The invention relates to methods and apparatus for valve repair in a patient body. More particularly, the invention relates to methods and apparatus for mitral valve repair for correcting conditions such as mitral valve regurgitation.
Essential to normal heart function are four heart valves, which allow blood to pass through the four chambers of the heart in a specified direction. These valves have either two or three cusps or leaflets, which are comprised of fibrous tissue that are attached to the walls of the heart. The cusps open when the blood is flowing correctly and then close to form a tight seal to prevent backflow.
The four chambers are known as the right and left atria (upper chambers) and right and left ventricle (lower chambers). The four valves that control blood flow are known as the tricuspid, mitral, pulmonary and aortic valves. In a normal functioning heart, the tricuspid valve allows inflow of deoxygenated blood from the right upper chamber (right atrium) to the right lower chamber (right ventricle). When the right ventricle contracts, the pulmonary valve allows one-way outflow from the right ventricle to the pulmonary vascular bed which carries deoxygenated blood to the lungs. The tricuspid valve is closed during this time. The mitral valve, also a one-way inflow valve, allows oxygenated blood which has returned to the left upper chamber (left atrium) to flow to the lower left chamber (left ventricle). When the left ventricle contracts, the oxygenated blood is pumped through the aortic valve to the aorta. During left ventricular ejection of blood, the mitral valve is closed. When the ventricle is at the end of its contractile state, the aortic valve begins to close and the cardiac cycle repeats itself.
Clinical cardiac decomposition (or heart failure) results from heart valve malfunction, such as mitral insufficiency. Mitral valve insufficiency, also known as mitral regurgitation, is a common cardiac abnormality where the mitral valve leaflets do not completely close when the left ventricle contracts. This allows blood to backflow into the left atrium resulting in left ventricular overload and if the condition is not corrected, the added workload will eventually cause left ventricular enlargement and dysfunction resulting in heart failure.
Various approaches to remedy mitral valve pathology typically require open heart surgery and have included various treatments such as valve replacement, chordae tendineae shortening or replacement, leaflet resection and mitral annular repair also known as annuloplasty. Annuloplasty and valvuloplasty procedures have been developed to correct mitral valve insufficiency.
Mitral valve insufficiency typically results from ischemia of the papillary muscles (chronic ischemic mitral regurgitation or CIMR) or connective tissue degeneration of the mitral leaflets or chordae tendineae. A combination of these factors can coexist in the same patient. Mitral regurgitation can also result from a change in the size and shape of the mitral annulus. For instance, the posterior annulus may enlarge to a greater degree than the anterior annulus. This is generally because the anterior annulus is attached to the strong fibrous skeleton of the heart while the posterior annulus is supported by cardiac muscle (a much more elastic tissue).
Procedures such as annuloplasty for achieving competence of the regurgitant mitral valve frequently require placement of a mitral annuloplasty ring. Studies have shown that ring annuloplasty abolishes dynamic annular motion and immobilizes the posterior leaflet. Rings of various designs used to perform annuloplasty can have an adverse effect on mitral valve function. For instance, where mitral valve repair with a prosthetic annuloplasty ring has been performed, reduced posterior leaflet motion is typically observed echocardiographically after most ring annuloplasty procedures.
Such reduced posterior leaflet functioning has been demonstrated to occur universally and is identical with either a semi-rigid or flexible complete annuloplasty ring. It is accepted that the ring stabilizes the posterior annulus and reinforces the posterior leaflet as this stabilization and reinforcement of the posterior leaflet is believed to create a buttress against which the anterior leaflet closes.
However, the “freezing” of the posterior leaflet effectively creates a uni-leaflet valve from a bi-leaflet valve. The clinical acceptance of posterior leaflet immobilization after mitral valve annuloplasty is felt to negatively impact the distribution of closing stress on the leaflets. The potential downside is increased collagen deposition resulting in leaflet thickening which can further stress leaflet closure.
