Methods and apparatus for multi-catheter tissue ablation

Information

  • Patent Grant
  • 12137968
  • Patent Number
    12,137,968
  • Date Filed
    Friday, March 19, 2021
    3 years ago
  • Date Issued
    Tuesday, November 12, 2024
    2 months ago
Abstract
Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller configurable to apply voltages to an independently selected subsets of electrodes, such that voltages of one polarity are applied to a multiplicity of electrodes on a first medical device and voltages of the opposite polarity to a multiplicity of electrodes on a second medical device. The first and second medical devices can be epicardial catheters positioned such that their opposing distal tips are approximately aligned and whose segments with electrodes collectively wrap around the pulmonary veins.
Description
BACKGROUND

The embodiments described herein relate generally to medical devices for therapeutic electrical energy delivery, and more particularly to systems and methods for delivering electrical energy in the context of ablating tissue rapidly and selectively by the application of suitably timed pulsed voltages that generate irreversible electroporation of cell membranes.


The past two decades have seen advances in the technique of electroporation as it has progressed from the laboratory to clinical applications. Known methods include applying brief, high voltage DC pulses to tissue, thereby generating locally high electric fields, typically in the range of hundreds of Volts/centimeter. The electric fields disrupt cell membranes by generating pores in the cell membrane, which subsequently destroys the cell membrane and the cell. While the precise mechanism of this electrically-driven pore generation (or electroporation) awaits a detailed understanding, it is thought that the application of relatively large electric fields generates instabilities in the phospholipid bilayers in cell membranes, as well as mitochondria, causing the occurrence of a distribution of local gaps or pores in the membrane. If the applied electric field at the membrane exceeds a threshold value, typically dependent on cell size, the electroporation is irreversible and the pores remain open, permitting exchange of material across the membrane and leading to apoptosis or cell death. Subsequently, the surrounding tissue heals in a natural process.


While pulsed DC voltages are known to drive electroporation under the right circumstances, the examples of electroporation applications in medicine and delivery methods described in the prior art do not discuss specificity of how electrodes are selected to accomplish the desired ablation. For example, some known catheters and systems include a single multi-electrode catheter in which certain electrodes receive a voltage signal having a first polarity and other electrodes receive a voltage signal having the opposite polarity. Accordingly, to minimize the risk of dielectric breakdown within the catheter, such known catheters typically include substantial insulation (e.g., around the leads), thus increasing the size and limiting the flexibility of the catheter. Some known catheters configured to produce voltage pulses of up to 5 kV include catheter leads having an insulation of as much as 0.2 mm and an overall size of about 14 French (4.67 mm).


There is a need for selective energy delivery for electroporation and its modulation in various tissue types, as well as pulses that permit rapid action and completion of therapy delivery. This need includes methods and apparatus for placement and therapy delivery from the same device or a set of devices, especially in the context of ablation therapy for cardiac arrhythmias with epicardial catheter devices. There is a need for thin, flexible, atraumatic devices that can, at the same time, effectively deliver high DC voltage electroporation ablation therapy selectively to tissue in regions of interest. Such more selective and effective electroporation delivery methods can broaden the areas of clinical application of electroporation including therapeutic treatment of a variety of cardiac arrhythmias.


SUMMARY

Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive electroporation. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator. The electrode controller includes a first output port and a second output port. The first output port is configured to be operatively coupled to a first medical device including a first set of electrodes, and the second output port is configured to be operatively coupled to a second medical device including a second set of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select at least a first electrode from the first set of electrodes and identify at least the first electrode as an anode. The selection module is configured to select at least a second electrode from the second set of electrodes and identify at least the second electrode as a cathode. The pulse delivery module is configured to deliver a first output signal having a first polarity and being associated with the pulsed voltage waveform to the first output port for application to the first electrode. The pulse delivery module is configured to deliver a second output signal having a second polarity opposite the first polarity and being associated with the pulsed voltage waveform to the second output port for application to the second electrode.





BRIEF DESCRIPTION OF THE DRAW


FIG. 1 is a perspective view showing two catheters according to an embodiment, each with multiple electrodes disposed along its shaft and wrapped around a portion of the pulmonary veins and being within the epicardial space of the heart in a subject body such that they form an approximately closed contour around the pulmonary veins.



FIG. 2 is a schematic illustration of a catheter according to an embodiment, with a multiplicity of electrodes disposed along its shaft, with an electrical lead attached to the inner side of each electrode, and with a magnet located near the distal end of the catheter.



FIG. 3 illustrates two flexible catheter devices with multiple electrodes disposed along their shafts and positioned to wrap around respective approximate halves of a single closed contour around the pulmonary veins in the epicardial space of the heart, with their distal ends positioned in close proximity.



FIG. 4 is an illustration of two flexible catheter devices with multiple electrodes disposed along their shafts and positioned to wrap around respective approximate halves of a single closed contour around the pulmonary veins in the epicardial space of the heart, with active electrodes identified according to an embodiment.



FIG. 5A is a schematic illustration of an irreversible electroporation system according to an embodiment that includes a voltage/signal generator, a controller capable of being configured to apply voltages to selected subsets of electrodes with independent subset selections for anode electrodes on one medical device and cathode electrodes on a second medical device.



FIG. 5B is a schematic illustration of an irreversible electroporation system according to an embodiment that includes a voltage/signal generator, a controller capable of being configured to apply voltages to selected subsets of electrodes with independent subset selections for anode electrodes on one medical device and cathode electrodes on a second medical device.



FIG. 6 is an illustration of an ECG waveform showing the refractory periods during atrial and ventricular pacing, and the time windows for irreversible electroporation ablation.



FIG. 7 is a schematic illustration of a method of selecting subsets of electrodes on two catheters as anodes or cathodes, according to an embodiment, whereby the ablation vector or predominant current density direction vector is selected for ablation.



FIG. 8 is a schematic illustration of a user interface of the present invention, showing electrodes on two catheters, and buttons for selection or marking of anode electrode subsets and cathode electrode subsets.



FIG. 9 is a schematic illustration of a user interface according to an embodiment, for selection of anode and cathode electrode subsets, showing a single selected anode electrode on one catheter and two selected cathode electrodes on a second catheter.



FIG. 10 is a schematic illustration of a waveform generated by the irreversible electroporation system according to an embodiment, showing a balanced square wave.



FIG. 11 is a schematic illustration of a waveform generated by the irreversible electroporation system according to an embodiment, showing a balanced biphasic square wave.



FIG. 12 is a schematic illustration of a waveform generated by the irreversible electroporation system according to an embodiment, showing a progressive balanced biphasic square wave.





DETAILED DESCRIPTION

Systems and methods are disclosed for the selective and rapid application of DC voltage to drive electroporation. In some embodiments, an irreversible electroporation system includes a DC voltage/signal generator and a controller capable of being configured to apply voltages to a selected multiplicity or a subset of electrodes, with anode and cathode subsets being selected independently on distinct medical devices. The controller is additionally capable of applying control inputs whereby selected pairs of anode-cathode subsets of electrodes can be sequentially updated based on a pre-determined sequence.


In some embodiments, an irreversible electroporation system includes a DC voltage/signal generator and a controller capable of being configured to apply voltages to a selected multiplicity or a subset of electrodes, with independent subset selections for anode and cathode electrode selections on distinct catheter devices respectively. Further, the controller is capable of applying control inputs whereby selected pairs of anode-cathode subsets of electrodes can be sequentially updated based on a pre-determined sequence. The generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic forms and with either constant or progressively changing amplitudes.


In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator. The electrode controller includes a first output port and a second output port. The first output port is configured to be operatively coupled to a first medical device including a first set of electrodes, and the second output port is configured to be operatively coupled to a second medical device including a second set of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select at least a first electrode from the first set of electrodes and identify at least the first electrode as an anode. The selection module is configured to select at least a second electrode from the second set of electrodes and identify at least the second electrode as a cathode. The pulse delivery module is configured to deliver a first output signal having a first polarity and being associated with the pulsed voltage waveform to the first output port for application to the first electrode. The pulse delivery module is configured to deliver a second output signal having a second polarity opposite the first polarity and being associated with the pulsed voltage waveform to the second output port for application to the second electrode.


In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator. The electrode controller includes a first output port and a second output port, the first output port configured to be operatively coupled to a first medical device including a first set of electrodes, the second output port configured to be operatively coupled to a second medical device including a second set of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a set of anode/cathode pairs, each anode selected being only in the first plurality of electrodes, each cathode selected being only in the second plurality of electrodes. The pulse delivery module is configured to deliver a first output signal having a first polarity and associated with the pulsed voltage waveform to the first output port for application to each anode selected. The pulse delivery module is configured to deliver a second output signal having a second polarity opposite the first polarity and associated with the pulsed voltage waveform to the second output port for application to each cathode selected. The pulse delivery module is configured to deliver the first output signal and the second output signal to the plurality of anode/cathode pairs according to a sequential pattern.


