The present application relates generally to on-demand services provided over a data network such as the Internet and, more specifically, to techniques for interfacing data provider systems with phone provider systems in the on-demand services network.
Organizations typically employ many different types of software and computing technologies to meet their computing needs. However, installing and maintaining software on an organization's own computer systems can have its drawbacks. For example, when software must be installed on computer systems within larger organizations, the installation process often requires significant time commitments, since organization personnel may need to separately access each computer. Once installed, the maintenance of such software typically requires significant additional resources. Each installation of the software may need to be separately monitored and upgraded. Further, organization personnel may need to protect each installed piece of software against viruses and other malevolent code. Given the difficulties in updating and maintaining software installed on many different computer systems, it is common for organizations to let software to become outdated. Also, the organization will likely need to ensure that the various software programs installed on each computer system are compatible. Compatibility problems are compounded by frequent upgrading, which may result in different versions of the same software being used at different computer systems in the same organization.
“Cloud computing” services provide shared resources, software, and information to computers and other devices upon request. In cloud computing environments, software can be accessible over the Internet rather than installed locally on in-house computer systems. Cloud computing typically involves over-the-Internet provision of dynamically scalable and often virtualized resources. Technological details can be abstracted from the users, who no longer have need for expertise in, or control over, the technology infrastructure “in the cloud” that supports them.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for the disclosed inventive systems, apparatus, and methods for interfacing with phone systems and related services. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed embodiments.
Examples of systems, apparatus, and methods according to the disclosed embodiments are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed embodiments. It will thus be apparent to one skilled in the art that implementations may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring embodiments. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the disclosed implementations, it is understood that these examples are not limiting, such that other embodiments may be used and changes may be made without departing from their spirit and scope.
Various embodiments described or referenced herein are directed to different methods, apparatus, systems, and computer program products for facilitating interfaces with phone systems in an on-demand service environment. In some embodiments, the disclosed methods, apparatus, systems, and computer program products may be configured or designed for use in a multi-tenant database environment.
The disclosed embodiments generally relate to an on-demand push-based architecture for integrating with telephony systems in a data network. In these embodiments, a phone call delivered and handled by a phone provider, such as Cisco, Nortel, Avaya, etc., on a phone system can be monitored and controlled by computers in a cloud computing environment. In such embodiments, the desired monitoring and control can be achieved without having to install local software on client machines in the environment. In some embodiments, methods and systems are disclosed for handling phone-related events from and sending commands to a phone system, while also interacting with a data provider, such as salesforce.com®, for searches via its web services. The disclosed methods, apparatus, and systems are configured to render interfaces or parts of interfaces in web browser processes running on client machines in the cloud, again without requiring the use of local client applications.
These and other embodiments may be implemented by various types of hardware, software, firmware, etc. For example, some embodiments may be implemented, at least in part, by machine-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by the computer using an interpreter. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store program instructions, such as read-only memory devices (“ROM”) and random access memory (“RAM”). These and other features and benefits of the disclosed embodiments will be described in more detail below with reference to the associated drawings.
In one embodiment, the servers 104a and 104b cooperate to function as a proxy server. Thus, in this embodiment, “proxy server” is intended to refer collectively to one or more of the API servers 104a in combination with one or more of the servers 104b. As described herein, the proxy server generally provides services to relay phone event information between a phone system 108 and a client machine 112, such as a computer operated at a customer call center. In some implementations, phone system 108 is local with respect to an organization at which the client machine is located, while in other embodiments, phone system 108 is at a remote geographic location.
