the bottom blades 38 during the squeezing or dewatering process since medium or high pulsating shear forces could be detrimental to the thin stock web being formed on the top former. However, as is discussed in greater detail below, high pulsating shear forces are desired in the processes of the present invention since the pulp slurry forming the web 20 contains many fiber-to-fiber bonds. The pulp slurry contains numerous pulp fibers which cannot possibly be free of fiber-to-fiber bonds as the slurry exits the headbox 14. The dilution of the pulp slurry may lead to some of the fiber bundles being broken as the slurry exits the headbox. However, there may still be many fiber-to-fiber bundles which will be dispersed within the stock web. Also it is known in art of paper making that fibers have a tendency to create fiber-to-fiber bundles in stock. For these reasons, the number of fiber bundles remaining in the stock web 20 is of great concern to the fluff pulp manufacturer. Accordingly, some manufacturers suggest mechanical steps or chemical treatment to be employed during the time that the pulp slurry is first being processed to reduce the number of fiber bundles that enter the headbox. For example, in U.S. Pat. No. 6,059,924, a process is disclosed in which the pulp slurry is mildly refined prior to the step of sheet formation. Such a process requires additional equipment to be used to refine the pulp slurry before it enter the headbox. Other methods to deal with the problem of unwanted fiber bundles require chemical additives to be added to the pulp slurry. However, these processes can lead to additional costs in manufacturing the fluff pulp sheet.
The processes of the present invention utilize high pulsating shear forces which break up the fiber bundles once the web 20 has been deposited on the bottom wire 18. In this regard, the blades 36 and 38 of the top former provide one type of suitable mechanism which is capable of producing cyclical, pulsating shear forces which act on the web 20 as it passes over the blades. The pulsating shear force is usually non-uniform which causes the web 20 to undergo extreme fluctuations of shear forces to help to break any type of fiber-to-fiber bonds that are dispersed in the web. The timing of the application of these high pulsating shear forces occurs when the web 20 is still very wet (only about 2-4% dry) since bonds in wet slurry are easier to break with applied pulsating forces.
As can be seen in
The dewatering in the dewatering chambers 30 will form a fiber layer 40 against top wire which is separate to layer formed on bottom wire 42 with drainage units 22. As these layers are formed separately the fibers are not tangled together due the fluid middle portion 44, the fiber-to-fiber bonding is reduced compared to traditional sheet which has only one direction dewatering during forming. Two layered forming additionally will reduce size and number of the fiber bundles like does the shear effect with loading elements. These effects will reduce energy required to break the web in to individual fibers in Hammer mill or similar equipment.
After the web 20 exits the top former 26, it still has considerable wetness and needs to be dewatered by additional dewatering machines. As can be seen in
From the dewatering section, the web enters a drying section 80 of the fluff pulp manufacturing line. In a conventional fluff pulp sheet manufacturing line, drying section 80 may include multiple cylinder or drum dryers with the web 20 following a serpentine path around the respective dryers and emerging as a dried sheet or mat 82 from the outlet of the drying section. Alternate sides of the wet web 20 will be exposed to the hot surfaces as the web 20 passes from cylinder to cylinder. In most cases, the fluff pulp web 20 is held closely against the surface of the dryers by a fabric having carefully controlled permeability to steam and air. Heat is transferred from the hot cylinder to the still wet web, allowing some of the remaining liquid to be evaporated. Other alternate drying equipment, alone or in addition to cylinder or drum dryers, may be included in the drying process. Typically, the dried pulp sheet 82 emerging from the drier section has an average maximum moisture content of no more than about 5% by weight of the fibers, more preferably no more than about 6% to 10% by weight and most often about 7%.
In the
Referring now to
Referring now to
Referring now to
The various equipment which can implemented to achieve the various processes described herein are generally commercially available. For example, a simple headbox which can be utilized can be Model Valley manufactured by Voith Paper. A suitable headbox with dilution controls includes Model SymFlo manufactured by Metso Paper and Model Valley manufactured by Voith Paper. A suitable multilayering headbox includes Model SymFlo manufactured by Metso Paper. The top former used to apply the pulsating force and vacuum to the formed web include Model MB manufactured by Metso and Model PFI manufactured by Johnson Foils. Suitable shoe presses include Model OptiPress manufactured by Metso Paper and Model NipcoFlex manufactured by Voith Paper. Roll presses that can be used include Model Combi Press manufactured by Beloit. The drying equipment includes suitable equipment such as Model SymDry manufactured by Metso Paper and Model Airborn manufactured by Andriz.