Methods of control and DC voltage application from a generator capable of selective excitation of sets of electrodes are also disclosed herein. In some embodiments, a method includes identifying, via a selection module of an electrode controller, a set of anode/cathode pairs, each anode selected being only in a first set of electrodes of a first multi-electrode catheter, each cathode selected being only in a second set of electrodes of a second multi-electrode catheter. The first multi-electrode catheter and the second multi-electrode catheter are configured to collectively surround a portion of a heart. A pacing signal is conveyed to a pacing lead configured to be operatively coupled to the heart. The method includes receiving, at a feedback module, an electrocardiograph signal associated with a function of the heart. The method includes delivering, via a pulse delivery module of the electrode controller, a first output signal having a first polarity to each anode selected, and delivering, via the pulse delivery module, a second output signal having a second polarity opposite the first polarity to each cathode selected. The first output signal and the second output signal are delivered according to a sequential pattern.


In some embodiments, a non-transitory processor readable medium storing code representing instructions to be executed by a processor includes code to cause the processor to identify a set of anode/cathode pairs. Each anode in the plurality of anode/cathode pairs being only in a first set of electrodes of a first multi-electrode catheter. Each cathode in the set of anode/cathode pairs being only in a second set of electrodes of a second multi-electrode catheter. The first multi-electrode catheter and the second multi-electrode catheter are configured to collectively surround a portion of a heart. The code further includes code to convey a pacing signal to a pacing lead configured to be operatively coupled to the heart, and receive an electrocardiograph signal associated with a function of the heart. The code further includes code to deliver, according to a sequential pattern, a first output signal having a first polarity to each anode selected and a second output signal having a second polarity opposite the first polarity to each cathode selected.


In some embodiments system includes a first flexible catheter including a first set of electrodes and a second flexible catheter including a second set of electrodes. A distal end portion of the first flexible catheter is configured to be coupled to a distal end portion of the second catheter to form a continuous length including the first set of electrodes and the second set of electrodes. The first flexible catheter and the second flexible catheter are configured to deliver a bipolar voltage signal to a target tissue such that a first portion of the bipolar voltage signal having a first polarity is delivered only to the first set of electrodes and a second portion of the bipolar voltage signal having second polarity opposite the first polarity is delivered only to the second set of electrodes.


As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, “a processor” is intended to mean a single processor or multiple processors; and “memory” is intended to mean one or more memories, or a combination thereof.


As used herein, the terms “about” and “approximately” generally mean plus or minus 10% of the value stated. For example, about 0.5 would include 0.45 and 0.55, about 10 would include 9 to 11, about 1000 would include 900 to 1100.


As shown in FIG. 1, in some embodiments a Pulmonary Vein isolation (PV isolation) system includes two ablation catheter devices, one (labeled 5) with distal end 15 and proximal portion 8, the other (labeled 6) with distal end 16 and proximal portion 9, each with a multiplicity of electrodes (indicated by dark bands such as those marked as 19) disposed along its length, and where each catheter is wrapped in the epicardial space around a portion of the pulmonary veins 10, 11, 12 and 13 of a heart 7 in a subject or patient anatomy, with the proximal portions 8 and 9 of the respective catheters 5 and 6 extending out and away to eventually emerge from the patient's chest. In some embodiments, the distal ends of the two catheters 5 and 6 have magnets 15 and 16 respectively that can aid in alignment of the two catheters. The ablation catheters 5 and 6, and any of the catheters described herein can be similar to the ablation catheters described in PCT Publication No. WO2014/025394, entitled “Catheters, Catheter Systems, and Methods for Puncturing Through a Tissue Stricture,” filed on Mar. 14, 2013 (“the '394 PCT Application), which is incorporated herein by reference in its entirety. The ablation catheters 5 and 6 can be disposed about the pulmonary veins 10, 11, 12 and 13 using any suitable procedure and apparatus. For example, in some embodiments, the ablation catheters can be disposed about the pulmonary veins 10, 11, 12 and 13 and/or the heart 7 using a puncturing apparatus disposed via a subxiphoid pericardial access location and a using guidewire-based delivery method as described in the '394 PCT Application. Similar methods can be used to deliver and position the two catheters 5 and 6. After the ends 8 and 9 of the two respective catheters 5 and 6 extend and emerge out of the patient chest they can be cinched together to effectively hold the catheters in place or in stable positions relative to each other.


A DC voltage for electroporation can be applied to subsets of electrodes identified as anodes and cathodes respectively on the two catheters on approximately opposite sides of the closed contour defined by the shapes of the catheters 5 and 6 around the pulmonary veins. The DC voltage is applied in brief pulses sufficient to cause irreversible electroporation and can be in the range of 0.5 kV to 10 kV and more preferably in the range 1 kV to 2.5 kV, so that a threshold electric field value of around 200 Volts/cm is effectively achieved in the cardiac tissue to be ablated. In some embodiments, the marked or active electrodes on the two catheters can be automatically identified, or manually identified by suitable marking, on an X-ray or fluoroscopic image obtained at an appropriate angulation that permits identification of the geometric distance between anode and cathode electrodes, or their respective centroids. In one embodiment, the DC voltage generator setting for irreversible electroporation is then automatically identified by the electroporation system based on this distance measure. In an alternate embodiment, the DC voltage value is selected directly by a user from a suitable dial, slider, touch screen, or any other user interface. The DC voltage pulse results in a current flowing between the anode and cathode electrodes on opposite sides of the contour defined by the conjoint shapes of the two catheters, with said current flowing through the cardiac wall tissue and through the intervening blood in the cardiac chamber, with the current entering the cardiac tissue from the anode electrodes and returning back through the cathode electrodes. The forward and return current paths (leads) are respectively inside distinct catheters, since all active electrodes on a given catheter are of like polarity. Areas of cardiac wall tissue where the electric field is sufficiently large for irreversible electroporation are ablated during the DC voltage pulse application.



FIG. 2 is a schematic illustration of a multi-electrode, magnet-tipped catheter according to an embodiment. The catheter shaft 801 has a multiplicity of electrodes disposed along an extensive length of catheter at least 5 cm in extent. In some embodiments the metallic electrodes could be poly-metallic in construction, for example, including regions of Titanium and regions of Platinum. Although FIG. 2 shows only four electrodes 803, 804, 805 and 806 for clarity, in other embodiments, the number of electrodes can be in the range between 5 and 30, and more preferably in the range between 8 and 18. Each electrode attaches to a corresponding lead, thus as shown in FIG. 2, electrodes 803, 804, 805 and 806 attach to leads 813, 814, 815 and 816, respectively.


The catheter shaft is made of a flexible polymeric material such as for example Teflon, Nylon or Pebax. Moreover, the leads 813. 814, 815 and 816 include an insulative covering to ensure that each lead/electrode is electrically isolated from the other leads and electrodes coupled to the catheter shaft 801. When the catheter device is used with the systems and methods described herein, all of the electrodes 803, 804, 805 and 806 of the catheter 801 have the same polarity. Thus, the need for high dielectric strength material separating the leads is not a significant constraint. Accordingly, the insulative material covering each lead can be minimized, and the catheter can be relatively small in diameter. In this manner, the catheter device can have a high degree of flexibility to facilitate the method of surrounding the pulmonary veins as described herein. In some embodiments, for example, the catheter device can have a size in the range of approximately 9 French (3 mm), 8 French (2.67 mm) or even 6 French (2 mm). In some embodiments, the electrode leads of the catheter device can have an insulation thickness of less than about 0.05 mm, less than about 0.01 m, or less than about 0.005 mm. In other embodiments, the electrode leads of the catheter can have an insulation thickness of between about 0.03 mm and about 0.06 mm.


Moreover, by maintaining the voltage for each of the electrodes 803, 804, 805 and 806 of the catheter 801 at the same polarity, higher voltage levels can be applied to the electrodes of the catheter with minimal risk of dielectric breakdown. In this manner, the catheter device 801 (and the systems and methods described herein) can enhance the efficacy of irreversible electroporation ablation. For example, in some embodiments, the voltage applied to the electrodes 803, 804, 805 and 806 can be in the range of 0.5 kV to 2.5 kV; 2.5 kV to 5 kV, and up to 10 kV and more preferably in the range 1 kV to 2.5 kV.


As shown in FIG. 2, the distal end of the catheter 801 has a ring-shaped magnet 809, with the magnet having a magnetization direction that is substantially aligned with the longitudinal axis of the catheter. The magnet 809 is configured to have a polarity to cooperate with a corresponding magnet from a second catheter to be used in conjunction with the catheter 801. For example, the magnets 15 and 16 shown respectively at the distal ends of the two catheters 5 and 6 in FIG. 1 have opposite polarities on their distal faces, so that they attract each other. This attraction can aid in approximate alignment and/or coupling of the catheters. With two distinct catheters, anode and cathode electrodes for voltage application can be selected on distinct devices in accordance with the methods described herein.


Additionally, by using two catheters to deliver a bipolar pulse, but maintaining the voltage for each of the electrodes within each catheter at the same polarity, according to the methods described herein, each of the catheters includes fewer electrodes and few leads than if a single catheter were used to surround the heart. The reduction of the number of leads and electrodes also allows for an overall reduction in the size of the catheter, improvement in the flexibility thereof, and the like.