In another embodiment, the proxy server is implemented only as one or more of the push servers 104b, while the API servers 104a, operated by or otherwise associated with the data provider, are configured to retrieve and deliver data from the multi-tenant system managed by the data provider to client machines separate from the phone-related data delivered by push servers 104b between client machine 112 and phone system 108. In another alternative embodiment, illustrated in
In the various configurations described above, it can be desirable in some implementations to have the one or more servers 104a and 104b sharing the same network domain, such as www.salesforce.com. For instance, a user of client machine 112 can have a single account at salesforce.com®. By logging into this single account, the user can access the various services provided by both API server(s) 104a and push server(s) 104b, in
In
In
Embodiments described herein are often implemented in a cloud computing environment, in which the data network 110, servers 104a and 104b, and possible additional apparatus and systems such as multi-tenant databases and even phone system 108 are all considered part of the “cloud,” as further explained below with reference to
In
The API servers 104a are configured to communicate with phone system 108 using outbound messaging 114. The phone system 108 connecting to the API servers 104a should therefore be capable of receiving outbound messages from the particular data provider, such as salesforce.com®. For instance, an endpoint Uniform Resource Locator (URL) at phone system 108 can be adapted to receive SOAP messages. On the server side, salesforce.com® server(s) 104a is configured to send outbound messages to the phone system 108 to process. Phone system 108 can call the CTI API 113 to send inbound information. For instance, when API 113 is invoked by phone system 108, phone event information can be passed to API servers 104a, relayed from servers 104a to push servers 104b, and then passed to browser program 118 as one or more Comet events.
In some embodiments, the data provider and the phone provider are different entities. Such can be desirable, for example, when the data provider is operating a multi-tenant database in an on-demand service environment to provide application-related data to clients in the network, but is not in the business of delivering phone calls, that is, the actual audio communications and content of a telephone conversation. In such embodiments, the data provider interfaces with the phone provider via system 108, for instance, to communicate phone-related event data to clients via the cloud, but the phone provider otherwise manages the phone calls using conventional telephone lines and equipment.
In
In
As used herein, phone events generally refer to events occurring in relation to a phone call. These include actions a phone can take and events occurring in response to those actions. For instance, the phone event may be an incoming telephone call or an outgoing telephone call. Further phone events include the initiation or termination of a call and associated events such as a phone ringing, the call connecting, and a call being dropped. The phone event may include various events that occur during a call, such as placing the call on hold, transferring the call, a teleconference with multiple participants, etc. The phone event may also refer to an input, e.g., key-based, voice-based, etc., from the caller as further discussed below.
In
In one implementation, phone providers through phone system 108 interact with on-demand salesforce.com® server(s), such as API servers 104a, using API 113, as described above with reference to
In
In
In
In one implementation of
In the embodiment of
In
In
In
In
When GUI 400 is implemented in the context of system 300, softphone interface 408 shares phone event information with data provider part 416, as described above with reference to
In 612, a phone event occurs in relation to a phone call provided by phone system 108 to telephone 212, in the example of
In
In
In 632, the web browser program 118 sends the entered user input data to one or more appropriate data provider servers, such as API servers 104a of system 100. In 636, one or more of these proxy servers can then relay the user input data to phone system 108, at which point, phone system 108 can take action in relation to the phone call as is appropriate.
In
In part 8 of method 600B, a user of a client machine enters input data into an appropriate part of the user interface. For instance, data can be entered in an input field in data provider part 304b and relayed as a message to phone part 304a of
To provide security in the various embodiments described above, a white list of trusted domains can be maintained. For instance, in the proxy-based embodiments of
A client machine located in the cloud 704 (or Internet) may communicate with the on-demand service environment via one or more edge routers 708 and 712. The edge routers may communicate with one or more core switches 720 and 724 via firewall 716. The core switches may communicate with a load balancer 728, which may distribute server load over different pods, such as the pods 740 and 744. The pods 740 and 744, which may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 732 and 736. Components of the on-demand service environment may communicate with a database storage system 756 via a database firewall 748 and a database switch 752.
As shown in
The cloud 704 is intended to refer to a data network or plurality of data networks, often including the Internet. Client machines located in the cloud 704 may communicate with the on-demand service environment to access services provided by the on-demand service environment. For example, client machines may access the on-demand service environment to retrieve, store, edit, and/or process information.
In some embodiments, the edge routers 708 and 712 route packets between the cloud 704 and other components of the on-demand service environment 700. The edge routers 708 and 712 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 708 and 712 may maintain a table of IP networks or ‘prefixes’ which designate network reachability among autonomous systems on the Internet.
