1. Field of the Invention
The present invention generally relates to medical methods and apparatus. More particularly, the present invention relates to orthopedic internal fixation such as methods and devices for restricting spinal flexion in patients having back pain, other spinal conditions, providing fracture fixation in long bone and trochanteric fractures or other orthopedic applications where a tether may be employed.
A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S1 junctions of the spine. Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. by standing or arching backwards). Flexion and extension are known to change the mechanical loading pattern of a lumbar segment. When the segment is in extension, the axial loads borne by the segment are shared by the disc and facet joints (approximately 30% of the load is borne by the facet joints). In flexion, the segmental load is borne almost entirely by the disc. Furthermore, the nucleus shifts posteriorly, changing the loads on the posterior portion of the annulus (which is innervated), likely causing its fibers to be subject to tension and shear forces. Segmental flexion, then, increases both the loads borne by the disc and causes them to be borne in a more painful way. Discogenic pain can be quite disabling, and for some patients, can dramatically affect their ability to work and otherwise enjoy their lives.
Pain experienced by patients with discogenic low back pain can be thought of as flexion instability, and is related to flexion instability manifested in other conditions. The most prevalent of these is spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion. The methods and devices described should as such also be useful for these other spinal disorders or treatments associated with segmental flexion, for which the prevention or control of spinal segmental flexion is desired. Another application for which the methods and devices described herein may be used is in conjunction with a spinal fusion, in order to restrict motion, promote healing, and relieve pain post-operatively. Alternatively, the methods and devices described should also be useful in conjunction with other treatments of the anterior column of the spine, including kyphoplasty, total disc replacement, nucleus augmentation and annular repair. General orthopedic or surgical applications are envisioned where a tether, cable or tape may be employed. An example is tronchanteric fracture fixation in which a cerclage device is wrapped around the bone and is attached and tightened to facilitate fracture healing. Similarly, the device may also be used in conjunction with a cerclage device for the fixation of long bone fractures.
Patients with discogenic pain accommodate their syndrome by avoiding positions such as sitting, which cause their painful segment to go into flexion, and preferring positions such as standing, which maintain their painful segment in extension. One approach to reducing discogenic pain involves the use of a lumbar support pillow often seen in office chairs. Biomechanically, the attempted effect of the ubiquitous lumbar support pillow is also to maintain the painful lumbar segment in the less painful extension position.
Current treatment alternatives for patients diagnosed with chronic discogenic pain are quite limited. Many patients follow a conservative treatment path, such as physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections, but typically continue to suffer with a significant degree of pain. Other patients elect to undergo spinal fusion surgery, which commonly requires discectomy (removal of the disk) together with fusion of adjacent vertebra. Fusion may or may not also include instrumentation of the affected spinal segment including, for example, pedicle screws and stabilization rods. Fusion is not usually recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and has questionable effectiveness. Despite its drawbacks, however, spinal fusion for discogenic pain remains common due to the lack of viable alternatives.
An alternative method, that is not commonly used in practice, but has been approved for use by the United States Food and Drug Administration (FDA), is the application of bone cerclage devices which can encircle the spinous processes or other vertebral elements and thereby create a restraint to motion. Physicians typically apply a tension or elongation to the devices that applies a constant and high force on the anatomy, thereby fixing the segment in one position and allowing effectively no motion. The lack of motion allowed after the application of such devices is thought useful to improve the likelihood of fusion performed concomitantly; if the fusion does not take, these devices will fail through breakage of the device or of the spinous process to which the device is attached. These devices are designed for static applications and are not designed to allow for dynamic elastic resistance to flexion across a range of motion. The purpose of bone cerclage devices and other techniques described above is to almost completely restrict measurable motion of the vertebral segment of interest. This loss of motion at a given segment gives rise to abnormal loading and motion at adjacent segments, which can lead eventually to adjacent segment morbidity.
Another solution involves the use of an elastic structure, such as tethers, coupled to the spinal segment. The elastic structure can relieve pain by increasing passive resistance to flexion while often allowing substantially unrestricted spinal extension. This mimics the mechanical effect of postural accommodations that patients already use to provide relief
Spinal implants using tether structures are currently commercially available. One such implant couples adjacent vertebrae via their pedicles. This implant includes spacers, tethers and pedicle screws. To install the implant, selected portions of the disc and vertebrae bone are removed. Implants are then placed to couple two adjacent pedicles on each side of the spine. The pedicle screws secure the implants in place. The tether is clamped to the pedicle screws with set-screws, and limits the extension/flexion movements of the vertebrae of interest. Because significant tissue is removed and because of screw placement into the pedicles, the implant and accompanying surgical methods are highly invasive and the implant is often irreversibly implanted. There is also an accompanying high chance of nerve root damage. Where the tip of the set-screw clamps the tethers, the tethers are abraded and particulate wear debris is generated.
