As is known in the art, the best performance of a phased array radar is achieved when the beam is pointing to the boresight, i.e., perpendicular to the aperture of the array. At the boresight location, the beam width is minimum and the antenna gain is the highest. One of the advantages of using a phased array radar is the ability to steer the beam without mechanical movement.
However, when the beam is steered off the boresight, the beam shape is distorted with the beam width increased and antenna gain reduced. This reduction in antenna gain is referred to as scan loss, which can be estimated with Equation 1, which is set forth below:
L
scan=10log(cos(θ)x·cos(φ)x) Eq.1,
where θ is angle in the azimuth direction, φ is the angle in the elevation direction, and x is an empirical value, usually between 1.2 and 1.4.
To reduce the scan loss, one common practice is to have multiple faces of the phased array to cover the required scan angles. For example, for 360° coverage, a 4-faced radar has 1.8 to 2.1 dB less scan loss than a 3-face radar at widest scan angle. Some systems include a cylindrical phased array or phased array on the curved surface of the platform such as aircraft fuselage, which is called conformal array. For better elevation angle coverage, some phased arrays have a tilt angle, e.g., twenty degrees, to minimize the vertical scan angle for less scan loss.
Exemplary embodiments of the invention provide methods and apparatus for a phased array radar having multiple flat subarray panels disposed on a curved surface, such as conical or dome-shaped, to form a fragmented array. The panel subarray provides the flexibility of building a larger array using a modular approach with lower cost. A fragmented array having a dome-shaped surface, for example, reduces scan loss in azimuth and elevation. The 360° coverage can be divided into many more smaller regions such that most of the panel subarrays do not have to scan wide angles. The fragmented array also provides a relatively lower grating lobe level due to the fact that panel subarrays are pointing to various directions. The gaps between the panels represent loss of the aperture area, which is not desirable. However, it minimizes the need of amplitude taper for the receive array to achieve low sidelobes.
In one aspect of the invention, a phased array radar system comprises: a first subarray disposed on a surface, wherein the surface is curved, and a second subarray disposed on the surface separately from the first subarray to form a fragmented array, wherein a gap between edges of the first and second subarrays increases as the curvature of the surface increases and/or the thickness of the panel subarray increases.
The system can further includes one or more of the following features: additional subarrays so that the first, second, and additional subarrays are substantially equally spaced about the curved surface, the surface is frusto-conical, the surface is dome-shaped, the first subarray comprises a integrated assembly including radiators, T/R modules, power manifolds and control circuitry, the first and second subarrays are substantially the same size, the first and second subarrays are substantially flat, and/or the first subarray has a rectangular lattice.
In another aspect of the invention for the frusto-conical surface, a phased array radar system comprises: a plurality of segments of subarrays disposed on a truncated conical surface to form a fragmented array; wherein several subrrays along the vertical direction form a segment with subarrays facing the same direction and having no gap between subarrays in each segment. With the frusto-conical surface, there are gaps between segments only, instead of gaps between all subarrays. Note that if the arrays are not tilted, such as when the surface is a cylinder, the array will look like a cylindrical array and the gaps will be caused only due to the thickness of the panel subarray.
The system can further include one or more of the following features: the surface is frusto-conical, the surface is dome-shaped, a third one of the plurality of segments of subarrays to form a beam opposite in direction to a beam formed by the first one of the plurality of segments of subarrays, further ones of the plurality of segments of subarrays to provide 360 degree beam coverage, the subarrays are substantially flat, and/or the subarrays are substantially similar in shape.
The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
In one particular embodiment shown in
The beamformed subarray output signals 38a-38N are coupled to receivers to amplify and downconvert the beamformed subarray output signals 38a-38N to lower frequency received signals 56a-56N. A signal processor 62 includes a beamformer circuit 64 that digitizes the lower frequency received signals 56a-56N and performs beamforming. The beamforming applies complex adaptive weighting factors to the received signals 56a-56N and combines them to generate receive beam signals 64a. Exemplary implementations use low-cost analog (hard wired) beam former. In other embodiments, digital beam forming is contemplated.
