The technology herein relates to methods and apparatus for heating air with hot water.
There are many ways of heating air used as space heat for domestic and commercial buildings. One way is to employ an air handler in conjunction with a water heater, wherein the water heater supplies hot water to the air handler to generate heated air. Oftentimes, however, the water heater serves the additional function of supplying potable water. Thus, there are instances when the ordinary domestic use of water, oftentimes referred to as “water draw,” are above or equal to the output flow capacity of the water heater. This can lead to conditions where the air handler is deprived of sufficiently hot water flow. Such a loss of water flow to the air handler pump can lead to cavitation of the impeller, thereby considerably shortening the life of the pump. Also, low or no water flow to the air handler can lead to reduced energy transfer through the air handler heat exchanger and lower the delivered air temperature such that the air handler blows cold air into the space instead of the desired heated air.
I provide a method of controlling an air handler that generates heated air from hot water generated by a water heater comprising generating a signal in response to presence or absence of an indicia of water flow associated with the water heater; initiating operation of a pump associated with the air handler when the signal indicates that water flow associated with the water heater is at least at a selected level to supply hot water to the air handler sufficient to generate heated air; and/or terminating operation of the pump and/or a blower/fan associated with the air handler when the presence or absence of the signal indicates that the water flow associated with the water heater is less than the selected level.
I also provide a method of heating air in an air handler from hot water generated in a water heater comprising receiving a call for heated air; monitoring presence or absence of a signal received from the water heater, the signal being an indicia of a selected water flow associated with the water heater; initiating operation of a water pump associated with the air handler in response to the signal or absence of the signal; initiating operation of a blower/fan to supply heated air generated by heat exchange with the hot water; and terminating operation of the pump and/or blower/fan when the call for heated air is satisfied and/or in response to the presence or absence of the signal to provide hot water to the air handler.
I further provide a method of heating air in an air handler from hot water generated in a water heater comprising receiving a call for heated air; initiating operation of a pump associated with the air handler; detecting whether flow of water through the pump is at a selected level sufficient to generate heated air from the hot water; maintaining the pump in operation; initiating operation of a blower/fan to supply heated air generated by heat exchange with the hot water; and terminating operation of the pump and/or the blower/fan when the call for heat is satisfied.
I still further provide a system for generating heated air comprising a water heater comprising a burner and a water heater exchanger to produce hot water, a pump operative to flow water out of the water heater, and a controller connected to monitor water flow indicia and generate a signal associated with the water flow indicia; an air handler comprising a blower/fan and an air handler heat exchanger to generate heated air from hot water, a pump operative to receive hot water from the water heater for passage to the air handler heat exchanger, and a controller operative to control the air handler pump and/or the blower/fan in response to the signal or absence of the signal.
It will be appreciated that the following description is intended to refer to specific, representative structures selected for illustration in the drawings and is not intended to define or limit the disclosure, other than in the appended claims.
Turning now to the drawings generally and
Cold water from a cold water source (not shown) is supplied through cold water supply line 24. Cold water flows into water heater 12 through cold water supply line 26. Hot water flows outwardly of water heater 12 through hot water supply line 28. Hot water flows into air handler 30 as shown through air handler hot water supply line 32.
Air handler 30 includes a heat exchanger 34 that works in conjunction with a pump 38 and controller 40 which flows hot water from water heater 12 into heat exchanger 34. Heat exchanger 34 works in conjunction with a fan/blower 36 to supply heated air to the desired space to be heated. Fan/blower 36 works in conjunction with controller 40. Any number of types of air handlers may be used in addition to the type shown in
Water passing through heat exchanger 34 exits air handler 30 through air handler return water line 42 and can be recirculated to water heater 12 by way of cold water supply line 26. Also, the system 10 is configured so that hot water generated by water heater 12 can also pass through hot water supply outlets 44 for general potable water uses. A sensor 43 detects or senses indicia of water flow. This can be the fact that water is flowing or not flowing or the rate of water flow (such as 4 gpm, for example).
As shown in
In the meantime, when the pump is initially turned on, the water heater has a flow sensor/detector as indicated in block 150 which causes the water heater to initiate combustion to create hot water at block 152. The water heater continues to monitor the water flow and temperature. As long as the water heater continues to detect water flow at block 154, operation of the burner is maintained to create hot water. Once the flow has stopped as indicated at block 156, the water heater returns to stand-by at block 158. As noted above, however, this can result in particular situations where the water heater also supplies domestic potable water and there is insufficient water flow and/or insufficiently heated water to adequately supply the air handler. This can result in cavitation of the impeller in the air handler pump, thereby shortening its life. Also, the water supplied to the heat exchanger of the air handler may be inadequate to heat the air, whereby the air handler supplies cold air instead of the desired heated air.