Other implants employing tether structures couple adjacent vertebrae via their processes instead. These implants include a tether and a spacer. To install the implant, the supraspinous ligament is temporarily lifted and displaced. The interspinous ligament between the two adjacent vertebrae of interest is then permanently removed and the spacer is inserted in the interspinous interspace. The tether is then wrapped around the processes of the two adjacent vertebrae, through adjacent interspinous ligaments, and then mechanically secured in place by the spacer or also by a separate component fastened to the spacer. The supraspinous ligament is then restored back to its original position. Such implants and accompanying surgical methods are not without disadvantages. These implants may subject the spinous processes to frequent, high loads during everyday activities, sometimes causing the spinous processes to break or erode. Furthermore, the spacer may put a patient into segmental kyphosis, potentially leading to long-term clinical problems associated with lack of sagittal balance. The process of securing the tethers is often a very complicated maneuver for a surgeon to perform, making the surgery much more invasive. And, as previously mentioned, the removal of the interspinous ligament is permanent. As such, the application of the device is not reversible.
More recently, less invasive spinal implants have been introduced. Like the aforementioned implant, these spinal implants are placed over one or more pairs of spinous processes and provide an elastic restraint to the spreading apart of the spinous processes occurring during flexion. However, spacers are not used and interspinous ligaments are not permanently removed. As such, these implants are less invasive and may be reversibly implanted. The implants typically include a tether and a securing mechanism for the tether. The tether may be made from a flexible polymeric textile such as woven polyester (PET) or polyethylene; multi-strand cable, or other flexible structure. The tether is wrapped around the processes of adjacent vertebrae and then secured by the securing mechanism. The securing mechanism may involve the indexing of the tether and the strap, e.g., the tether and the securing mechanism include discrete interfaces such as teeth, hooks, loops, etc. which interlock the two. Highly forceful clamping may also be used to press and interlock the tether with the securing mechanism. Many known implementations clamp a tether with the tip of a set-screw, or the threaded portion of a fastener. However, the mechanical forces placed on the spinal implant are unevenly distributed towards the specific portions of the tether and the securing mechanism which interface with each other. These portions are therefore typically more susceptible to abrasion, wear, or other damage, thus reducing the reliability of these spinal implants as a whole. Other known methods use a screw or bolt to draw other components together to generate a clamping force. While these methods may avoid the potentially damaging loads, the mechanical complexity of the assembly is increased by introducing more subcomponents.
For the aforementioned reasons, it would be desirable to provide improved methods and apparatuses to secure the tethers of such spinal implants together. In particular, such methods and apparatuses should be less invasive and should enable the tether to be more easily, reversibly, repeatably and reliably secured to an implant by a surgeon, in a surgery setting.
2. Description of the Background Art
Patents and published applications of interest include: U.S. Pat. Nos. 3,648,691; 4,643,178; 4,743,260; 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,180,393; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,562,737; 5,609,634; 5,628,756; 5,645,599; 5,725,582; 5,902,305; Re. 36,221; 5,928,232; 5,935,133; 5,964,769; 5,989,256; 6,053,921; 6,248,106; 6,312,431; 6,364,883; 6,378,289; 6,391,030; 6,468,309; 6,436,099; 6,451,019; 6,582,433; 6,605,091; 6,626,944; 6,629,975; 6,652,527; 6,652,585; 6,656,185; 6,669,729; 6,682,533; 6,689,140; 6,712,819; 6,689,168; 6,695,852; 6,716,245; 6,761,720; 6,835,205; 7,029,475; 7,163,558; Published U.S. patent application Nos. US 2002/0151978; US 2004/0024458; US 2004/0106995; US 2004/0116927; US 2004/0117017; US 2004/0127989; US 2004/0172132; US 2004/0243239; US 2005/0033435; US 2005/0049708; 2005/0192581; 2005/0216017; US 2006/0069447; US 2006/0136060; US 2006/0240533; US 2007/0213829; US 2007/0233096; Published PCT Application Nos. WO 01/28442 A1; WO 02/03882 A2; WO 02/051326 A1; WO 02/071960 A1; WO 03/045262 A1; WO2004/052246 A1; WO 2004/073532 A1; and Published Foreign Application Nos. EP0322334 A1; and FR 2 681 525 A1. The mechanical properties of flexible constraints applied to spinal segments are described in Papp et al. (1997) Spine 22:151-155; Dickman et al. (1997) Spine 22:596-604; and Garner et al. (2002) Eur. Spine J. S186-S191; A1 Baz et al. (1995) Spine 20, No. 11, 1241-1244; Heller, (1997) Arch. Orthopedic and Trauma Surgery, 117, No. 1-2:96-99; Leahy et al. (2000) Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 214, No. 5: 489-495; Minns et al., (1997) Spine 22 No. 16:1819-1825; Miyasaka et al. (2000) Spine 25, No. 6: 732-737; Shepherd et al. (2000) Spine 25, No. 3: 319-323; Shepherd (2001) Medical Eng. Phys. 23, No. 2: 135-141; and Voydeville et al (1992) Orthop Traumatol 2:259-264.