In one or more embodiments, the firewall 716 may protect the inner components of the on-demand service environment 700 from Internet traffic. The firewall 716 may block, permit, or deny access to the inner components of the on-demand service environment 700 based upon a set of rules and other criteria. The firewall 716 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
In some embodiments, the core switches 720 and 724 are high-capacity switches that transfer packets within the on-demand service environment 700. The core switches 720 and 724 may be configured as network bridges that quickly route data between different components within the on-demand service environment. In some embodiments, the use of two or more core switches 720 and 724 may provide redundancy and/or reduced latency.
In some embodiments, the pods 740 and 744 may perform the core data processing and service functions provided by the on-demand service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to
In some embodiments, communication between the pods 740 and 744 may be conducted via the pod switches 732 and 736. The pod switches 732 and 736 may facilitate communication between the pods 740 and 744 and client machines located in the cloud 704, for example via core switches 720 and 724. Also, the pod switches 732 and 736 may facilitate communication between the pods 740 and 744 and the database storage 756.
In some embodiments, the load balancer 728 may distribute workload between the pods 740 and 744. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 728 may include multilayer switches to analyze and forward traffic.
In some embodiments, access to the database storage 756 may be guarded by a database firewall 748. The database firewall 748 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 748 may protect the database storage 756 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
In some embodiments, the database firewall 748 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 748 may inspect the contents of database traffic and block certain content or database requests. The database firewall 748 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
In some embodiments, communication with the database storage system 756 may be conducted via the database switch 752. The multi-tenant database system 756 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 752 may direct database queries transmitted by other components of the on-demand service environment (e.g., the pods 740 and 744) to the correct components within the database storage system 756.
In some embodiments, the database storage system 756 is an on-demand database system shared by many different organizations. The on-demand database system may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. An on-demand database system is discussed in greater detail with reference to
In some embodiments, each pod may include a variety of servers and/or other systems. The pod 744 includes one or more content batch servers 764, content search servers 768, query servers 772, file force servers 776, access control system (ACS) servers 780, batch servers 784, and app servers 788. Also, the pod 744 includes database instances 790, quick file systems (QFS) 792, and indexers 794. In one or more embodiments, some or all communication between the servers in the pod 744 may be transmitted via the switch 736.
In some embodiments, the application servers 788 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand service environment 700 via the pod 744. Some such procedures may include operations for providing the services described herein.
The content batch servers 764 may requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 764 may handle requests related to log mining, cleanup work, and maintenance tasks.
The content search servers 768 may provide query and indexer functions. For example, the functions provided by the content search servers 768 may allow users to search through content stored in the on-demand service environment.
The Fileforce servers 776 may manage requests information stored in the Fileforce storage 778. The Fileforce storage 778 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the Fileforce servers 776, the image footprint on the database may be reduced.
The query servers 772 may be used to retrieve information from one or more file systems. For example, the query system 772 may receive requests for information from the app servers 788 and then transmit information queries to the NFS 796 located outside the pod.
The pod 744 may share a database instance 790 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 744 may require various hardware and/or software resources. In some embodiments, the ACS servers 780 may control access to data, hardware resources, or software resources.
In some embodiments, the batch servers 784 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 784 may transmit instructions to other servers, such as the app servers 788, to trigger the batch jobs.
In some embodiments, the QFS 792 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 744. The QFS 792 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 768 and/or indexers 794 to identify, retrieve, move, and/or update data stored in the network file systems 796 and/or other storage systems.
In some embodiments, one or more query servers 772 may communicate with the NFS 796 to retrieve and/or update information stored outside of the pod 744. The NFS 796 may allow servers located in the pod 744 to access information to access files over a network in a manner similar to how local storage is accessed.
In some embodiments, queries from the query servers 722 may be transmitted to the NFS 796 via the load balancer 720, which may distribute resource requests over various resources available in the on-demand service environment. The NFS 796 may also communicate with the QFS 792 to update the information stored on the NFS 796 and/or to provide information to the QFS 792 for use by servers located within the pod 744.
In some embodiments, the pod may include one or more database instances 790. The database instance 790 may transmit information to the QFS 792. When information is transmitted to the QFS, it may be available for use by servers within the pod 744 without requiring an additional database call.
In some embodiments, database information may be transmitted to the indexer 794. Indexer 794 may provide an index of information available in the database 790 and/or QFS 792. The index information may be provided to file force servers 776 and/or the QFS 792.
