All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates to methods and apparatus for neuromodulation. In some embodiments, the present invention relates to methods and apparatus for achieving renal neuromodulation.
Congestive Heart Failure (“CHF”) is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes altered, which results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidneys and circulatory system.
It is believed that progressively decreasing perfusion of the kidneys is a principal non-cardiac cause perpetuating the downward spiral of CHF. Moreover, the fluid overload and associated clinical symptoms resulting from these physiologic changes result in additional hospital admissions, poor quality of life and additional costs to the health care system.
In addition to their role in the progression of CHF, the kidneys play a significant role in the progression of Chronic Renal Failure (“CRF”), End-Stage Renal Disease (“ESRD”), hypertension (pathologically high blood pressure) and other cardio-renal diseases. The functions of the kidneys can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow. Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions result from reduced renal function or renal failure (kidney failure) and are believed to increase the workload of the heart. In a CHF patient, renal failure will cause the heart to further deteriorate as fluids are retained and blood toxins accumulate due to the poorly functioning kidneys.
It has been established in animal models that the heart failure condition results in abnormally high sympathetic activation of the kidneys. Such high levels of renal sympathetic nerve activity lead to decreased removal of water and sodium from the body, as well as increased secretion of renin. Increased renin secretion leads to vasoconstriction of blood vessels supplying the kidneys which causes decreased renal blood flow. Reduction of sympathetic renal nerve activity, e.g., via denervation, may reverse these processes.
Applicants have previously described methods and apparatus for treating renal disorders by applying a pulsed electric field to neural fibers that contribute to renal function. See, for example, Applicants' co-pending U.S. patent application Ser. No. 11/129,765, filed on May 13, 2005, and Ser. No. 11/189,563, filed on Jul. 25, 2005, both of which are incorporated herein by reference in their entireties. A pulsed electric field (“PEF”) may initiate denervation or other renal neuromodulation via irreversible electroporation, electrofusion or other processes. The PEF may be delivered from apparatus positioned intravascularly, extravascularly, intra-to-extravascularly or a combination thereof. Additional methods and apparatus for achieving renal neuromodulation via localized drug delivery (such as by a drug pump or infusion catheter), a stimulation electric field, or other modalities are described, for example, in co-owned and co-pending U.S. patent application Ser. No. 10/408,665, filed Apr. 8, 2003, and U.S. Pat. No. 6,978,174, both of which are incorporated herein by reference in their entireties.
Electrofusion generally refers to the fusion of neighboring cells induced by exposure to an electric field. Contact between target neighboring cells for the purposes of electrofusion may be achieved in a variety of ways, including, for example, via dielectrophoresis. In tissue, the target cells may already be in contact, thus facilitating electrofusion.
Electroporation and electropermeabilization generally refer to methods of manipulating the cell membrane or intracellular apparatus. For example, the porosity of a cell membrane may be increased by inducing a sufficient voltage across the cell membrane through short, high-voltage pulses. The extent of porosity in the cell membrane (e.g., size and number of pores) and the duration of effect (e.g., temporary or permanent) are a function of multiple variables, such as the field strength, pulse width, duty cycle, electric field orientation, cell type or size and/or other parameters.
Cell membrane pores will generally close spontaneously upon termination of relatively lower strength electric fields or relatively shorter pulse widths (herein defined as “reversible electroporation”). However, each cell or cell type has a critical threshold above which pores do not close such that pore formation is no longer reversible; this result is defined as “irreversible electroporation,” “irreversible breakdown” or “irreversible damage.” At this point, the cell membrane ruptures and/or irreversible chemical imbalances caused by the high porosity occur. Such high porosity can be the result of a single large hole and/or a plurality of smaller holes.
A potential challenge of using intravascular PEF systems for treating renal disorders is to selectively electroporate target cells without affecting other cells. For example, it may be desirable to irreversibly electroporate renal nerve cells that travel along or in proximity to renal vasculature, but it may not be desirable to damage the smooth muscle cells of which the vasculature is composed. As a result, an overly aggressive course of PEF therapy may persistently injure the renal vasculature, but an overly conservative course of PEF therapy may not achieve the desired renal neuromodulation.
Applicants have previously described methods and apparatus for monitoring tissue impedance or conductivity to determine the effects of pulsed electric field therapy, e.g., to determine an extent of electroporation and/or its degree of irreversibility. See, for example, Applicant's co-pending U.S. patent application Ser. No. 11/233,814, filed Sep. 23, 2005, which is incorporated herein by reference in its entirety. Pulsed electric field electroporation of tissue causes a decrease in tissue impedance and an increase in tissue conductivity. If induced electroporation is reversible, tissue impedance and conductivity should approximate baseline levels upon cessation of the pulsed electric field. However, if electroporation is irreversible, impedance and conductivity changes should persist after terminating the pulsed electric field. Thus, monitoring the impedance or conductivity of target and/or non-target tissue may be utilized to determine the onset of electroporation and to determine the type or extent of electroporation. Furthermore, monitoring data may be used in one or more manual or automatic feedback loops to control the electroporation.