The present invention provides fastening mechanisms and methods for releasably locking a tether for restricting flexion of at least one spinal segment. More particularly, the provided fastening mechanisms and methods relate to improvements to the methods and devices of deploying and implanting spinal implants for the treatment of discogenic pain and other conditions, such as degenerative spondylolisthesis. Specifically, such deployment and implantation methods are made less invasive and more reliable and reversible by the provided fastening mechanisms and methods.
A first aspect of the present invention provides a device for restricting flexion of a spinal segment. The device includes a constraint device having a tether structure and a compliance member. The constraint device is adapted to be coupled with adjacent spinous processes or a spinous process and a sacrum. The constraint device is also adapted to provide a force resistant to flexion of the spinal segment. A locking mechanism is coupled with the constraint device and includes a clamp body and a fastener element. The clamp body has a fastener aperture and a tether aperture. The fastener aperture is sized to receive the fastener element, and the tether aperture is sized to receive the tether structure. A portion of the tether structure is disposed in the tether aperture and the fastener aperture, and the fastener element is disposed in the fastener aperture such that the tether structure is captured between the fastener element and the clamp body.
The constraint may have a dimension that is adjustable to allow tightening over the spinous processes or spinous process and sacrum when the spinal segment is in a neutral position. The constraint device may provide an elastic resistance to flexion of the spinal segment beyond the neutral position in the range from 7.5 N/mm to 20 N/mm. The clamp body is coupled with the constraint. The fastener element may be disposed at least partially in the fastener aperture. The tether is captured between the fastener element and the clamp body.
In many embodiments, the constraint may provide an elastic resistance to extension beyond the neutral position below 3 N/mm. In some embodiments, the elastic resistance may be below 0.5 N/mm. In some embodiments, the constraint is pre-tensioned to provide an initial resistive force to flexion which must be overcome prior to initiating deformation. The initial resistive force may be in the range from 5N to 25N.
In many embodiments, the constraint may comprise a superior tether structure adapted to couple to the superior spinous process, an inferior tether structure adapted to couple to the inferior spinous process or sacrum, and at least one compliance member. The tether structures are substantially non-distensible and the compliance member provides the resistance to flexion. In some embodiments, the device may comprise at least two compliance members arranged to lie on either side of a midline when the tether structures are placed over the spinous processes or spinous process and sacrum.
In various embodiments, the tether or tether aperture may include various features. The tether aperture may comprise a rectangular shaped slot. The tether may enter the tether aperture without deformation thereof. The tether may be deformed in order to be inserted into the tether aperture. In some embodiments, the tether may have a width and the tether aperture may have a width smaller than the tether width. The tether enters the tether aperture in a first plane and the tether exits the tether aperture in a second plane generally transverse to the first plane.
In some embodiments, the fastener element comprises a screw threadably engaged with the fastener aperture. The screw may comprise a head having a diameter larger than the aperture diameter. The tether may be captured between the screw head and the clamp body. A surface of the clamp body may support the screw head and prevent bending of the screw. The screw may comprise a head having surface features adapted to press into the tether when the screw is tightened. The screw may comprise a driver feature adapted to receive a tool to permit rotation of the screw. The driver feature may be, for example, a Phillips head, a slotted flat head, a Torx head, or a hex head. The fastener element may rotationally lock the tether in position relative to the clamp body.