Environment 810 includes an on-demand database service 816. User system 812 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 812 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 816, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 816” and “system 816” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 818 may be a framework that allows the applications of system 816 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 816 may include an application platform 818 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 812, or third party application developers accessing the on-demand database service via user systems 812.
One arrangement for elements of system 816 is shown in
The users of user systems 812 may differ in their respective capacities, and the capacity of a particular user system 812 might be entirely determined by permissions (permission levels) for the current user. For example, where a call center agent is using a particular user system 812 to interact with system 816, the user system 812 has the capacities allotted to that call center agent. However, while an administrator is using that user system to interact with system 816, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users may have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 814 is any network or combination of networks of devices that communicate with one another. For example, network 814 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network (e.g., the Internet), that network will be used in many of the examples herein. However, it should be understood that the networks that can be used are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 812 might communicate with system 816 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 812 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 816. Such an HTTP server might be implemented as the sole network interface between system 816 and network 814, but other techniques might be used as well or instead. In some implementations, the interface between system 816 and network 814 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In one embodiment, system 816, shown in
Each user system 812 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection. User system 812 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer® browser, Mozilla's Firefox® browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 812 to access, process and view information, pages and applications available to it from system 816 over network 814.
Each user system 812 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided by system 816 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 816, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, embodiments are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
According to one embodiment, each user system 812 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 816 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 817, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 816 to intercommunicate and to process web pages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, or transmitted over any other conventional network connection (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.). It will also be appreciated that computer code for implementing the disclosed embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript®, ActiveX®, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems®, Inc.).
According to one embodiment, each system 816 is configured to provide web pages, forms, applications, data and media content to user (client) systems 812 to support the access by user systems 812 as tenants of system 816. As such, system 816 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 812, network 814, system 816, tenant data storage 822, and system data storage 824 were discussed above in
Application platform 818 includes an application setup mechanism 938 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 822 by save routines 936 for execution by subscribers as tenant process spaces 904 managed by tenant management process 910 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 932. A detailed description of some PL/SOQL language embodiments is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, filed Sep. 21, 2007, which is hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by system processes, which manage retrieving application metadata 916 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 900 may be communicably coupled to database systems, e.g., having access to system data 825 and tenant data 823, via a different network connection. For example, one application server 9001 might be coupled via the network 814 (e.g., the Internet), another application server 900N-1 might be coupled via a direct network link, and another application server 900N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 900 and the database system. However, other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 900 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 900. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 900 and the user systems 812 to distribute requests to the application servers 900. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 900. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 900, and three requests from different users could hit the same application server 900. In this manner, system 816 is multi-tenant, wherein system 816 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each call center agent uses system 816 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 822). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a call center agent is visiting a customer and the customer has Internet access in their lobby, the call center agent can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 816 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 816 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 812 (which may be client machines/systems) communicate with application servers 900 to request and update system-level and tenant-level data from system 816 that may require sending one or more queries to tenant data storage 822 and/or system data storage 824. System 816 (e.g., an application server 900 in system 816) automatically generates one or more SQL statements (e.g., SQL queries) that are designed to access the desired information. System data storage 824 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for account, contact, lead, and opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman, et al., and which is hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In some embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. In some embodiments, multiple “tables” for a single customer may actually be stored in one large table and/or in the same table as the data of other customers.
The embodiments disclosed herein may include a cross-domain API situated at a client machine that allows pages served from external domains to perform certain actions, such as exchanging information with one another, within a web browser program running on the client machine. These pages may be referred to as “third party pages.”
Because communication between frames from different domains presents a security risk within the browsers, this functionality is explicitly restricted in some modern browsers. In other modern browsers, however, cross-domain communication is enabled, for instance, in HTML 5 (available from W3.org at http://www.w3.org/TR/htm15/comms.html) with the postMessage framework. However, HTML 5 is currently supported in only a limited number of browsers, such as Internet Explorer 8, Firefox 3, and Opera 9.
In some embodiments, the cross-domain API may be used to facilitate integration with third party pages within salesforce.com® itself. Given the potential security concerns, it may be desirable to avoid exposing the ability for a third-party domain to directly perform data manipulation. For example, in salesforce.com® it may be possible to open an edit page, make modifications to an object, and save it, all by opening a single URL with a set of parameters in the query string. However, this type of operation may not be permitted by the cross-domain API, as it could open up a means for attackers to modify data without the user's knowledge or consent.