Accordingly, a percutaneous mitral valve annuloplasty system that can effectively repair conditions such as mitral valve regurgitation without the drawbacks described above is desired.
Supporting the posterior leaflet in a frozen or immobile position may not only alleviate stress imparted upon both leaflets but also enable both posterior and anterior leaflets to properly coapt in use, particularly for alleviating conditions such as mitral valve regurgitation. As such, an implantable device may be advanced and positioned intravascularly beneath the posterior leaflet of the mitral valve utilizing any number of percutaneous techniques.
One method of intravascularly treating the mitral valve may include advancing a guiding catheter having a distal end with a magnetic tip into a patient and through the vasculature and into the right atrium where the catheter may be articulated to enter the ostium of the coronary sinus. Once within the coronary sinus, the catheter may be advanced until a distal portion of the catheter is adjacently positioned relative to the posterior mitral leaflet of the mitral valve. With the guiding catheter positioned within the coronary sinus, a separate delivery catheter may also be introduced percutaneously into the patient and advanced into the patient's heart. The delivery catheter may be advanced into the patient's left ventricle through any number of approaches.
With delivery catheter desirably positioned within the left ventricle along, against, and/or adjacent to the inferior surface of the posterior mitral leaflet, a balloon catheter assembly may be advanced along the delivery catheter until the assembly is aligned along the posterior mitral leaflet proximate of the magnetic tip. The balloon catheter assembly may generally have one or more inflatable balloons which are aligned in series.
Each balloon may be interconnected to one another and each may define a lumen such that the balloon catheter assembly may be advanced over or along delivery catheter as an assembly. Moreover, each balloon may each have a corresponding inflation lumen through which one or more balloons may be inflated. Each balloon may be sized to correspond with a particular anatomical portion of the posterior mitral leaflet such that the balloon assembly as a whole may align with at least a majority of the length of the posterior mitral leaflet. Moreover, each or all of the balloons may be inflated to varying degrees relative to one another.
Any number of fluids or gases may be utilized, e.g., saline, water, contrast material, carbon dioxide, etc. In additional variations, alternative materials such as polymers may be utilized to fill the balloons and in yet other variations, each of the balloons may additionally be constructed to expand without the need for an inflation fluid or gas. For instance, one or more balloons may utilize an expandable scaffolding or structure to provide for expansion of the members against the posterior mitral leaflet.
With the balloon catheter assembly in position against or along the posterior mitral leaflet, a magnet chain catheter may be advanced over the guiding catheter into the coronary sinus proximate to the balloon catheter assembly. Alternatively, a guidewire may be left within the coronary sinus while the guiding catheter is withdrawn proximally from the coronary sinus and the magnet chain catheter is advanced along the guidewire into the coronary sinus in place of the guiding catheter.
In either case, the magnet chain catheter may generally be comprised of one or more magnets linearly aligned along a length of the outer surface of the catheter and these magnets may have a polarity opposite to the magnets integrated within the balloon catheter assembly. As the magnet chain catheter is advanced into position within the coronary sinus, the one or more magnets may be magnetically drawn towards the magnets integrated, within the balloon catheter assembly such that when aligned relative to one another, the balloon catheter assembly may be held securely in position relative to the posterior mitral leaflet by the magnet chain catheter. The balloon catheter assembly removably connected to the catheter shaft may alternatively utilize a single inflation shaft having an adjustable occluding mechanism to inflate each balloon member independently of one another.
Alternative variations for the balloon membrane may include variations where one or more of the balloon membranes include an expandable scaffold integrated within or upon the balloon membrane as an expandable woven or braided structure. In yet another variation, the balloon members may have one or more expandable rings integrated within the balloons. In yet another variation, a balloon variation may have an integrated stent-like structure expandable from a low-profile delivery configuration to an expanded deployment configuration.