In some embodiments, for example, a system includes a first catheter including a first set of electrodes and a second flexible catheter including a second set of electrodes. Each of the catheters can be, for example, the catheter 801. A distal end portion of the first flexible catheter is configured to be coupled to a distal end portion of the second catheter to form a continuous length including the first set of electrodes and the second set of electrodes. The connection can be via a magnetic coupling device, as shown herein. The first flexible catheter and the second flexible catheter are configured to deliver a bipolar voltage signal to a target tissue such that a first portion of the bipolar voltage signal having a first polarity is delivered only to the first set of electrodes and a second portion of the bipolar voltage signal haying second polarity opposite the first polarity is delivered only to the second set of electrodes.



FIG. 3 shows another example of the placement of a first catheter 538 and a second catheter 539, according to an embodiment. The first catheter 538 and the second catheter 539 can each be constructed of a small diameter tube covered by multiple metal electrodes. The distal ends of the catheters (544 and 554 respectively) contain magnets that attract and allow for alignment of the devices when their distal ends are in close proximity as indicated by region 545. Electrodes 543 disposed along the first catheter 538 are of a single polarity (for instance, an activated subset of the electrodes would all be anodes), while electrodes 553 disposed along the second catheter 539 are all of the opposite polarity (in the same example, an activated subset could all be cathodes). Wires are connected to each electrode in the anode and cathode catheters, indicated by collective anode leads 542 and collective cathode leads 552 respectively. Thus, wires of opposite polarity are not in the same catheter, thereby reducing the possibility of dielectric breakdown at high voltage, as discussed above. Furthermore, when it is desired to reduce the catheter diameter and the number of leads within a given catheter, it may also be advantageous to use two distinct catheters, with the pair of catheters surround and/or substantially enclosing the pulmonary veins and with their distal ends closely abutting. Reduced diameter catheters can be significantly more flexible and a smaller number of leads in a given catheter (resulting in a smaller catheter diameter) can be advantageous in this regard. While in this example the two catheters are navigated and coupled magnetically, those skilled in the art could implement other means of alignment and positioning of the catheters without departing from the scope of the teachings herein.


The illustration in FIG. 4 shows the first catheter 538 and the second catheter 539 having proximal leads 542 and 552, respectively, and having distal ends 544 and 554, respectively. In accordance with the systems and methods described herein, the a single active anode electrode 604 is selected on the second catheter 539, and two active cathode electrodes 601 and 602 are selected on the first catheter 538. A DC voltage for irreversible electroporation ablation can then be applied across the selected anode-cathode electrodes.


A schematic diagram of an electroporation system according to an embodiment is shown in FIG. 5A. The system includes a DC voltage/signal generator 23 that is driven by a controller unit 21. The controller unit 21 interfaces with a computer device 24 by means of a two-way communication link 29. The controller interface can act as a multiplexer unit and perform channel selection and routing functions for applying DC voltages to appropriate electrodes that have been selected by a user or by the computer 24. The controller can apply the voltages via a multiplicity of leads to a first catheter device 22, as well as a second catheter device 122. Active electrodes can be selected on a first catheter device 22 with one polarity, and likewise active electrodes can be selected on a second catheter device 122 with the opposite polarity.


In some embodiments, one or more leads from the controller 21 could also carry pacing signals to drive pacing of the heart through a separate pacing device (not shown). The catheter devices can also send back information such as ECG recordings or data from other sensors back to the controller 21, possibly on separate leads. While the DC voltage generator 23 sends a DC voltage to the controller 21 through leads 27, the voltage generator is driven by control and timing inputs 28 from the controller unit 21.


As shown in FIG. 6, given atrial or ventricular pacing inputs to the heart, the resulting ECG waveform 32 has appropriate respective refractory time intervals 33 and 34 respectively, during which there are suitable time windows for application of irreversible electroporation as indicated by 35 and 36. The application of cardiac pacing results in a periodic, well-controlled sequence of electroporation time windows. Typically, this time window is of the order of hundreds of microseconds to about a millisecond or more. During this window, multiple DC voltage pulses can be applied to ensure that sufficient tissue ablation has occurred. The user can repeat the delivery of irreversible electroporation over several successive cardiac cycles for further confidence. Thus, in some embodiments, a feedback module (e.g., feedback module 905) can receive the electrocardiograph signal, and a pulse delivery module (e.g., pulse delivery module 908) can deliver the output signal to the subset of electrodes during a time window associated with at least one a pacing signal or the electrocardiograph signal.


In one embodiment, the ablation controller and signal generator can be mounted on a rolling trolley, and the user can control the device using a touchscreen interface that is in the sterile field. The touchscreen can be for example an LCD touchscreen in a plastic housing mountable to a standard medical rail or post and can be used to select the electrodes for ablation and to ready the device to fire. The interface can for example be covered with a clear sterile plastic drape. The operator can select the number of electrodes involved in an automated sequence. The touch screen graphically shows the catheters that are attached to the controller. In one embodiment the operator can select electrodes from the touchscreen with appropriate graphical buttons. The operator can also select the pacing stimulus protocol (either internally generated or externally triggered) from the interface. Once pacing is enabled, and the ablation sequence is selected, the operator can initiate or verify pacing. Once the operator verifies that the heart is being paced, the ablation sequence can be initiated by holding down a hand-held trigger button that is in the sterile field. The hand-held trigger button can be illuminated red to indicate that the device is “armed” and ready to ablate. The trigger button can be compatible for use in a sterile field and when attached to the controller can be illuminated a different color, for example white. When the device is firing, the trigger button flashes in sequence with the pulse delivery in a specific color such as red. The waveform of each delivered pulse is displayed on the touchscreen interface. A graphic representation of the pre and post impedance between electrodes involved in the sequence can also be shown on the interface, and this data can be exported for file storage.


In one embodiment, an impedance map can be generated based on voltage and current recordings across anode-cathode pairs or sets of electrodes (anodes and cathodes respectively being on distinct catheters), and an appropriate set of electrodes that are best suited for ablation delivery in a given region can be selected based on the impedance map or measurements, either manually by a user or automatically by the system. Such an impedance map can be produced, for example, by the feedback module 905, or any other suitable portion of the electrode controller 900. For example, if the impedance across an anode/cathode combination of electrodes is a relatively low value (for example, less than 25 Ohms), at a given voltage the said combination would result in relatively large currents in the tissue and power dissipation in tissue. In such circumstances, this electrode combination would then be ruled out for ablation due to safety considerations (e.g., via the selection module 912), and alternate electrode combinations would be sought by the user. In a preferred embodiment, a pre-determined range of impedance values, for example 30 Ohms to 300 Ohms, could be used as an allowed impedance range within which it is deemed safe to ablate. Thus, in some embodiments, an electrode controller can automatically determine a subset of electrodes to which voltage pulses should be applied.


The waveforms for the various electrodes can be displayed and recorded on the case monitor and simultaneously outputted to a standard connection for any electrophysiology (EP) data acquisition system. With the high voltages involved with the device, the outputs to the EP data acquisition system needs to be protected from voltage and/or current surges. The waveforms acquired internally can be used to autonomously calculate impedances between each electrode pair. The waveform amplitude, period, duty cycle, and delay can all be modified, for example via a suitable Ethernet connection. Pacing for the heart is controlled by the device and outputted to the pacing leads and a protected pacing circuit output for monitoring by a lab.


While a touchscreen interface is one preferred embodiment, other user interfaces can be used by a user to control the system such as a graphical display on a laptop or monitor display controlled by a standard computer mouse or joystick. FIG. 7 shows a schematic rendering of a portion of the user interface of the electroporation system. The graphic shown in the FIG. represents a specific choice of electrode subsets for anode and cathode selection. The two PV isolation ablation catheters in the FIG. are represented by strings of numbered electrodes as indicated respectively by 591 and 592, wrapped around the area 590 of the pulmonary veins represented by the gray region in this schematic diagram for ease of user visualization. The catheters 591 and 592 have proximal leads 651 and 652 respectively that connect to a controller or interface unit as described earlier. Referring to the figure, the arrows 595 and 596 represent approximate current density vectors, with one end at the cathodes and the other end at the anodes; in this figure, the three electrodes marked 601 and 602 are cathodes, and the single electrode marked 604 is the anode. It is apparent from FIG. 7 that the user can select various subsets of electrodes (respectively on distinct catheters) as cathode or anode, depending on the region to be ablated along the length of the contour around the pulmonary veins represented by the two catheters. In one embodiment, the user can make one selection of cathode and anode subsets, and the system can take this selection as input to generate an ablation sequence that moves around the ring or contour defined by the shapes of the two PV isolation catheters, for example moving clockwise at each step with a one-electrode displacement. In this manner, the pair of cathode and anode electrode subsets can be sequentially updated for ablation purposes, so that if there are N/2 electrodes on each catheter, after N updates the entire contour has been updated such that the current arrows shown as 595 and 596 have swept once around the contour completely.


In some cases, the portion of one of the PV isolation catheters with electrodes may be longer than needed to wrap around a given patient's pulmonary veins; in this event, a smaller number of electrodes is sufficient to wrap around the contour of the pulmonary veins. These define the number of “active” electrodes to be used in the ablation process.