The third party page communication methods shown in
In one embodiment, in 1004, a service cloud console application from the data provider is loaded from a first domain, such as www.salesforce.com. The console application may be loaded by sending instructions from one or more data provider servers 312 hosting the first domain, as shown in
In 1008, a third party web page is loaded from a second domain, for instance, from phone system 108, in a portion of a user interface also displaying the console application. In some embodiments, the third party web page may be loaded as a primary or secondary tab within the console application. The third party web page may also be automatically loaded in response to receiving data from the phone system 108.
In some embodiments, the first domain is controlled by a data provider, e.g., salesforce.com®, while the second domain may be controlled by a different entity, such as the phone provider. For example, the console application may be loaded from a first domain controlled by salesforce.com®, while the third party page is loaded from a second domain controlled by a phone provider unaffiliated with the service provider controlling the first domain.
In 1012, the console application is configured to listen to events from a first set of safe domains. The first set of safe domains identifies the one or more trusted domains from which the console application may safely accept cross-domain messages. In some embodiments, the first set of safe domains may be limited to a particular group of domains, such as those provided by the data provider of the console application. The first set of safe domains may also include domains identified as trusted, such as the second domain associated with the phone provider/phone system 108.
In some embodiments, wildcards may be used to identify groups of domains using a single string. For example, the first set of safe domains may include domains such as na1.force.com, *.na2.force.com, and/or *.salesforce.com.
In 1016, the third party page may detect an event of some type, such as the receipt of phone event information from some source, as described above. The detected event may include any type of occurrence that causes cross-domain communication. In some embodiments, the event may be a scripting event triggered directly by a user action, such as clicking a link or button within the third party page. Alternately, or additionally, the event may be generated by code running within the third party page that identifies a triggering condition.
In 1020, the event triggers a message that is sent to the console application. The message may include a JavaScript® event message, or other type of event message. The message may be sent to a JavaScript® Event Listener operating in the console application served from the first domain. Alternately, or additionally, a different type of scripting language may be used, such as VBScript.
When the event message is received, the console application identifies the domain from which the event message was sent (i.e. the second domain), as shown at 1024. The domain may be identified by retrieving a value associated with the event message. After the second domain is identified as the source of the event, the second domain is compared to the first set of safe domains, as shown at 1028.
As shown at 1032, if the second domain is not within the first set of safe domains, then the message is ignored. In this case, the second domain has not been identified as a “safe” domain from which to receive messages. By only accepting messages sent from an identified subset of domains, the security risks inherent in cross-domain communications may be mitigated.
In some embodiments, receiving a cross-domain event message from a third party domain not in the first set of safe domains may cause one or more security or logging actions to be taken. For example, the event message may be logged in a security record to help identify unauthorized attempts to access the service cloud console application.
As shown at 1036, the event message is processed if the second domain is within the first set of safe domains. The event message may be processed according to one or more event handlers in the console application.
In some embodiments, even domains included in the first set of safe domains may be limited to triggering particular actions or types of actions within the console application, in order to provide further protection against unauthorized access. Examples of such actions are discussed below. However, different embodiments may allow various actions or types of actions in response to an event message.
Regardless of whether the event message is processed, the service cloud console may continue monitoring for additional messages transmitted from third party domains. Continual monitoring for cross-domain event messages may be accomplished using, for example, an Observer design pattern. Thus, the third party page may be able to send messages to the service cloud console, while the security of the console application is maintained.
In some embodiments, a different set of safe domains may be identified at 1062 than at 1012. For example, the second set of safe domains may be limited to domains associated with the service cloud console (e.g., *.force.com, *.salesforce.com), while the first set of safe domains may include one or more domains associated with third party service providers. By using different sets of safe domains, the security of the third party pages may be maintained because the third party pages may not be operable to communicate with each other.