Yet another example of an alternative apparatus which may be utilized to support the mitral valve, particularly the posterior mitral leaflet, in a frozen or immobile position to facilitate the proper coaptation of the posterior and anterior mitral leaflets may include a device configured as a split ring having two terminal atraumatic ends in apposition to one other separated by a split. The ring may have a central opening defined by the partial circumferential shape of the ring and may further form an open channel which is defined around the length of the ring. The channel may be enclosed along a top side of the ring by a presentation surface.
In use, because the chordae tendineae may loosely pass through the central opening, the ring may freely slide in vivo along the chordae tendineae while retained by the atraumatic ends. During systole, because of the tissue contraction and forced blood flow, the ring may be urged to slide along the chordae tendineae into a superior position where presentation surface is urged or pressed against the posterior mitral leaflet. As the presentation surface is pressed against the mitral valve, the posterior mitral leaflet may be supported by the ring in inhibiting or preventing prolapse of the leaflet.
By supporting a portion of the mitral valve, particularly the posterior leaflet, in a frozen or immobile position while avoiding reduction of the mitral annulus, a buttress may be created against which the anterior leaflet may close. By maintaining the posterior mitral leaflet frozen or immobile in its closed position, this may alleviate stress imparted upon both leaflets and enable both posterior and anterior leaflets to properly coapt in use, particularly for alleviating conditions such as mitral valve regurgitation. Generally, an implantable device may be advanced and positioned intravascularly beneath the posterior leaflet of the mitral valve utilizing any number of percutaneous techniques.
A representative side view of the anterior mitral leaflet AML and posterior mitral leaflet PML of a mitral valve MV are illustrated in
As mentioned above, an implantable support or buttress 8 may be positioned inferiorly to the posterior mitral leaflet PML to freeze or immobile movement of the leaflet into its closed position while allowing the anterior mitral leaflet AML to move uninhibited between its closed and open configuration, as shown in
In one method of intravascularly treating the mitral valve, a guiding catheter 10 having a distal end with a magnetic tip 12 may be percutaneously inserted into a patient and advanced through the vasculature, e.g., via the inferior vena cava or the superior vena cava, and into the right atrium where the catheter 10 may be articulated to enter the ostium of the coronary sinus CS. Once within the coronary sinus CS, the catheter 10 may be advanced until a distal portion of the catheter is adjacently positioned relative to the posterior mitral leaflet PML of the mitral valve MV, as shown in
The catheter 10 may comprise any number of configurations such as an articulatable catheter having a steerable tip to facilitate access within the vasculature. Moreover, the catheter 10 may be advanced optionally under the guidance of any number of visualization modalities, such as fluoroscopy, echocardiography, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), etc., if so desired. Additionally, catheter 10 may be advanced within the patient optionally under the guidance of a guidewire, as conventionally known. Although magnetic tip 12 may generally comprise a ferrous magnet, other variations of tip 12 may utilize an actuatable electromagnetic tip, in which case electrical wires may be routed through catheter 10 to activate the electromagnetic tip when desired or necessary.
With the guiding catheter 10 positioned within the coronary sinus CS, a separate delivery catheter 14 may also be introduced percutaneously into the patient and advanced into the patient's heart. The delivery catheter 14 may be advanced into the patient's left ventricle through any number of approaches. For instance, in one variation, the delivery catheter 14 may be introduced and positioned within the heart via a retrograde arterial percutaneous access. Accordingly, the delivery catheter 14 may be introduced through a femoral access point and advanced through the abdominal aortic artery, through the aortic valve, and directly into the left ventricle, as shown in
Alternatively in another variation, the delivery catheter 14 may also be advanced through the inferior vena cava or superior vena cava and passed or otherwise pierced trans-septally through the atrial septum into the left atrium and articulated to enter directly through the mitral valve MV itself between the leaflets and into the left ventricle, where it may be articulated into position, as described below.