The signal processor 62 also includes a target detector 65 to detect targets and to compute target locations using the adaptive receive beam signals 64 and provide target detection data 65a to a target tracker 66, which provides track update information 66a to track files 68. The track files 68 are provided to a radar system operator. The target tracker 65 can also provide a transmit signal direction 54 to a transmitter 46. An amplified signal 36 is provided to the transmit combiner circuit 18.
It is understood that a wide range of radar component and processing components, configurations and processing techniques known to one of ordinary skill in the art can be used in alternative embodiments.
As used herein, fragmented array refers an array in which the subarrays are substantially flat, and are applied to a curved surface, such as a frusto-conical or dome-shaped surface. As a result, there are gaps in various places instead of a continuous aperture as in conventional radars. For the frusto-conical case, there are segments of subarrays along the elevation direction facing the same direction. Gaps exist only between segments instead of between every pair of subarrays as in the dome case.
Referring again to
In operation, selected ones of the subarray segments 102 are activated to form one radar beam as long as the surface normal of the subarray is within ±67 degrees, for example, from the beam direction. In one example, six of the sixteen segments are active at one time to form a beam. A different set of six segments can be activated to form another beam at a different frequency.
While the illustrative embodiment shows sixteen subarray segments, it is understood that any practical number of subarrays and segments can be used to meet the needs of a particular application. Accordingly, different number of segments can be activated at one time to form a beam. In exemplary embodiments, the subarrays 102 comprise circuit boards 108a-e mounted with at least one patch antenna. It is further understood that any practical number of circuit boards can be used.
The subarrays can be provided as any suitable configuration that can provide a fragmented array.
Exemplary subarrays are shown and described in U.S. Pat. Nos. 7,348, 932 and 8,279,131, which are incorporated herein by reference. As described in U.S. Pat. No. 7,348,932, “In one so-called ‘packageless T/R channel’ embodiment, a tile sub-array simultaneously addresses cost and performance for next generation radar and communication systems. Many phased array designs are optimized for a single mission or platform. In contrast, the flexibility of the tile sub-array architecture described herein enables a solution for a larger set of missions. For example, in one embodiment, a so-called upper multi-layer assembly (UMLA) and a lower multi-layer assembly (LMLA), each described further herein, serve as common building blocks. The UMLA is a layered RF transmission line assembly which performs RF signal distribution, impedance matching and generation of polarization diverse signals. Fabrication is based on multi-layer to printed wiring board (PWB) materials and processes. The LMLA integrates a package-less Transmit/Receive (T/R) channel and an embedded circulator layer sub-assembly. In a preferred embodiment, the LMLA is bonded to the UMLA using a ball grid array (BGA) interconnect approach. The package-less T/R channel eliminates expensive T/R module package components and associated assembly costs. The key building block of the package-less LMLA is a lower multi-layer board (LMLB). The LMLB integrates RF, DC and Logic signal distribution and an embedded circulator layer. All T/R channel monolithic microwave integrated circuits (MMIC's) and components, RF, DC/Logic connectors and thermal spreader interface plate can be assembled onto the LMLA using pick and place equipment.”
As shown in
It is understood that the inventive fragmented array has diffused grating lobes in the horizontal scan because of the changeover of the subarrays as the scan angle exceeds ±67 degrees. The level of the diffused grating lobes are typical significantly lower than the regular grating lobes.
It is understood that signal processing for the inventive fragmented arrays is within the ordinary skill in the art. With the advance of technologies in Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC), sampling rates have been increased and cost has been reduced significantly. This makes it feasible to convert received the RF signal at each subarray output and digitally process the signals for beamforming easily and efficiently.
While exemplary surfaces are shown and described on which subarrays can be disposed, it is understood that other arcuate surfaces can be used to meet the needs of a particular application. For example, it could be part of the aircraft fuselage or ship structure that represents a complex shape rather than conical or spherical.
Processing may be implemented in hardware, software, or a combination of the two. Processing may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a storage medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform processing and to generate output information.
The system can perform processing, at least in part, via a computer program product, (e.g., in a machine-readable storage device), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a storage medium or device (e.g., CD-ROM, hard disk, or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer. Processing may also be implemented as a machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate.
Processing may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit)).
Having described exemplary embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may also be used.
The embodiments contained herein should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61706459 | Sep 2012 | US |