In some embodiments, the fastener element comprises a position indicator adapted to provide visual, tactile, or audible feedback to an operator on the relative position of the fastener element with respect to the clamp body. The position indicator may comprise detents or calibration marks on either the fastener element or the clamp body and the indicator may be radiopaque to permit visualization under x-ray, fluoroscopy or other radiographic techniques.
In another aspect, the invention provides a method for releasably locking a tether. The tether is advanced through a tether aperture in a clamp body. The fastener element is positioned in a fastener aperture in the clamp body. The tether enters the tether aperture in a first plane and then exits the clamp body in a second plane generally transverse to the first plane. The tether is captured between the clamp body and a surface of the fastener. The fastener element thereby releasably locks the tether in position relative to the clamp body. The clamp body may have additional surfaces that support the screw in reaction to bending or other loads that may be induced in the screw by the clamping action.
The provided method may further comprise various steps and/or features. The fastener element may comprise a screw and capturing the tether may comprise threadably engaging the screw with the fastener aperture. The fastener element may comprise a screw and rotating the screw in a first direction locks the tether in position while rotating the screw in a second direction opposite the first may unlock the tether. The indicator indicates the position of the fastener element relative to the clamp body. Advancing the tether through the tether aperture may comprise advancing the tether therethrough without deformation of the tether or the tether may be deformed in order to fit in the tether aperture. A position indicator indicating the position of the fastener element relative to the clamp body may be monitored.
In yet another aspect of the present invention a method for releasably locking an orthopedic, surgical tether comprises advancing the tether through a tether aperture in a clamp body and positioning a fastener element having a head, in the clamp body. Thus, the tether is captured between the clamp body and the head of the fastener element thereby releaseably locking the tether in position relative to the clamp body.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
As used herein, “neutral position” refers to the position in which the patient's spine rests in a relaxed standing position. The “neutral position” will vary from patient to patient. Usually, such a neutral position will be characterized by a slight curvature or lordosis of the spine where the spine has a slight anterior convexity and slight posterior concavity. In some cases, the presence of the constraint of the present invention may modify the neutral position, e.g. the device may apply an initial force which defines a “new” neutral position having some extension of the untreated spine. As such, the use of the term “neutral position” is to be taken in context of the presence or absence of the device. As used herein, “neutral position of the spinal segment” refers to the position of a spinal segment when the spine is in the neutral position.
Furthermore, as used herein, “flexion” refers to the motion between adjacent vertebrae in a spinal segment as the patient bends forward. Referring to
Additionally, as used herein, “extension” refers to the motion of the individual vertebrae L as the patient bends backward and the spine extends from the neutral position illustrated in
After the incision has been made, a piercing tool T having a sharp distal end may be used to access and pierce the interspinous ligament ISL while avoiding the supra spinous ligament SSL, creating an interspinous ligament perforation P1 superior of the first spinous process SSP of interest. This surgical approach is desirable since it keeps the supra spinous ligament intact and minimizes damage to the multifidus muscle and tendons and other collateral ligaments. As shown in
Multifidus tendon and muscle M is not shown in
After tip TI or a portion of tether TH is left in place in perforation Pl, another tool may couple with tip TI and pull tip TI such that it drags tether 102a and compliance element 104a to its appropriate position relative to the spine, as shown in
The steps of accessing the ISL, piercing the ISL, and threading tether 102 through a perforation are then repeated for the opposite, lateral side of the spine for an adjacent spinous process ISP, inferior of the first superior spinal process SSP of interest. As shown in
As shown in
Fastening mechanism 106 may comprise a driver feature 108. As shown in
Tethers may be locked and secured in place relative to a compliance member using a screw clamp as seen in
Tether aperture 87 is often a rectangular shaped slot, although one of skill in the art will appreciate that may geometries may be utilized. In
Tether aperture 87 may also be generally circular as shown in
While the exemplary embodiments described above illustrate a fastening mechanism that is coupled with a spring-like compliance member, one will appreciate that the fastening mechanism may be used independently of a spring or other internal fixator. Other uses may include applications where a tether is secured with a knot, crimped or the like. These may include cerclage applications such as in trochanteric fixation in addition to application of a substantially rigid tether to multiple spinous processes or lamina.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application is a continuation of International Patent Application No. PCT/US2009/046492 (Attorney Docket No. 026398-000810PC), filed Jun. 5, 2009, which claims the benefit of provisional U.S. application No. 61/059,543 (Attorney Docket No. 026398-000800US), filed Jun. 6, 2008, the full disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61059543 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2009/046492 | Jun 2009 | US |
Child | 12953249 | US |