Once the distal portion of delivery catheter 14 has been advanced into the left ventricle, it may be steered or otherwise articulated such that it becomes positioned along, against, and/or adjacent to die inferior surface of the posterior mitral leaflet PML adjacent to guiding catheter 10 disposed within the coronary sinus CS, as further illustrated in
Prior to, while, or even after delivery catheter 14 is desirably positioned, an inflatable or expandable member 22 positioned at a distal end of guidewire 18 may be actuated to inflate or expand against the surrounding tissue, such as any adjacent chordae tendineae, to hold or maintain a position of delivery catheter 14 relative to the posterior mitral leaflet. Guidewire 18 may be passed through a lumen 16 defined through delivery catheter 14. Where use of guidewire 18 is omitted, an inflatable or expandable member may be incorporated directly onto a portion of delivery catheter 14, for instance near or at a distal end of the catheter 14.
Although inflatable or expandable member 22 is illustrated as an inflatable balloon, which may be less likely to become lodged or entangled in any secondary chordae tendineae, other variations of expandable members may be utilized. For instance, other variations may utilize an expandable cage or scaffold made from a reconfigurable shape memory metal, such as a Nickel-Titanium alloy, or shape memory polymers.
Moreover, although introduction and positioning of guiding catheter 10 is illustrated as being prior to the introduction and positioning of delivery catheter 14, other variations may have both catheters 10, 14 introduced and advanced simultaneously into position within the heart. Yet other variations may alternatively include delivery catheter 14 introduced and positioned prior to placement of guiding catheter 10. Additional variations and alternatives may also be utilized as so desired and are intended to be included within the description herein.
With delivery catheter 14 desirably positioned within the left ventricle along, against, and/or adjacent to the inferior surface of the posterior mitral leaflet PML, balloon catheter assembly 30 may be advanced along delivery catheter 14 until assembly 30 is aligned along the posterior mitral leaflet PML proximally of magnetic tip 20, as shown in
As illustrated, assembly 30 may have first inflatable balloon 32 located distally, second inflatable balloon 34 located proximally of first balloon 32, and third inflatable balloon 36 located proximally of second balloon 34. Each balloon 32, 34, 36 may be interconnected to one another and each may define a lumen 38 such that balloon catheter assembly 30 may be advanced over or along delivery catheter 14 as an assembly. Moreover, each balloon 32, 34, 36 may each have a corresponding inflation lumen 24 through which one or more balloons may be inflated. Each balloon may be sized to correspond with a particular anatomical portion of the posterior mitral leaflet PML such that balloon assembly 30 as a whole may align with at least a majority of the length of the posterior mitral leaflet PML.
Balloon assembly 30 may be inflated in any combination, for instance, once securely positioned, all three balloon 32, 34, 36 may be uniformly inflated against the along the posterior mitral leaflet PML. Alternatively, any single one of the balloons 32, 34, 36 may be inflated alone without the remaining two balloons being inflated. In another alternative, any two of the balloons 32, 34, 36 may be inflated in combination without inflating the third balloon. For instance, first 32 and third balloons 36 may be inflated without inflating second balloon 34 or first 32 and second balloons 34 may be inflated without inflating third balloon 36, and so on in any number of combinations. Moreover, each or all of the balloons 32, 34, 36 may be inflated to varying degrees relative to one another. For instance, first balloon 32 may be fully inflated while the remaining balloons are partially inflated or not inflated at all. Alternatively, first balloon 32 may be partially inflated or not inflated at all, while second 34 and/or third balloons 36 are each or alternatively fully of partially inflated or not inflated at all.
The ability to alter the inflation and amount of inflation in each and/or all of the balloons 32, 34, 36 may allow for the practitioner to alter or customize the amount, degree, and/or positioning of buttressing provided along the length of the posterior mitral leaflet PML. This allows for a greater degree of flexibility in treating such leaflet deficiencies depending upon a particular patient's anatomy.