In view of the foregoing, it would be desirable to provide additional methods and apparatus for achieving renal neuromodulation.
Several embodiments of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The methods and apparatus of the present invention may be used to modulate neural fibers that contribute to renal function and may exploit any suitable neuromodulatory techniques that will achieve the desired neuromodulation. Several embodiments of the present invention are methods and apparatus for neuromodulation via a pulsed electric field (“PEF”), a stimulation electric field, localized drug delivery, high frequency ultrasound, thermal techniques, athermal techniques, combinations thereof, and/or other techniques. Neuromodulation may, for example, effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential blockade or attenuation, changes in cytokine up-regulation and other conditions in target neural fibers. In several embodiments, neuromodulation is achieved via multi-vessel methods and apparatus with neuromodulatory elements positioned proximate to or within multiple vessels and/or multiple branches of a single vessel.
In some patients, when the multi-vessel neuromodulatory methods and apparatus of the present invention are applied to renal nerves and/or other neural fibers that contribute to renal neural functions, the applicants believe that the neuromodulation may directly or indirectly increase urine output, decrease plasma renin levels, decrease tissue (e.g., kidney) and/or urine catecholamines, cause renal catecholamine (e.g., norepinephrine) spillover, increase urinary sodium excretion, and/or control blood pressure. Furthermore, applicants believe that these or other changes may prevent or treat congestive heart failure, hypertension, acute myocardial infarction, end-stage renal disease, contrast nephropathy, other renal system diseases, and/or other renal or cardio-renal anomalies. The methods and apparatus described herein may be used to modulate efferent and/or afferent nerve signals.
Renal neuromodulation preferably is performed in a bilateral fashion such that neural fibers contributing to renal function of both the right and left kidneys are modulated. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e. as compared to renal neuromodulation performed on neural tissue innervating a single kidney. In some embodiments, concurrent modulation of neural fibers that contribute to both right and left renal function may be achieved; while in other embodiments, modulation of the right and left neural fibers may be sequential. Bilateral renal neuromodulation may be continuous or intermittent, as desired.
When utilizing an electric field to achieve desired renal neuromodulation, the electric field parameters may be altered and combined in any suitable combination. Such parameters can include, but are not limited to, voltage, field strength, frequency, pulse width, pulse duration, the shape of the pulse, the number of pulses and/or the interval between pulses (e.g., duty cycle), etc. For example, when utilizing a pulsed electric field, suitable field strengths can be up to about 10,000 V/cm and suitable pulse widths can be up to about 1 second. Suitable shapes of the pulse waveform include, for example, AC waveforms, sinusoidal waves, cosine waves, combinations of sine and cosine waves, DC waveforms, DC-shifted AC waveforms, RF waveforms, square waves, trapezoidal waves, exponentially-decaying waves, or combinations. The field includes at least one pulse, and in many applications the field includes a plurality of pulses. Suitable pulse intervals include, for example, intervals less than about 10 seconds. These parameters are provided as suitable examples and in no way should be considered limiting.
To better understand the structures of devices of the present invention and the methods of using such devices for renal neuromodulation, it is instructive to examine the renal anatomy in humans.
With reference now to
Referring to
Similarly, the lengthwise or longer dimensions of tissues overlying or underlying the target nerve are orthogonal or otherwise off-axis (e.g., transverse) with respect to the longer dimensions of the nerve cells. Thus, in addition to aligning a pulsed electric field (“PEF”) with the lengthwise or longer dimensions of the target cells, the PEF may propagate along the lateral or shorter dimensions of the non-target cells (i.e., such that the PEF propagates at least partially out of alignment with non-target smooth muscle cells SMC). Therefore, as seen in
A PEF system placed within and/or in proximity to the wall of the renal artery may propagate an electric field having a longitudinal portion that is aligned to run with the longitudinal dimension of the artery in the region of the renal nerves RN and the smooth muscle cells SMC of the vessel wall so that the wall of the artery remains at least substantially intact while the outer nerve cells are destroyed, fused or otherwise affected. Monitoring elements optionally may be utilized to assess an extent of, e.g., electroporation, induced in renal nerves and/or in smooth muscle cells, as well as to adjust PEF parameters to achieve a desired effect.
With reference to
The proximal section of the apparatus 100 generally has one or more electrical connectors to couple the electrodes 110 to a pulse generator 101. The pulse generator is located external to the patient. The generator, as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention described hereinafter for delivery of a PEF with desired field parameters. It should be understood that electrodes of embodiments described hereinafter may be electronically connected to the generator even though the generator is not explicitly shown or described with each embodiment.