In 1066, an event within the console application is detected, similar to 1016. In 1070, an event message from the console application is communicated to the third party page, similar to 1020. In some embodiments, a different set of actions or types of actions may be allowed in response to receiving an event message from an accepted domain, as shown at 1086. In both
In some embodiments, the methods shown in
The cross-domain API is described with reference to a pseudocode implementation according to some embodiments. However, the pseudocode is provided only as an example, and some embodiments may employ a different implementation. For example, cross-domain API methods may be specified using methods, method names, parameters, and/or parameter names (e.g., method(parameter1:type, parameter2:type):returntype). However, different methods, method names, parameters, and/or parameters names may be used in different embodiments. As another example, at least part of the cross-domain API pseudocode here may appear as methods that return values synchronously. However, some embodiments may include one or more methods that return values asynchronously (e.g., via a callback method).
Developers may be able to import one or more libraries into various pages, but some methods within these libraries may be prevented from operating unless the pages are run in a designated context.
Third party pages may have the ability to open primary tabs, subtabs, or both. Primary tabs and subtabs opened from third party pages may follow navigation rules similar to standard pages. For example, duplicate pages may not be allowed by default. However, developers may be permitted to allow duplicate pages. As another example, third party pages may behave with back, forward, and/or refresh buttons in a manner similar to standard pages.
In some embodiments, more than one technique may be used to facilitate cross-domain communication between HTML iframes. Accordingly, some embodiments may include JavaScript® libraries that abstract the handling of event passing between cross-domain HTML iframes. The code may determine whether to use the cross-domain scripting API, the postMessage method provided by HTML 5, the hidden HTML iframe method based on the browser, or any other method. Events that are fired within the console may be captured and re-fired to cross-domain HTML iframes and/or vice versa using one of these methods.
Some embodiments may include a server push framework, such as the VOMET technology developed by salesforce.com®, for providing cross-domain communication between frames. Events from the browser may be passed to VOMET software on a server, which would then push the events directly to the cross-domain frames.
Some embodiments may include a hash (or HTML anchor) technique for providing cross-domain communication between frames. The hash technique relies on two browser behaviors: 1) the location of a window can be modified cross-domain, and 2) the page is not reloaded when only the anchor is modified. The hash technique may require the particular window or frame to poll for changes to the URL.
Some embodiments may include a hidden HTML iframe technique for providing cross-domain communication between frames. Using the hidden HTML iframe technique, messages may be passed through the hash as with the hash technique. In contrast to the hash technique, however, the messages are passed to a hidden HTML iframe that points to a proxy page within the same domain as the target frame. Since the hidden HTML iframe and the target HTML iframe are in the same domain, they can safely communicate with each other. Because code is placed on the target domain when using the hidden HTML iframe technique, this technique does not break browser security. However, the developer may need access to both domains. Using the hidden HTML iframe technique, events can be pushed instead of pulled to the target frame by taking advantage of the iframe resize event. Since messages only change the URL of the hidden HTML iframe, they do not modify the parent window URL. In some embodiments, the communication iframe may only be created on an as-needed basis, which may result in improved performance.
Some embodiments may incorporate various technologies for constructing pages. For example, one or more components or pages may be constructed using Lumen, Ext, ExtJS, Flex, and/or VisualForce™ technologies available from Salesforce.com®. As another example, one or more components or pages may be constructed using Flash, Ajax, HTML, JavaScript®, or other publicly available technologies.
In some embodiments, one or more technologies developed by Salesforce.com®, such as the Web Services API, VisualForce™, and/or Apex Service-oriented Architecture (“SOA”) may be used to display and/or integrate disparate data sources from across multiple systems. The apparatus and methods described herein may be designed or configured for use with various web browsers, such as IE 7+, Firefox 3.5+, Safari, etc.
In some embodiments, performance may be improved by optimizing pages for high performance in a browser environment. Some web analytics and/or on-line business optimization platforms such as Omniture® may be used to measure the performance and adjust it as needed. In some embodiments, a network operations center (“NOC”) may be used to monitor performance and react quickly to performance degradation.
Ext is a JavaScript® platform developed by Salesforce.com® that includes a broad variety of UI components that can be used to develop highly interactive browser UIs. Ext may allow a complex layout. It also has a well-defined event model which facilitates component communication. JavaScript components may be created by subclassing Ext's components.