In other variations, although three inflation balloons are illustrated, alternative numbers of balloons may be utilized. For instance, a single balloon (further described below) for positioning relative to the posterior mitral leaflet PML may be utilized while in other variations, four or more balloons accordingly sized for placement against or along the posterior mitral leaflet PML may be utilized as practicable.
Moreover, in inflating the balloons, any number of fluids or gases may be utilized, e.g., saline, water, contrast material, carbon dioxide, etc. In additional variations, alternative materials such as polymers may be utilized to fill the balloons and in yet other variations, each of the balloons may additionally be constructed to expand without the need for an inflation fluid or gas. For instance, one or more balloons may utilize an expandable scaffolding or structure to provide for expansion of the members against the posterior mitral leaflet PML, as further described below.
In all these variations, these examples are intended to be illustrative and are not limiting. Accordingly, any and all combinations of the various features described above may be utilized with one another, e.g., combinations between varying inflation of the balloons, varying inflation amounts, number of balloons, inflation fluids or gases, expansion mechanisms, etc., are intended to be within the scope of this disclosure.
Aside from inflation or expansion of the one or more balloons 32, 34, 36, there may be one or more magnets integrated within the catheter or balloon assembly 30. For instance, a first magnet 40 may be integrated within or along first balloon 32, second magnet 42 may be integrated within or along second balloon 34, and third magnet 44 may be integrated within or along third balloon 36. These one or more magnets 40, 42, 44 may be simply integrated along the length of the assembly 30 and may alternatively utilize more than three magnets. Moreover, these magnets 40, 42, 44 may comprise ferrous magnets or alternatively utilize electromagnets.
Turning now to
In either case, magnet chain catheter 50 may generally be comprised of one or more magnets 52 linearly aligned along a length of the outer surface of the catheter 50 and these magnets 52 may have a polarity opposite to the magnets 40, 42, 44 integrated within balloon catheter assembly 30. The lengths of the one or more magnets 52 along catheter 50 may be sufficient to correspond at least with a length of the balloon catheter assembly 30, as illustrated. As magnet chain catheter 50 is advanced into position within the coronary sinus CS, the one or more magnets 52 may be magnetically drawn towards the magnets 40, 42, 44 integrated within balloon catheter assembly 30 such that when aligned relative to one another, balloon catheter assembly 30 may be held securely in position relative to the posterior mitral leaflet PML by magnet chain catheter 50. Accordingly, magnet chain catheter 50 acts as an anchoring element for balloon catheter assembly 30 utilizing magnetic attraction between the complementary magnetic attractor elements.
With balloon catheter assembly 30 and magnetic chain catheter 50 each drawn towards one another and securely positioned against the tissue in their respective locations, the expandable member 22 disposed upon the distal tip of guidewire 18 may be deflated and guidewire 18 and/or delivery catheter 14 may be withdrawn proximally through lumen 38 of balloon catheter assembly 30 leaving assembly 30 in position against or along the posterior mitral leaflet PML, as illustrated in
The one or more balloons 32′, 34′, 36′ may then be desirably inflated or expanded uniformly or in various combinations to buttress the posterior mitral leaflet PML, as described above, and as shown in
As described above, magnets 40, 42, 44 may be integrated within or along balloon catheter assembly 30. In other variations, multiple magnets may be positioned within a single balloon, as shown in
As previously mentioned above, any number of imaging modalities may be utilized, e.g., fluoroscopy, echocardiography, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), etc. Transesophageal echocardiography in particular may be utilized with any of the variations described herein to provide in vivo imaging during advancement and/or deployment of the devices described herein. Typically, transesophageal echocardiography is performed by utilizing a high-frequency ultrasound transducer mounted on the tip of an endoscope or gastroscope which is passed per-orally into the patient's esophagus and advanced until the ultrasound transducer is adjacent to the patient's heart. Because the posterior portion of the heart is in close proximity to the lower portion of the esophagus, ultrasound images of the interior of the patient's heart may be obtained directly by the transducer.
As mentioned above, other alternative inflatable or expandable balloon members may be utilized.