In a some embodiments, the system (any of the generators and controllers described herein) can deliver rectangular-wave pulses with a peak maximum voltage of about 5 kV into a load with an impedance in the range of 30 Ohm to 3000 Ohm for a maximum duration of 200 μs, with a 100 μs maximum duration being still more preferred. Pulses can be delivered in a multiplexed and synchronized manner to a multi-electrode catheter inside the body with a duty cycle of up to 50% (for short bursts). The pulses can generally be delivered in bursts, such as for example a sequence of between 2 and 10 pulses interrupted by pauses of between 1 ms and 1000 ms. The multiplexer controller is capable of running an automated sequence to deliver the impulses/impulse trains (from the DC voltage signal/impulse generator) to the tissue target within the body. The controller system is capable of switching between subsets/nodes of electrodes located on the single-use catheters. Further, the controller can measure voltage and current and tabulate impedances in each electrode configuration (for display, planning, and internal diagnostic analysis). It can also generate two channels of cardiac pacing stimulus output, and is capable of synchronizing impulse delivery with the internally generated cardiac pacing and/or an external trigger signal. In one embodiment, it can provide sensing output/connection for access to bio potentials emanating from each electrode connected to the system (with connectivity characteristics being compatible with standard electrophysiological laboratory data acquisition equipment).


In some embodiments, the controller the electrode controller 900) can automatically “recognize” each of the two single-use disposable catheters when it is connected to the controller output (prompting internal diagnostics and user interface configuration options). The controller can have at least two unique output connector ports (e.g., the first output port 940 and the second output port 942) to accommodate up to at least two catheters at once. The controller device can function as long as at least two recognized catheters are attached to it. In some embodiments, the controller can have several sequence configurations that provide the operator with at least some variety of programming options. In one configuration, the controller can switch electrode configurations of a bipolar set of electrodes (cathodes and anodes respectively on distinct catheters) sequentially in a clockwise mariner (for example, starting at a given step, in the next step of the algorithm, the next cathode electrode on one catheter and the next anode electrode on the other catheter are automatically selected, timed to the synchronizing trigger), with the two catheters and their electrodes arranged in a quasi-circumference around the target. Thus in the first sequence, pulse delivery occurs so that the approximate vector of current density changes as the automated sequencing of the controller switches “on” and “off” between different electrodes surrounding the tissue target sequence. The current density vectors generally cross the target tissue but in some configurations the current density could be approximately tangential to the target. In a second sequence configuration, the impulses are delivered to user-selected electrode subsets of catheters that are connected to the device (the vector of current density does not change with each synchronized delivery). The user can also configure the controller to deliver up to 2 channels of pacing stimulus to electrodes connected to the device output. The user can control the application of DC voltage with a single handheld switch. A sterile catheter or catheters can be connected to the voltage output of the generator via a connector cable that can be delivered to the sterile field. In one embodiment, the user activates the device with a touch screen interface (that can be protected with a single-use sterile transparent disposable cover commonly available in the catheter lab setting). The generator can remain in a standby mode until the user is ready to apply pulses at which point the user/assistant can put the generator into a ready mode via the touchscreen interface. Subsequently the user can select the sequence, the active electrodes, and the cardiac pacing parameters.


Once the catheters have been advanced to or around the cardiac target, the user can initiate electrically pacing the heart (using a pacing stimulus generated by the ablation controller or an external source synchronized to the ablation system). The operator verifies that the heart is being paced and uses the hand-held trigger button to apply the synchronized bursts of high voltage pulses. The system can continue delivering the burst pulse train with each cardiac cycle as long as the operator is holding down a suitable “fire” button or switch. During the application of the pulses, the generator output is synchronized with the heart rhythm so that short bursts are delivered at a pre-specified interval from the paced stimulus. When the train of pulses is complete, the pacing continues until the operator discontinues pacing.



FIG. 8 shows a portion of a user interface of the electroporation system for selection (with graphical button 701) of anode and cathode electrodes, with two catheters connected to the system. One of the catheters is a PV isolation catheter 591 while the other is a PV isolation catheter 592, with their leads schematically indicated by 651 and 652 respectively. The buttons 703 and 704 can enable the selection of marked electrode subsets on the catheters as respectively anode or cathode with a “Continue” button 706. Once the selection is made, the appropriate electrodes are colored differently to indicate anode or cathode electrodes as shown marked respectively as 719 and 721 on catheters 592 and 591 respectively FIG. 9.


The controller and generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic forms and with either constant or progressively changing amplitudes. FIG. 10 shows a rectangular wave pulse train where the pulses 101 have a uniform height or maximum voltage. FIG. 11 shows an example of a balanced biphasic rectangular pulse train, where each positive voltage pulse such as 103 is immediately followed by a negative voltage pulse such as 104 of equal amplitude and opposite sign. While in this example the biphasic pulses are balanced with equal amplitudes of the positive and negative voltages, in other embodiments an unbalanced biphasic waveform could also be used as may be convenient for a given application.


Yet another example of a waveform or pulse shape that can be generated by the system is illustrated in FIG. 12, which shows a progressive balanced rectangular pulse train, where each distinct biphasic pulse has balanced or equal-amplitude positive and negative voltages, but each pulse such as 107 is larger in amplitude than its immediate predecessor 106. Other variations such as a progressive unbalanced rectangular pulse train, or indeed a wide variety of other variations of pulse amplitude with respect to time can be conceived and implemented by those skilled in the art based on the teachings herein.


The time duration of each irreversible electroporation rectangular voltage pulse could lie in the range from 1 nanosecond to 10 milliseconds, with the range 10 microseconds to 1 millisecond being more preferable and the range 50 microseconds to 300 microseconds being still more preferable. The time interval between successive pulses of a pulse train could be in the range of 10 microseconds to 1 millisecond, with the range 50 microseconds to 300 microseconds being more preferable. The number of pulses applied in a single pulse train (with delays between individual pulses lying in the ranges just mentioned) can range from 1 to 100, with the range 1 to 10 being more preferable. As described in the foregoing, a pulse train can be driven by a user-controlled switch or button, in one embodiment preferably mounted on a hand-held joystick-like device. In one mode of operation a pulse train can be generated for every push of such a control button, while in an alternate mode of operation pulse trains can be generated repeatedly during the refractory periods of a set of successive cardiac cycles, for as long as the user-controlled switch or button is engaged by the user.


In some embodiments, a method includes identifying, via a selection module of an electrode controller, a set of anode/cathode pairs. Each anode selected in the set of anode/cathode pairs is only in a first set of electrodes of a first multi-electrode catheter. Each cathode selected in the plurality of anode/cathode pairs is only in a second set of electrodes of a second multi-electrode catheter. The first multi-electrode catheter and the second multi-electrode catheter are configured to collectively surround a portion of a heart, as described herein. In some embodiments, the identifying can be based on a predetermined schedule of electrodes. In yet other embodiments, the identifying can be performed automatically based on an impedance measurement or map as described herein.


The method further includes conveying a pacing signal to a pacing lead configured to be operatively coupled to the heart, and receiving, at a feedback module of the electrode controller, an electrocardiograph signal associated with a function of the heart.


The method further includes delivering, via a pulse delivery module of the electrode controller, a first output signal having a first polarity to each anode selected. The method further includes delivering, via the pulse delivery module, a second output signal having a second polarity to each cathode selected. The first output signal and the second output signal being delivered according to a sequential pattern.


Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to: magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices.


Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using imperative programming languages (e.g., C, Fortran, etc.), functional programming languages (Haskell, Ertang, etc.), logical programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++, etc.) or other suitable programming languages and/or development tools. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.


While various specific examples and embodiments of systems and tools for selective tissue ablation with irreversible electroporation were described in the foregoing for illustrative and exemplary purposes, it should be clear that a wide variety of variations and alternate embodiments could be conceived or constructed by those skilled in the art based on the teachings herein. While specific methods of control and DC voltage application from a generator capable of selective excitation of sets of electrodes were disclosed, persons skilled in the art would recognize that any of a wide variety of other control or user input methods and methods of electrode subset selection etc. can be implemented without departing from the scope of the present invention. Likewise, while the foregoing described a range of specific tools or devices for more effective and selective DC voltage application for irreversible electroporation through ionic fluid irrigation and ultrasonic agitation, including insulating balloon constructions, focal ablation tools, and a basket catheter with a multiplicity of, other device constructions or variations could be implemented by one skilled in the art by employing the principles and teachings disclosed herein without departing from the scope of the present invention, in the treatment of cardiac arrhythmias, intravascular applications, or a variety of other medical applications.


Furthermore, while the present disclosure describes specific embodiments and tools involving irrigation with saline fluids and the use of temperature to selectively ablate tissue by taking advantage of the temperature-dependence of the threshold of irreversible electroporation, it should be clear to one skilled in the art that a variety of methods and devices for steady fluid delivery, or for tissue heating through the delivery of focused kinetic energy or electromagnetic radiation could be implemented utilizing the methods and principles taught herein without departing from the scope of the present invention.