In some embodiments, some or all of the content viewable through the service cloud console will be inside of HTML iframes. The content included inside HTML iframes may include, but is not limited to: detail/edit pages, enhanced list views, customer and Salesforce®-created VisualForce™ pages and any random sites that customers put into custom links. HTML iframes may be useful because putting content of multiple detail/edit pages on the same browser page. Without iframes, for example, there may be conflicting ids and/or broken JavaScript®.
In some embodiments, the client machine may communicate with a server via Ajax. The workspace context panel may display a layout-driven grid of fields from the detail page to the user. The HTML for these fields may differ from that in the Detail page because, for example, some complex elements (e.g., lookup) may have specific HTML IDs and output JavaScript® that references those HTML IDs. In order to reconstruct those elements and reassign HTML IDs to redisplay them, the workspace context panel may request the HTML for its fields from a servlet that resolves the HTML ID and JavaScript® issues.
It should be noted that some of the embodiments described herein may be equipped with one or more of the features set forth in the following published applications: US2003/0233404, US2004/0210909, US2005/023022, US2005/0283478, US2006/0206834, and/or US2005/0065925, all of which are hereby incorporated by reference in their entirety and for all purposes.
While the present embodiments are described with reference to an on-demand service environment capable of supporting multiple tenants, these embodiments are not limited to multi-tenant databases or deployment on application servers. Embodiments may be practiced using other database architectures, for instance, ORACLE®, DB2® by IBM, and the like without departing from the scope of the embodiments claimed.
While various embodiments have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the embodiments described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.
This application claims priority to co-pending and commonly assigned U.S. Provisional Patent Application Nos. 61/346,592, titled METHOD AND SYSTEM FOR IMPLEMENTING A SOFTPHONE IN A MULTITENANT DATABASE ENVIRONMENT, by Casalaina, et al., filed on May 20, 2010, and 61/332,659, titled METHOD AND SYSTEM FOR INTEGRATING A TELEPHONY SYSTEM IN A MULTITENANT SYSTEM ENVIRONMENT, by Casalaina, et al., filed on May 7, 2010, both of which are hereby incorporated by reference in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5754636 | Bayless et al. | May 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5923736 | Shachar | Jul 1999 | A |
5946386 | Rogers et al. | Aug 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
6031836 | Haserodt | Feb 2000 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216133 | Masthoff | Apr 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6236978 | Tuzhilin | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6288717 | Dunkle | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6404860 | Casellini | Jun 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6411949 | Schaffer | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6445694 | Swartz | Sep 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec et al. | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907566 | McElfresh et al. | Jun 2005 | B1 |
6950503 | Schwartz et al. | Sep 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7213073 | Slavin | May 2007 | B1 |
7269590 | Hull et al. | Sep 2007 | B2 |
7313228 | Sorice et al. | Dec 2007 | B1 |
7340411 | Cook | Mar 2008 | B2 |
7373599 | McElfresh et al. | May 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7406501 | Szeto et al. | Jul 2008 | B2 |
7454509 | Boulter et al. | Nov 2008 | B2 |
7477907 | Koch et al. | Jan 2009 | B2 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7603331 | Tuzhilin et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644122 | Weyer et al. | Jan 2010 | B2 |
7668861 | Steven | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7747648 | Kraft et al. | Jun 2010 | B1 |
7779039 | Weissman et al. | Aug 2010 | B2 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7853881 | Assal et al. | Dec 2010 | B1 |
7945653 | Zukerberg et al. | May 2011 | B2 |
8005896 | Cheah | Aug 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095531 | Weissman et al. | Jan 2012 | B2 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8103611 | Tuzhilin et al. | Jan 2012 | B2 |
8150913 | Cheah | Apr 2012 | B2 |
8165277 | Chen et al. | Apr 2012 | B2 |
8209333 | Hubbard et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8341535 | Lyman | Dec 2012 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20110274261 | Casalaina et al. | Nov 2011 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
Entry |
---|
U.S. Office Action dated Mar. 29, 2013 issued in U.S. Appl. No. 12/878,288. |
“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on Feb. 21, 2012 from Internet at http://www.googleplusers.com/google-ripples.html], 3 pages. |
Number | Date | Country | |
---|---|---|---|
20110274258 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
61346592 | May 2010 | US | |
61332659 | May 2010 | US |