Turning now to the delivery and deployment system in further detail,
The balloon catheter assembly removably connected to catheter shaft 72 may generally comprise one or more inflatable or expandable balloon members 32, 34, 36 which may be expanded via corresponding inflation lumens routed through catheter shaft 72. However, another variation is shown in the perspective view of
In this particular variation,
A separate wall occluding shaft 84 may be slidably positionable within lumen 108 and may further define one or more openings 96, 98 therealong which may be in communication with a common lumen 106 defined through a length of the occluding shaft 84. The interior surface of wall occluding shaft 84 may further define a helical groove or track 104 throughout its length along which an infusion catheter shaft 86 may be advanced therealong. Infusion catheter shaft 86 may accordingly define a helical rail or projection 102 along its outer surface corresponding to the helical track 104 defined along the inner surface of wall occluding shaft 84. Infusion catheter shaft 86 may further define an inflation lumen 100 in communication with a pump and/or externally located fluid or gas reservoir through which the balloon members 32, 34, 36 may be inflated or otherwise expanded.
Generally in operation, wall occluding shaft 84 may be translated until its first opening 96 defined along its length is aligned with first opening 90 defined along the length of inflation shaft 82. With the openings aligned, a fluid or gas as described above may be passed through infusion catheter 86 to flow through the aligned openings 90, 96 and into one of the balloon members to inflate or expand the balloon, such as balloon member 32 as shown in
In an example for how each individual balloon member may be optionally inflated or expanded,
With first balloon member 32 having been inflated, wall occluding shaft 84 may be withdrawn partially to occlude the opening 90 of inflation catheter 82 leading to the first balloon interior 110. Opening 96 of wall occluding shaft 84 may then be aligned with the second opening leading into second balloon interior 112 and infusion catheter 86 may be optionally withdrawn partially by rotating the shaft to engage the helical track. Once aligned and with the first and third openings 90, 94 occluded by shaft 84, the fluid or gas 122 may be passed through infusion lumen 100 such that the second balloon interior 112 is filled accordingly, as shown in
With first and second balloon members 30, 32 filled, the remaining third balloon member 36 may be filled. As illustrated in
To facilitate the selective occlusion and opening of each of the openings leading to the balloon members 32, 34, 36 with respect to wall occluding shaft 84, each of the openings 90, 92, 94 located along inflation catheter 82 may be positioned at varying angles relative to one another. Accordingly, each opening 90, 92, 94 may be off-set with respect to one another in such a manner that if wall occluding shaft 84 were rotated about its longitudinal axis, each opening would become un-occluded by shaft 84 one at a time while the remaining two openings remain occluded at any given point. In this manner, any one of the balloon members may be inflated or expanded independently from one another.
Another variation of the balloon assembly is illustrated in the perspective views of
Aside from a distensible or expandable balloon membrane which is inflated or expanded by an infusion of fluid or gas, alternative variations for the balloon membrane may be utilized which remain in an enlarged configuration once expanded. For instance,
In yet another variation of the balloon assembly, balloon members 32, 34, 36 may have one or more expandable rings 140, 142, 144, respectively, integrated within the balloons. For instance, in the variation illustrated in
In yet another variation,
Turning now to deployment mechanisms of the balloon assemblies,
During intravascular delivery, the balloon assembly 30 may remain securely attached to catheter outer shaft 72. However, during deployment and release of the balloon assembly 30 within the left ventricle, release mechanism balloon 152 may be inflated or expanded 152′ such that it radially contacts coupling mechanism stent 154′ and urges it into an outward radial direction to release the coupling stent 154′ from catheter outer shaft 72 and to thereby release balloon assembly from catheter shaft 72, as shown in
With coupling mechanism stent 154′ disengaged, release mechanism balloon 152 may be deflated to allow catheter shaft 72 and delivery catheter 14 to be withdrawn from balloon assembly 30, as shown in
In yet another variation for inflating or infusing a balloon member,