Generally, any fluff pulp or fluff pulp fiber is suitable for use in the present application, and the selection thereof is within the skill of one knowledgeable in the fluff pulp and fluff pulp fiber arts. The type of fluff pulp or fluff pulp fiber suitable for use herein is not intended to be limiting. Fluff pulp typically includes cellulosic fiber. The type of cellulosic fiber is not critical, and any such fiber known or suitable for use in fluff pulp paper can be used. For example, the fluff pulp can made from pulp fibers derived from hardwood trees, softwood trees, or a combination of hardwood and softwood trees. The fluff pulp fibers may be prepared by one or more known or suitable digestion, refining, and/or bleaching operations such as, for example, known mechanical, thermomechanical, chemical and/or semichemical pulping and/or other well-known pulping processes. The term, “hardwood pulps” as may be used herein include fibrous pulp derived from the woody substance of deciduous trees (angiosperms) such as birch, oak, beech, maple, and eucalyptus. The term, “softwood pulps” as may be used herein include fibrous pulps derived from the woody substance of coniferous trees (gymnosperms) such as varieties of fir, spruce, and pine, as for example loblolly pine, slash pine, Colorado spruce, balsam fir and Douglas fir. In some embodiments, at least a portion of the pulp fibers may be provided from non-woody herbaceous plants including, but not limited to, kenaf, hemp, jute, flax, sisal, or abaca, although legal restrictions and other considerations may make the utilization of hemp and other fiber sources impractical or impossible. Either bleached or unbleached fluff pulp fiber may be utilized. Recycled fluff pulp fibers are also suitable for use. When bleached, any bleaching method is suitable, including for example and without limitation those described in U.S. Pat. No. 6,893,473. The fluff pulp and fluff pulp fibers may be treated or untreated, and they may optionally contain one or more than one additives, or combination thereof, which are known in the art. Given the teachings herein, the level of treatment, if desired, and the amount of additives may be readily determined by one of ordinary skill in the fluff pulp and fluff pulp fiber arts.
In the broad aspects of the present invention, it is also contemplated that the pulp may be treated with bond-inhibiting chemical substances, debonders as they are commonly called, chemical softeners, or other chemical additives during preparation of the fluff pulp sheet to alter processing or aesthetic characteristics of the finished fluff pulp or finished fluffed pulp and the absorbent products made from said fluffed pulp. The addition of such chemicals is normally effected by adding the chemical to the pulp prior to sheet formation in multi or single layers or by spraying the pulp after the formation of the non-woven web and sometimes during initial mechanical dewatering. Included within such materials are fatty acid soaps, alkyl or aryl sulfonates, quaternary ammonium compounds and the like. Usually, such materials would be used in an amount of below about 0.5% by weight and often below about 0.1% by weight of dry pulp.
As discussed herein, if desired, additives such as pH adjusting agent, whitener, colorant, odor-control, pigment, optical brightening agent, wetting agent, binder, bleaching agent, trivalent cationic metal, alum, other additive, or a combination thereof may be utilized. Such compounds are known in the art and otherwise commercially available. Given the teachings herein, one of ordinary skill in the fluff pulp and fluff pulp papermaking arts would be able to select and use them as appropriate. If present, the amount of additive is not particularly limited. Of course, such additives mentioned above could optionally be applied to the web t any stage, embodiment, or objective of the fluff pulp sheet making process described herein below or herein above, including without limitation surface applications including without limitation spray, coating, or the like surface applications.
The dried sheet of fluff pulp fibers typically has a thickness of about 20 to 80 mils, a basis weight of 200 to 900 g/m.sup.2, a burst index of 0.5 to 3.0 kPa.multidot.m.sup.2/g. The dried pulp sheet generally has a density of about 0.3 to about 1.0 g/cm.
In one embodiment, the additive may be present in amounts ranging from about 0.005 to about 50 weight percent based on the weight of the fluff pulp sheet. This range includes all values and subranges therebetween, including about 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50 weight percent, or any combination thereof, based on the weight of the finished fluff pulp sheet.
In one embodiment, the fluff pulp sheet may have a basis weight ranging from 100 to 1100 gsm. This range includes all values and subranges therein, for example 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, or any combination thereof or range therein.
The fluff pulp sheet made in accordance with the present invention can be made into a number of different products. These products include, but are not limited to, absorbent products, paper products, personal care products, medical products, insulating products, construction products, structural material, cement, food products, veterinary products, packaging products, diaper, tampon, sanitary napkin, incontinent pads, absorbent towels, gauze, bandage, fire retardant, and combinations thereof
Numerous modifications and variations on the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the accompanying claims, the invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13398144 | Feb 2012 | US |
Child | 14504487 | US |