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. For example, although the controller 900 is shown as optionally including the pacing module 902, in other embodiments, the controller 900 can interface with a separate pacing module. For example, although the controller 900 is shown as optionally including the feedback module 905, in other embodiments, the controller 900 can interface with a separate feedback module. Similarly, where methods and/or events described above indicate certain events and/or procedures occurring in certain order, the ordering of certain events and/or procedures may be modified.


Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above.

Claims
  • 1. A system for delivering electrical energy to a target tissue of a patient, the energy configured to achieve ablation by irreversibly electroporation so as to treat a cardiac arrhythmia, the system comprising: a first flexible catheter having a first distal end portion including a first magnet having a first magnetic polarity, the first flexible catheter including a first plurality of electrodes;a second flexible catheter having a second distal end portion including a second magnetic having a second magnetic polarity opposite to the first magnetic polarity and configured to couple to the first magnet at the first distal end portion, the second flexible catheter including a second plurality of electrodes;wherein the first and second flexible catheters are configured to be disposed at least partially around a cardiac chamber adjacent the target tissue when coupled together at the first and second end portions by the first and second magnets;a voltage pulse generator configured to produce a pulsed voltage waveform; andan electrode controller configured to be operably coupled to the voltage pulse generator, the electrode controller including a first output port and a second output port, the first output port configured to be operatively coupled to the first plurality of electrodes, the second output port configured to be operatively coupled to the second plurality of electrodes, the electrode controller configured to determine an impedance between a first subset of electrodes drawn solely from the first plurality of electrodes and a second subset of electrodes drawn solely from the second plurality of electrodes, and to select from the first and second subsets of electrodes at least one paired electrode subset for electrical pairing based on a pre-determined range of impedance values selected for ablation, and to deliver first and second output signals having opposite electrical polarities and associated with a pulsed voltage waveform respectively to the first and second output ports for respective application to the first and second subsets of electrodes of the at least one paired electrode subset, wherein the first and second output signals are configured to generate an electric field sufficient to achieve irreversible electroporation to ablate the target tissue.
  • 2. The system of claim 1, wherein an amplitude of each of the first output signal and the second output signal is up to 5 kV.
  • 3. The system of claim 1, wherein: an amplitude of each of the first output signal and the second output signal is up to 5 kV; andthe first flexible catheter includes a plurality of leads, each lead of the plurality of leads coupled to an electrode from the first plurality of electrodes, each lead from the plurality of leads including an outer insulating layer having a thickness from about 0.02 mm to about 0.06 mm.
  • 4. The system of claim 1, wherein: an amplitude of each of the first output signal and the second output signal is up to 5 kV;the first plurality of electrodes includes at least four electrodes; andthe first flexible catheter includes a plurality of leads, each lead of the plurality of leads coupled to an electrode from the first plurality of electrodes, the first flexible catheter having a diameter of less than about 3 mm.
  • 5. The system of claim 1, wherein the electrode controller is configured to deliver the first output signal for application to the first electrode subset of the paired electrode subsets and to deliver the second output signal for application to the second electrode subset of the paired electrode subsets according to a sequential pattern wherein each electrode of the second electrode subset is adjacent each electrode of the first electrode subset.
  • 6. The system of claim 1, wherein the electrode controller is configured to select the at least one pair of electrode subsets further based on a predetermined schedule of the plurality of electrodes.
  • 7. The system of claim 1, wherein the electrode controller is configured to select the at least one pair of electrode subsets further based on at least one of: a distance between the first electrode subset and the second electrode subset of each pair of electrode subsets, and a characteristic associated with the target tissue.
  • 8. The system of claim 1, wherein the electrode controller is configured to generate an impedance map associated with the first plurality of electrodes and the second plurality of electrodes and to select the at least one pair of electrode subsets based on the impedance map.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/795,075, entitled “METHODS AND APPARATUS FOR MULTI-CATHETER TISSUE ABLATION,” filed Oct. 26, 2017, which is a continuation of U.S. patent application Ser. No. 15/341,523, entitled “METHODS AND APPARATUS FOR MULTI-CATHETER TISSUE ABLATION,” filed Nov. 2, 2016, now abandoned, which is a continuation of PCT Application No. PCT/US2015/031086, entitled “METHODS AND APPARATUS FOR MULTI-CATHETER TISSUE ABLATION,” filed May 15, 2015, which claims priority to U.S. Provisional Application Ser. No. 61/996,855, entitled “Method and Apparatus for Rapid Multi-Catheter Tissue Ablation,” filed May 16, 2014, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (661)
Number Name Date Kind
4200104 Harris Apr 1980 A
4470407 Hussein Sep 1984 A
4739759 Rexroth et al. Apr 1988 A
5234004 Hascoet et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5257635 Langberg Nov 1993 A
5281213 Milder et al. Jan 1994 A
5304214 Deford et al. Apr 1994 A
5306296 Wright et al. Apr 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342301 Saab Aug 1994 A
5398683 Edwards et al. Mar 1995 A
5443463 Stern et al. Aug 1995 A
5454370 Avitall Oct 1995 A
5515848 Corbett et al. May 1996 A
5531685 Hemmer et al. Jul 1996 A
5545161 Imran Aug 1996 A
5558091 Acker et al. Sep 1996 A
5578040 Smith Nov 1996 A
5617854 Munsif Apr 1997 A
5624430 Eton et al. Apr 1997 A
5662108 Budd et al. Sep 1997 A
5667491 Pliquett et al. Sep 1997 A
5672170 Cho et al. Sep 1997 A
5700243 Narciso, Jr. Dec 1997 A
5702438 Avitall Dec 1997 A
5706823 Wodlinger Jan 1998 A
5722400 Ockuly et al. Mar 1998 A
5722402 Swanson et al. Mar 1998 A
5749914 Janssen May 1998 A
5779699 Lipson Jul 1998 A
5788692 Campbell et al. Aug 1998 A
5810762 Hofmann Sep 1998 A
5833710 Jacobson Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836942 Netherly et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5843154 Osypka Dec 1998 A
5849028 Chen Dec 1998 A
5863291 Schaer Jan 1999 A
5868736 Swanson et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5876336 Swanson et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5895404 Ruiz Apr 1999 A
5899917 Edwards et al. May 1999 A
5904709 Arndt et al. May 1999 A
5916158 Webster, Jr. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5928269 Alt Jul 1999 A
5928270 Ramsey, III Jul 1999 A
6002955 Willems et al. Dec 1999 A
6006131 Cooper et al. Dec 1999 A
6009351 Flachman Dec 1999 A
6014579 Pomeranz et al. Jan 2000 A
6029671 Stevens et al. Feb 2000 A
6033403 Tu et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6045550 Simpson et al. Apr 2000 A
6068653 LaFontaine May 2000 A