With the distal tip of catheter 162 positioned within balloon interior 110, a fluid or gas, as above, may be infused into the balloon member 32 to inflate it, as shown in
In yet another variation of a balloon member assembly,
A perspective view of one possible approach for advancing the sheath 172 through the aortic arch and aortic valve AV and within the left ventricular chamber is shown to illustrate a configuration of the delivery catheter 179 having the multiple inflation lumens in communication with the inflation assembly 170, as shown in
With articulatable section 174 desirably positioned, guidewire 18 may be advanced through the delivery catheter such that guidewire 18 is directed along inferiorly within the ventricular chamber around the posterior portion of the mitral valve MV. Once guidewire 18 has been directed sufficiently around the valve, balloon 22 may be inflated to temporarily anchor a position of the guidewire 18 and delivery catheter relative to the mitral valve MV, as shown in
A second catheter, e.g., guiding catheter 202 having a magnet chain as described above, may be introduced and intravascularly advanced along another vascular route, e.g., via the inferior vena cava or superior vena cava, into the right atrial chamber, and into the coronary sinus CS. The magnet chain and guiding catheter 202 may be advanced along the coronary sinus CS until the magnet chain is positioned proximate or adjacent to the mitral valve MV, as described above and as illustrated in
Yet another example of an alternative apparatus which may be utilized to support the mitral valve, particularly the posterior mitral leaflet, in a frozen or immobile position to facilitate the proper coaptation of the posterior and anterior mitral leaflets is illustrated in the perspective view of
In one variation, ring 210 may be configured in a circular ring shape, while in other variations, ring 210 may be configured in an elliptical or oval shape. In yet other variations, ring 210 may be configured in a shape which conforms to or tracks at least the shape of the posterior mitral leaflet PML. Moreover, ring 210 may be comprised of a variety of materials; for instance, ring 210 may be fabricated from metallic or polymeric materials. Examples can include shape memory materials, such as a Nickel-Titanium alloy like Nitinol, or various shape memory polymers. Additionally, ring 210 may be coated with a polymeric material or infused with a drug or agent which inhibits the formation of thrombus.
In placing ring 210, the apparatus may be situated within the left ventricle and inferior to the mitral valve MV such that ring 210 is placed at least partially around the chordae tendineae CT supporting the mitral leaflets, as illustrated in the partial cross-sectional view of
Ring 210 may also be delivered in a variety of methods. In one variation, ring 210 may be implanted within the left ventricle via an open surgical procedure. Alternatively, ring 210 may be delivered percutaneously via an intravascular approach, in which case ring 210 may be configured into an elongated and compressed low-profile configuration within a delivery-catheter. In this variation, ring 210 may be fabricated from a shape memory alloy or polymeric material. As the catheter is advanced into the left ventricle utilizing any of the approaches described above, a pusher mechanism may urge the ring 210 around the chordae tendineae CT such that as ring 210 is freed from the constraints of the delivery catheter, ring 210 may reconfigure itself into its ring shape around the chordae tendineae CT.
In use, because the chordae tendineae CT may loosely pass through central opening 218, ring 210 may freely slide in vivo along the chordae tendineae CT while retained by the atraumatic ends 212, 214. During systole, as illustrated in
During diastole as the ventricle relaxes, ring 210 may freely slide along the chordae tendineae CT into an inferior position towards the papillary muscles PM, as illustrated in
The applications of the devices and methods discussed above are not limited to the treatment of mitral valves but may include any number of further treatment applications. Other treatment sites may include other areas or regions of the body such as various pulmonary valves, arterial valves, venous valves, tricuspid valves, etc. Alternative combinations between features of the various examples and illustrations, as practicable, as well as modification of the above-described assemblies and methods for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
The application claims the benefit of priority to U.S. Prov. Pat. App. 60/822,360 filed Aug. 14, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60822360 | Aug 2006 | US |