My systems take a different approach. One approach is described with reference to
As shown on the right hand side of
On the other hand, if water heater 12 determines that the actual water flow is greater than about 90% of the maximum capacity of water flow of water heater 12 in block 256, either directly or over a period of time, water heater 12 generates a signal in block 260 and transmits that signal to controller 40 of air handler 30. When the detector/sensor indicates that the water flow has stopped at block 262, water heater 12 returns to stand-by at block 264.
Referring to the left hand side of
On the other hand, if controller 40 of air handler 30 does not detect/sense a signal from water heater 12, then air handler 30 initiates its usual heating sequence at block 208 of initiating operation of 1) pump 38 at block 210 to supply hot water from water heater 12 and 2) blower 36 at block 212 to generate heated air by way of heat exchanger 34.
As that sequence progresses, the thermostat continues to monitor the temperature of the space at block 214 and controller 40 of air handler 30 continues to monitor signals received from water heater 12 at block 216. If the signal is present at block 218 during operation of the pump 38 or fan/blower 36 sequence, controller 40 of air handler 30 terminates operation of fan/blower 36 and pump 38 at block 220 and enters into a continuous monitoring mode.
On the other hand, so long as a signal is not received from water heater 12, the pump 38 and fan/blower 36 sequence continues at block 222 until the thermostat in the space to be heated terminates the call for heat at block 224. At that point, operation of pump 38 is terminated at block 226 and operation of fan/blower 36 is also terminated at block 228. Air handler 30 then returns to a stand-by mode at block 230.
In the case of both water heater 12 and air handler 30, controllers 22 and 40 may generate and receive the signals, respectively. Also, controller 22 may be linked to operation of burner 16. Similarly, controller 40 may be linked to operation of pump 38 and fan/blower 36. There can also be a connection between controllers 22 and 40. Of course, those skilled in the art are well aware that the above mentioned connections between these various components may either be by wire, wireless or other types of connections such as optical fibers and the like. The mode of connection is not important so long as the relevant connections are made.
The operation of water heater 12 which monitors whether the actual flow of water is more than or less than about 90% of the water flow capacity of water heater 12 assists in supplying adequate water to pump 38 to avoid the aforementioned cavitation of the impeller. Also, such monitoring of the capacity helps to ensure that the temperature of the heated water is sufficiently high to provide hot water to heat exchanger 34 of air handler 30. If the temperature of the hot water is too low, then heat exchanger 34 will not be able to extract enough heat from the water to adequately provide heated air. One example of a calculation concerning the 90% determination is set forth in
It is also possible for the signal, once generated, to continue until the actual flow rate through water heater 12 is less than or equal to 70%. Thus, controller 40 of air handler 30 will only reinitiate the space heating sequence when the flow rate through water heater 12 is less than or equal to about 70%. This too can be monitored for a selected period of time such as about 30 seconds or for a range of time between down to 0 and up to a minute or even more if desired.
It is also possible for the signal process to be reversed. In other words, water heater 12, as described above, generates a signal when conditions are not optimal for initiation of operation of air handler 30. This can be reversed so that water heater 12 generates the signal when the conditions are optimal.
If the sensed flow is determined to be inadequate, operation of pump 38 is terminated at block 306 and air handler 30 waits for another selected time period “Y” before initiating a second startup call. Controller 40 utilizes a “time out” sequence at block 308 to allow the passage of some amount of time such as about 15 or about 30 seconds or any other time out period and reinitiates the operation of pump 38 for the selected “X” time period.
If the flow sensor verifies that there is sufficient water flow for heating at block 304, operation of pump 38 is maintained and fan/blower 36 is energized either immediately or after a set delay at block 310.
The thermostat continues to monitor the temperature of the space to be heated at block 312 and air handler 30 continues to monitor the flow of water to determine at block 314 whether the flow of water to the exchanger continues to be adequate. If at any time air handler 30 detects that the flow of water is inadequate at block 316, controller 40 deactivates pump 38 and fan/blower 36 at block 318 and moves into the time out mode at block 306.
On the other hand, so long as the flow rate of water is determined to be adequate at block 316, the heating sequence continues at block 320 until the thermostat terminates the call for heat at block 322. At that point, operation of pump 38 is terminated at block 324 as is the operation of fan/blower 36 at block 326. Air handler 30 then returns to stand-by at block 328.
A variety of modifications to the representative structures described will be apparent to those skilled in the art from the disclosure provided herein. Thus, my technology may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of my technology.
Number | Date | Country | |
---|---|---|---|
Parent | 13733409 | Jan 2013 | US |
Child | 14194752 | US | |
Parent | 11789219 | Apr 2007 | US |
Child | 13733409 | US |