6071274 Thompson et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6074389 Levine et al. Jun 2000 A
6076012 Swanson et al. Jun 2000 A
6090104 Webster, Jr. Jul 2000 A
6096036 Bowe et al. Aug 2000 A
6113595 Muntermann Sep 2000 A
6119041 Pomeranz et al. Sep 2000 A
6120500 Bednarek et al. Sep 2000 A
6146381 Bowe et al. Nov 2000 A
6164283 Lesh Dec 2000 A
6165172 Farley Dec 2000 A
6167291 Barajas et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219582 Hofstad et al. Apr 2001 B1
6223085 Dann et al. Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245064 Lesh et al. Jun 2001 B1
6251107 Schaer Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6272384 Simon et al. Aug 2001 B1
6287306 Kroll et al. Sep 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6350263 Wetzig et al. Feb 2002 B1
6370412 Armoundas et al. Apr 2002 B1
6391024 Sun et al. May 2002 B1
6447505 McGovern et al. Sep 2002 B2
6464699 Swanson Oct 2002 B1
6470211 Ideker et al. Oct 2002 B1
6502576 Lesh Jan 2003 B1
6503247 Swartz et al. Jan 2003 B2
6517534 McGovern et al. Feb 2003 B1
6527724 Fenici Mar 2003 B1
6527767 Wang et al. Mar 2003 B2
6592581 Bowe Jul 2003 B2
6595991 Toellner et al. Jul 2003 B2
6607520 Keane Aug 2003 B2
6623480 Kuo et al. Sep 2003 B1
6638278 Falwell et al. Oct 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669693 Friedman Dec 2003 B2
6702811 Stewart et al. Mar 2004 B2
6719756 Muntermann Apr 2004 B1
6723092 Brown et al. Apr 2004 B2
6728563 Rashidi Apr 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6764486 Natale Jul 2004 B2
6780181 Kroll et al. Aug 2004 B2
6805128 Pless et al. Oct 2004 B1
6807447 Griffin, III Oct 2004 B2
6892091 Ben-Haim et al. May 2005 B1
6893438 Hall et al. May 2005 B2
6926714 Sra Aug 2005 B1
6955173 Lesh Oct 2005 B2
6960206 Keane Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6972016 Hill et al. Dec 2005 B2
6973339 Govari Dec 2005 B2
6979331 Hintringer et al. Dec 2005 B2
6984232 Vanney et al. Jan 2006 B2
6985776 Kane et al. Jan 2006 B2
7001383 Keidar Feb 2006 B2
7041095 Wang et al. May 2006 B2
7113831 Hooven Sep 2006 B2
7171263 Darvish et al. Jan 2007 B2
7182725 Bonan et al. Feb 2007 B2
7195628 Falkenberg Mar 2007 B2
7207988 Leckrone et al. Apr 2007 B2
7207989 Pike et al. Apr 2007 B2
7229402 Diaz et al. Jun 2007 B2
7229437 Johnson et al. Jun 2007 B2
7250049 Roop et al. Jul 2007 B2
7282057 Surti et al. Oct 2007 B2
7285116 De et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7326208 Vanney et al. Feb 2008 B2
7346379 Eng et al. Mar 2008 B2
7367974 Haemmerich et al. May 2008 B2
7374567 Heuser May 2008 B2
7387629 Vanney et al. Jun 2008 B2
7387630 Mest Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7416552 Paul et al. Aug 2008 B2
7419477 Simpson et al. Sep 2008 B2
7419489 Vanney et al. Sep 2008 B2
7422591 Phan Sep 2008 B2
7429261 Kunis et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7513896 Orszulak Apr 2009 B2
7527625 Knight et al. May 2009 B2
7578816 Boveja et al. Aug 2009 B2
7588567 Boveja et al. Sep 2009 B2
7623899 Worley et al. Nov 2009 B2
7678108 Chrisitian et al. Mar 2010 B2
7681579 Schwartz Mar 2010 B2
7771421 Stewart et al. Aug 2010 B2
7805182 Weese et al. Sep 2010 B2
7850642 Moll et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7857808 Oral et al. Dec 2010 B2
7857809 Drysen Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7896873 Hiller et al. Mar 2011 B2
7917211 Zacouto Mar 2011 B2
7918819 Karmarkar et al. Apr 2011 B2
7918850 Govari et al. Apr 2011 B2
7922714 Stevens-Wright Apr 2011 B2
7955827 Rubinsky et al. Jun 2011 B2
8048067 Davalos et al. Nov 2011 B2
8048072 Verin et al. Nov 2011 B2
8100895 Panos et al. Jan 2012 B2
8100900 Prinz et al. Jan 2012 B2
8108069 Stahler et al. Jan 2012 B2
8133220 Lee et al. Mar 2012 B2
8137342 Crossman Mar 2012 B2
8145289 Calabro′ et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160690 Wilfley et al. Apr 2012 B2
8175680 Panescu May 2012 B2
8182477 Orszulak et al. May 2012 B2
8206384 Falwell et al. Jun 2012 B2
8206385 Stangenes et al. Jun 2012 B2
8216221 Ibrahim et al. Jul 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8226648 Paul et al. Jul 2012 B2
8228065 Wirtz et al. Jul 2012 B2
8235986 Kulesa et al. Aug 2012 B2
8235988 Davis et al. Aug 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8282631 Davalos et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8414508 Thapliyal et al. Apr 2013 B2
8430875 Ibrahim et al. Apr 2013 B2
8433394 Harlev et al. Apr 2013 B2
8449535 Deno et al. May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8463368 Harlev et al. Jun 2013 B2
8475450 Govari et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8500733 Watson Aug 2013 B2
8535304 Sklar et al. Sep 2013 B2
8538501 Venkatachalam et al. Sep 2013 B2
8562588 Hobbs et al. Oct 2013 B2
8568406 Harlev et al. Oct 2013 B2
8571635 McGee Oct 2013 B2
8571647 Harlev et al. Oct 2013 B2
8585695 Shih Nov 2013 B2
8588885 Hall et al. Nov 2013 B2
8597288 Christian Dec 2013 B2
8608735 Govari et al. Dec 2013 B2
8628522 Ibrahim et al. Jan 2014 B2
8632534 Pearson et al. Jan 2014 B2
8647338 Chornenky et al. Feb 2014 B2
8708952 Cohen et al. Apr 2014 B2
8734442 Cao et al. May 2014 B2
8771267 Kunis et al. Jul 2014 B2
8795310 Fung et al. Aug 2014 B2
8808273 Caples et al. Aug 2014 B2
8808281 Emmons et al. Aug 2014 B2
8834461 Werneth et al. Sep 2014 B2
8834464 Stewart et al. Sep 2014 B2
8868169 Narayan et al. Oct 2014 B2
8876817 Avitall et al. Nov 2014 B2
8880195 Azure Nov 2014 B2
8886309 Luther et al. Nov 2014 B2
8903488 Callas et al. Dec 2014 B2
8920411 Gelbart et al. Dec 2014 B2
8926589 Govari Jan 2015 B2
8932287 Gelbart et al. Jan 2015 B2
8945117 Bencini Feb 2015 B2
8979841 Kunis et al. Mar 2015 B2
8986278 Fung et al. Mar 2015 B2
9002442 Harley et al. Apr 2015 B2
9005189 Davalos et al. Apr 2015 B2
9005194 Oral et al. Apr 2015 B2
9011425 Fischer et al. Apr 2015 B2
9044245 Condie et al. Jun 2015 B2
9055959 Vaska et al. Jun 2015 B2
9072518 Swanson Jul 2015 B2
9078667 Besser et al. Jul 2015 B2
9101374 Hoch et al. Aug 2015 B1
9119533 Ghaffari Sep 2015 B2
9119634 Gelbart et al. Sep 2015 B2
9131897 Harada et al. Sep 2015 B2
9155590 Mathur Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9179972 Olson Nov 2015 B2
9186481 Avitall et al. Nov 2015 B2
9192769 Donofrio et al. Nov 2015 B2
9211405 Mahapatra et al. Dec 2015 B2
9216055 Spence et al. Dec 2015 B2
9233248 Luther et al. Jan 2016 B2
9237926 Nollert et al. Jan 2016 B2
9262252 Kirkpatrick et al. Feb 2016 B2
9277957 Long et al. Mar 2016 B2
9282910 Narayan et al. Mar 2016 B2
9289258 Cohen Mar 2016 B2
9289606 Paul et al. Mar 2016 B2
9295516 Pearson et al. Mar 2016 B2
9301801 Scheib Apr 2016 B2
9375268 Long Jun 2016 B2
9414881 Callas et al. Aug 2016 B2
9468495 Kunis et al. Oct 2016 B2
9474486 Eliason et al. Oct 2016 B2
9474574 Ibrahim et al. Oct 2016 B2
9480525 Lopes et al. Nov 2016 B2
9486272 Bonyak et al. Nov 2016 B2
9486273 Lopes et al. Nov 2016 B2
9492227 Lopes et al. Nov 2016 B2
9492228 Lopes et al. Nov 2016 B2
9517103 Panescu et al. Dec 2016 B2
9526573 Lopes et al. Dec 2016 B2
9532831 Reinders et al. Jan 2017 B2
9539010 Gagner et al. Jan 2017 B2
9554848 Stewart et al. Jan 2017 B2
9554851 Sklar et al. Jan 2017 B2
9700368 Callas et al. Jul 2017 B2
9724170 Mickelsen Aug 2017 B2
9757193 Zarins et al. Sep 2017 B2
9782099 Williams et al. Oct 2017 B2
9795442 Salahieh et al. Oct 2017 B2
9861802 Mickelsen Jan 2018 B2
9913685 Clark et al. Mar 2018 B2
9931487 Quinn et al. Apr 2018 B2
9987081 Bowers et al. Jun 2018 B1
9999465 Long et al. Jun 2018 B2
10016232 Bowers et al. Jul 2018 B1
10117707 Garcia et al. Nov 2018 B2
10130423 Viswanathan et al. Nov 2018 B1
10172673 Viswanathan et al. Jan 2019 B2
10292755 Arena et al. May 2019 B2
10322286 Viswanathan et al. Jun 2019 B2
10433906 Mickelsen Oct 2019 B2
10433908 Viswanathan et al. Oct 2019 B2
10448989 Arena et al. Oct 2019 B2
10507302 Leeflang et al. Dec 2019 B2
10512505 Viswanathan Dec 2019 B2
10512779 Viswanathan et al. Dec 2019 B2
10517672 Long Dec 2019 B2
20010000791 Suorsa et al. May 2001 A1
20010007070 Stewart et al. Jul 2001 A1
20010044624 Seraj et al. Nov 2001 A1
20020052602 Wang et al. May 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020091384 Hooven et al. Jul 2002 A1
20020095176 Prestel Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020161323 Miller et al. Oct 2002 A1
20020169445 Jain et al. Nov 2002 A1
20020177765 Bowe et al. Nov 2002 A1
20020183638 Swanson Dec 2002 A1
20030014098 Quijano et al. Jan 2003 A1
20030018374 Paulos Jan 2003 A1
20030023287 Edwards et al. Jan 2003 A1
20030028189 Woloszko et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030114849 Ryan Jun 2003 A1
20030125729 Hooven et al. Jul 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030204161 Ferek-Petric Oct 2003 A1
20030229379 Ramsey Dec 2003 A1
20040039382 Kroll et al. Feb 2004 A1
20040049181 Stewart et al. Mar 2004 A1
20040049182 Koblish et al. Mar 2004 A1
20040082859 Schaer Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087939 Eggers et al. May 2004 A1
20040111087 Stern et al. Jun 2004 A1
20040199157 Palanker et al. Oct 2004 A1
20040215139 Cohen Oct 2004 A1
20040231683 Eng et al. Nov 2004 A1
20040236360 Cohn et al. Nov 2004 A1
20040254607 Wittenberger et al. Dec 2004 A1
20040267337 Hayzelden Dec 2004 A1
20050033282 Hooven Feb 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050222632 Obino Oct 2005 A1
20050251130 Boveja et al. Nov 2005 A1
20050261672 Deem et al. Nov 2005 A1
20060009755 Sra Jan 2006 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015095 Desinger Jan 2006 A1
20060015165 Bertolero et al. Jan 2006 A1
20060024359 Walker et al. Feb 2006 A1
20060058781 Long Mar 2006 A1
20060111702 Oral et al. May 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060167448 Kozel Jul 2006 A1
20060217703 Chornenky et al. Sep 2006 A1
20060241734 Marshall et al. Oct 2006 A1
20060247746 Danek Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060270900 Chin et al. Nov 2006 A1
20060287648 Schwartz Dec 2006 A1
20060293730 Rubinsky et al. Dec 2006 A1
20060293731 Rubinsky et al. Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021744 Creighton Jan 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070129721 Phan et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070156135 Rubinsky et al. Jul 2007 A1
20070167740 Grunewald et al. Jul 2007 A1
20070167940 Stevens-Wright Jul 2007 A1
20070173878 Heuser Jul 2007 A1
20070208329 Ward et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070249923 Keenan Oct 2007 A1
20070260223 Scheibe et al. Nov 2007 A1
20070270792 Hennemann et al. Nov 2007 A1
20080009855 Hamou Jan 2008 A1
20080033426 Machell Feb 2008 A1
20080065061 Viswanathan Mar 2008 A1
20080086120 Mirza et al. Apr 2008 A1
20080091195 Sliwa et al. Apr 2008 A1
20080103545 Bolea et al. May 2008 A1
20080132885 Rubinsky et al. Jun 2008 A1
20080161789 Thao et al. Jul 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080200913 Viswanathan Aug 2008 A1
20080208118 Goldman Aug 2008 A1
20080243214 Koblish Oct 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080300574 Belson et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20090024084 Khosla et al. Jan 2009 A1
20090048591 Ibrahim et al. Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090076500 Azure Mar 2009 A1
20090105654 Kurth et al. Apr 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090149917 Whitehurst et al. Jun 2009 A1
20090163905 Winkler et al. Jun 2009 A1
20090228003 Sinelnikov Sep 2009 A1
20090240248 Deford et al. Sep 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090281477 Mikus et al. Nov 2009 A1
20090306651 Schneider Dec 2009 A1
20100004623 Hamilton et al. Jan 2010 A1
20100010486 Mehta Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100100093 Azure Apr 2010 A1
20100137861 Soroff et al. Jun 2010 A1
20100185140 Kassab et al. Jul 2010 A1
20100185186 Longoria Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100274238 Klimovitch Oct 2010 A1
20100280513 Juergen et al. Nov 2010 A1
20100280539 Miyoshi et al. Nov 2010 A1
20100292687 Kauphusman et al. Nov 2010 A1
20100312096 Guttman et al. Dec 2010 A1
20100312300 Ryu et al. Dec 2010 A1
20110028962 Werneth et al. Feb 2011 A1
20110028964 Edwards Feb 2011 A1
20110040199 Hopenfeld Feb 2011 A1
20110098694 Long Apr 2011 A1
20110106221 Neal et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144633 Govari Jun 2011 A1
20110160785 Mori et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190727 Edmunds et al. Aug 2011 A1
20110213231 Hall et al. Sep 2011 A1
20110276047 Sklar et al. Nov 2011 A1
20110276075 Fung et al. Nov 2011 A1
20110288544 Verin et al. Nov 2011 A1
20110288547 Morgan et al. Nov 2011 A1
20110313417 De et al. Dec 2011 A1
20120029512 Willard et al. Feb 2012 A1
20120046570 Villegas et al. Feb 2012 A1
20120053581 Wittkampf et al. Mar 2012 A1
20120059255 Paul et al. Mar 2012 A1
20120071872 Rubinsky et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120078343 Fish Mar 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120095459 Callas et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120158021 Morrill Jun 2012 A1
20120165667 Altmann et al. Jun 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120172867 Ryu et al. Jul 2012 A1
20120197100 Razavi et al. Aug 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20120220998 Long et al. Aug 2012 A1
20120265198 Crow et al. Oct 2012 A1
20120283582 Mahapatra et al. Nov 2012 A1
20120303019 Zhao et al. Nov 2012 A1
20120310052 Mahapatra et al. Dec 2012 A1
20120310230 Willis Dec 2012 A1
20120310237 Swanson Dec 2012 A1
20120316557 Sartor et al. Dec 2012 A1
20130030430 Stewart et al. Jan 2013 A1
20130060247 Sklar et al. Mar 2013 A1
20130060248 Sklar et al. Mar 2013 A1
20130079768 De et al. Mar 2013 A1
20130090651 Smith Apr 2013 A1
20130096655 Moffitt et al. Apr 2013 A1
20130103027 Sklar et al. Apr 2013 A1
20130103064 Arenson et al. Apr 2013 A1
20130131662 Wittkampf May 2013 A1
20130158538 Govari Jun 2013 A1
20130158621 Ding et al. Jun 2013 A1
20130172715 Just et al. Jul 2013 A1
20130172864 Ibrahim et al. Jul 2013 A1
20130172875 Govari et al. Jul 2013 A1
20130184702 Neal et al. Jul 2013 A1
20130218157 Callas et al. Aug 2013 A1
20130226174 Ibrahim et al. Aug 2013 A1
20130237984 Sklar Sep 2013 A1
20130253415 Sano et al. Sep 2013 A1
20130296679 Condie et al. Nov 2013 A1
20130310829 Cohen Nov 2013 A1
20130317385 Sklar et al. Nov 2013 A1
20130331831 Werneth et al. Dec 2013 A1
20130338467 Grasse et al. Dec 2013 A1
20140005664 Govari et al. Jan 2014 A1
20140024911 Harlev et al. Jan 2014 A1
20140039288 Shih Feb 2014 A1
20140051993 McGee Feb 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140052126 Long et al. Feb 2014 A1
20140052216 Long et al. Feb 2014 A1
20140058377 Deem et al. Feb 2014 A1
20140081113 Cohen et al. Mar 2014 A1
20140100563 Govari et al. Apr 2014 A1
20140107644 Falwell et al. Apr 2014 A1
20140142408 De et al. May 2014 A1
20140148804 Ward et al. May 2014 A1
20140163480 Govari et al. Jun 2014 A1
20140163546 Govari et al. Jun 2014 A1
20140171942 Werneth et al. Jun 2014 A1
20140180035 Anderson Jun 2014 A1
20140187916 Clark et al. Jul 2014 A1
20140194716 Diep et al. Jul 2014 A1
20140194867 Fish et al. Jul 2014 A1
20140200567 Cox et al. Jul 2014 A1
20140235986 Harlev et al. Aug 2014 A1
20140235988 Ghosh Aug 2014 A1
20140235989 Wodlinger et al. Aug 2014 A1
20140243851 Cohen et al. Aug 2014 A1
20140276712 Mallin et al. Sep 2014 A1
20140276760 Bonyak et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276791 Ku et al. Sep 2014 A1
20140288556 Ibrahim et al. Sep 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140343549 Spear et al. Nov 2014 A1
20140364845 Rashidi Dec 2014 A1
20140371613 Narayan et al. Dec 2014 A1
20150005767 Werneth et al. Jan 2015 A1
20150011995 Avitall et al. Jan 2015 A1
20150066108 Shi et al. Mar 2015 A1
20150119674 Fischell et al. Apr 2015 A1
20150126840 Thakur et al. May 2015 A1
20150133914 Koblish May 2015 A1
20150138977 Dacosta May 2015 A1
20150141978 Subramaniam et al. May 2015 A1
20150142041 Kendale et al. May 2015 A1
20150148796 Bencini May 2015 A1
20150150472 Harlev et al. Jun 2015 A1
20150157402 Kunis et al. Jun 2015 A1
20150157412 Wallace et al. Jun 2015 A1
20150164584 Davalos et al. Jun 2015 A1
20150173824 Davalos et al. Jun 2015 A1
20150173828 Avitall Jun 2015 A1
20150174404 Rousso et al. Jun 2015 A1
20150182740 Mickelsen Jul 2015 A1
20150196217 Harlev et al. Jul 2015 A1
20150223726 Harlev et al. Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150258344 Tandri et al. Sep 2015 A1
20150265342 Long et al. Sep 2015 A1
20150265344 Aktas et al. Sep 2015 A1
20150272656 Chen Oct 2015 A1
20150272664 Cohen Oct 2015 A9
20150272667 Govari et al. Oct 2015 A1
20150282729 Harlev et al. Oct 2015 A1
20150289923 Davalos et al. Oct 2015 A1
20150304879 Dacosta Oct 2015 A1
20150320481 Cosman et al. Nov 2015 A1
20150321021 Tandri et al. Nov 2015 A1
20150327944 Neal et al. Nov 2015 A1
20150342532 Basu et al. Dec 2015 A1
20150343212 Rousso et al. Dec 2015 A1
20150351836 Prutchi Dec 2015 A1
20150359583 Swanson Dec 2015 A1
20160000500 Salahieh et al. Jan 2016 A1
20160008061 Fung et al. Jan 2016 A1
20160008065 Gliner et al. Jan 2016 A1
20160029960 Toth et al. Feb 2016 A1
20160038772 Thapliyal et al. Feb 2016 A1
20160051204 Harlev et al. Feb 2016 A1
20160051324 Stewart et al. Feb 2016 A1
20160058493 Neal et al. Mar 2016 A1
20160058506 Spence et al. Mar 2016 A1
20160066993 Avitall et al. Mar 2016 A1
20160074679 Thapliyal et al. Mar 2016 A1
20160095531 Narayan et al. Apr 2016 A1
20160095642 Deno et al. Apr 2016 A1
20160095653 Lambert et al. Apr 2016 A1
20160100797 Mahapatra et al. Apr 2016 A1
20160100884 Fay et al. Apr 2016 A1
20160106498 Highsmith et al. Apr 2016 A1
20160106500 Olson Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160113712 Cheung et al. Apr 2016 A1
20160120564 Kirkpatrick et al. May 2016 A1
20160128770 Afonso et al. May 2016 A1
20160166167 Narayan et al. Jun 2016 A1
20160166310 Stewart et al. Jun 2016 A1
20160166311 Long et al. Jun 2016 A1
20160174865 Stewart et al. Jun 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160184003 Srimathveeravalli et al. Jun 2016 A1
20160184004 Hull et al. Jun 2016 A1
20160213282 Leo et al. Jul 2016 A1
20160220307 Miller et al. Aug 2016 A1
20160235470 Callas et al. Aug 2016 A1
20160287314 Arena et al. Oct 2016 A1
20160310211 Long Oct 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160324573 Mickelson et al. Nov 2016 A1
20160331441 Konings Nov 2016 A1
20160331459 Townley et al. Nov 2016 A1
20160354142 Pearson et al. Dec 2016 A1
20160361109 Weaver et al. Dec 2016 A1
20170001016 De Ridder Jan 2017 A1
20170035499 Stewart et al. Feb 2017 A1
20170042449 Deno et al. Feb 2017 A1
20170042615 Salahieh et al. Feb 2017 A1
20170056648 Syed et al. Mar 2017 A1
20170065330 Mickelsen et al. Mar 2017 A1
20170065339 Mickelsen Mar 2017 A1
20170065340 Long Mar 2017 A1
20170065343 Mickelsen Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170095291 Harrington et al. Apr 2017 A1
20170105793 Cao et al. Apr 2017 A1
20170120048 He et al. May 2017 A1
20170146584 Daw et al. May 2017 A1
20170151029 Mickelsen Jun 2017 A1
20170172654 Wittkampf et al. Jun 2017 A1
20170181795 Debruyne Jun 2017 A1
20170189097 Viswanathan et al. Jul 2017 A1
20170215953 Long et al. Aug 2017 A1
20170245928 Xiao et al. Aug 2017 A1
20170246455 Athos et al. Aug 2017 A1
20170312024 Harlev et al. Nov 2017 A1
20170312025 Harlev et al. Nov 2017 A1
20170312027 Harlev et al. Nov 2017 A1
20180001056 Leeflang et al. Jan 2018 A1
20180042674 Mickelsen Feb 2018 A1
20180042675 Long Feb 2018 A1
20180043153 Viswanathan et al. Feb 2018 A1
20180064488 Long et al. Mar 2018 A1
20180085160 Viswanathan et al. Mar 2018 A1
20180093088 Mickelsen Apr 2018 A1
20180133460 Townley et al. May 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180193090 De et al. Jul 2018 A1
20180200497 Mickelsen Jul 2018 A1
20180289417 Schweitzer et al. Oct 2018 A1
20180303488 Hill Oct 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20190038171 Howard Feb 2019 A1
20190046791 Ebbers et al. Feb 2019 A1
20190069950 Viswanathan et al. Mar 2019 A1
20190125439 Rohl et al. May 2019 A1
20190151015 Viswanathan et al. May 2019 A1
20190183378 Mosesov et al. Jun 2019 A1
20190209238 Jimenez Jul 2019 A1
20190223938 Arena et al. Jul 2019 A1
20190223950 Gelbart et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190233809 Neal et al. Aug 2019 A1
20190256839 Neal et al. Aug 2019 A1
20190269912 Viswanathan et al. Sep 2019 A1
20190328445 Sano et al. Oct 2019 A1
20190336198 Viswanathan et al. Nov 2019 A1
20190336207 Viswanathan Nov 2019 A1
20190376055 Davalos et al. Dec 2019 A1
Foreign Referenced Citations (95)
Number Date Country
1042990 Oct 2000 EP
1125549 Aug 2001 EP
0797956 Jun 2003 EP
1340469 Sep 2003 EP
1127552 Jun 2006 EP
1803411 Jul 2007 EP
1009303 Jun 2009 EP
2213729 Aug 2010 EP
2382935 Nov 2011 EP
2425871 Mar 2012 EP
2532320 Dec 2012 EP
2587275 May 2013 EP
2663227 Nov 2013 EP
1909678 Jan 2014 EP
2217165 Mar 2014 EP
2376193 Mar 2014 EP
2708181 Mar 2014 EP
2777579 Sep 2014 EP
2777585 Sep 2014 EP
2934307 Oct 2015 EP
3056242 Aug 2016 EP
3111871 Jan 2017 EP
3151773 Apr 2018 EP
06-507797 Sep 1994 JP
10-510745 Oct 1998 JP
2000-508196 Jul 2000 JP
2005-516666 Jun 2005 JP
2006-506184 Feb 2006 JP
2007-325935 Dec 2007 JP
2008-538997 Nov 2008 JP
2009-500129 Jan 2009 JP
2011-509158 Mar 2011 JP
2012-050538 Mar 2012 JP
9207622 May 1992 WO
9221278 Dec 1992 WO
9221285 Dec 1992 WO
9407413 Apr 1994 WO
9724073 Jul 1997 WO
9725917 Jul 1997 WO
9737719 Oct 1997 WO
9904851 Feb 1999 WO
9922659 May 1999 WO
9956650 Nov 1999 WO
9959486 Nov 1999 WO
0256782 Jul 2002 WO
0353289 Jul 2003 WO
0365916 Aug 2003 WO
2004045442 Jun 2004 WO
2004086994 Oct 2004 WO
2005046487 May 2005 WO
2006115902 Nov 2006 WO
2007006055 Jan 2007 WO
2007079438 Jul 2007 WO
2009082710 Jul 2009 WO
2009089343 Jul 2009 WO
2009137800 Nov 2009 WO
2010014480 Feb 2010 WO
2011028310 Mar 2011 WO
2011154805 Dec 2011 WO
2012051433 Apr 2012 WO
2012097067 Jul 2012 WO
2012153928 Nov 2012 WO
2013019385 Feb 2013 WO
2014025394 Feb 2014 WO
2014031800 Feb 2014 WO
2014036439 Mar 2014 WO
2014100579 Jun 2014 WO
2014160832 Oct 2014 WO
2015066322 May 2015 WO
2015099786 Jul 2015 WO
2015103530 Jul 2015 WO
2015103574 Jul 2015 WO
2015130824 Sep 2015 WO
2015140741 Sep 2015 WO
2015143327 Sep 2015 WO
2015171921 Nov 2015 WO
2015175944 Nov 2015 WO
2015192018 Dec 2015 WO
2015192027 Dec 2015 WO
2016059027 Apr 2016 WO
2016060983 Apr 2016 WO
2016081650 May 2016 WO
2016090175 Jun 2016 WO
2017093926 Jun 2017 WO
2017119934 Jul 2017 WO
2017120169 Jul 2017 WO
2017192477 Nov 2017 WO
2017192495 Nov 2017 WO
2017218734 Dec 2017 WO
2018005511 Jan 2018 WO
2018191149 Oct 2018 WO
2018200800 Nov 2018 WO
2019118436 Jun 2019 WO
2019133606 Jul 2019 WO
2019234133 Dec 2019 WO
Non-Patent Literature Citations (11)
Entry
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013).
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages.
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007].
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016).
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014).
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014).
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014).
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015).
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014).
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011).
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012).
Related Publications (1)
Number Date Country
20220000547 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
61996855 May 2014 US
Continuations (3)
Number Date Country
Parent 15795075 Oct 2017 US
Child 17207053 US
Parent 15341523 Nov 2016 US
Child 15795075 US
Parent PCT/US2015/031086 May 2015 WO
Child 15341523 US