As seen in
It is expected that applying a bipolar field between a desired pair of the electrodes 110 positioned in different vessels, e.g., between the electrode 110a and the electrode 110b, may modulate the function of the target neural fibers in a manner that at least partially denervates the patient's kidney. The electrodes 110a and 110b (as well as the electrodes 110b and 110c) optionally may be laterally spaced from one another along the lengthwise dimension of the renal artery RA, which is expected to preferentially align an electric field delivered between the electrodes with the target neural fibers. The neuromodulation may be achieved thermally or substantially athermally. Such PEF therapy may alleviate clinical symptoms of CHF, hypertension, renal disease, myocardial infarction, contrast nephropathy and/or other renal or cardio-renal diseases for a period of months (e.g., potentially up to six months or more). This time period may be sufficient to allow the body to heal to potentially reduce the risk of CHF onset after an acute myocardial infarction and mitigate the need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient can return to the physician for a repeat therapy.
The effectiveness of the initial therapy, and thus the potential need for repeating the therapy, can be evaluated by monitoring several different physiologic parameters. For example, plasma renin levels, renal catecholamine (e.g., norepinephrine) spillover, urine catecholamines, or other neurohormones that are indicative of increased sympathetic nervous activity can provide an indication of the extent of denervation. Additionally or alternatively, a nuclear imaging test, such as a test utilizing 131-Iodine metaiodobenzylguanidine (“MIBG”), may be performed to measure a degree of adrenergic innervation. As another option, imaging may be performed with Technetium-99m mercaptoacetylglycine (“Tc-99m MAG3”) to evaluate renal function. Alternatively, provocative maneuvers known to increase sympathetic nervous activity, such as head-out water immersion testing, may be conducted to determine the need for repeat therapy.
Embodiments of the PEF system 100 optionally may comprise one or more positioning elements for centering or otherwise positioning the system or parts of the system within the patient's vasculature. The positioning element may, for example, comprise inflatable balloons and/or expandable wire baskets or cages. The positioning element optionally may comprise an impedance-altering element configured to alter impedance within the patient's vasculature to better direct an applied electric field across the vessel wall to target neural fibers. When the positioning element is a balloon, it may temporarily block blood flow and thereby alter the impedance within the patient's vessel. Additionally or alternatively, the positioning element may further comprise one or more electrodes. In one embodiment, a balloon positioning element has a conductive exterior and/or is fabricated from a conductive polymer that may be used as an electrode in a multi-vessel PEF system.
In
As discussed previously, it is expected that a multi-vessel PEF therapy may effectuate one or more of the following: irreversible electroporation or electrofusion; necrosis and/or inducement of apoptosis; alteration of gene expression; action potential blockade or attenuation; changes in cytokine up-regulation; and other conditions in target neural fibers. In some patients, when such neuromodulatory methods and apparatus are applied to renal nerves and/or other neural fibers that contribute to renal neural functions, applicants believe that the neuromodulation may at least partially denervate the patient's kidney(s). This may result in increased urine output, decreased plasma renin levels, decreased tissue (e.g., kidney) and/or urine catecholamines, renal catecholamine (e.g., norepinephrine) spillover, increased urinary sodium excretion, and/or controlled blood pressure. Furthermore, applicants believe that these or other changes may prevent or treat congestive heart failure, hypertension, myocardial infarction, renal disease, contrast nephropathy, other renal system diseases, and/or other renal or cardio-renal anomalies for a period of months (e.g., potentially up to six months or more).
The methods and apparatus described herein could be used to modulate efferent or afferent nerve signals, as well as combinations of efferent and afferent nerve signals. Neuromodulation in accordance with several embodiments of the present invention can be achieved without completely physically severing, i.e., without fully cutting, the target neural fibers. However, it should be understood that such neuromodulation may functionally achieve results analogous to physically severing the neural fibers even though the fibers may not be completely physically severed.
The apparatus described herein additionally may be used to quantify the efficacy, extent or cell selectivity of PEF therapy to monitor and/or control the therapy. When a pulsed electric field initiates electroporation, the impedance of the electroporated tissue begins to decrease and the conductivity of the tissue begins to increase. If the electroporation is reversible, the electrical parameters of the tissue will return to baseline values or approximate baseline values after terminating the PEF. However, if the electroporation is irreversible, the changes in the electrical parameters of the tissue will persist after terminating the PEF. These phenomena may be utilized to monitor both the onset and the effects of PEF therapy. For example, electroporation may be monitored directly using conductivity measurements or impedance measurements, such as Electrical Impedance Tomography (“EIT”), electrical impedance or conductivity indices and/or other electrical impedance/conductivity measurements. Such electroporation monitoring data optionally may be used in one or more feedback loops to control delivery of PEF therapy.
In order to collect the desired monitoring data, additional monitoring electrodes optionally may be provided in proximity to the monitored tissue. The distance between such monitoring electrodes preferably would be specified prior to therapy delivery and used to determine conductivity from impedance or conductance measurements. For the purposes of the present invention, the imaginary part of impedance may be ignored such that impedance is defined as peak voltage divided by peak current, while conductance may be defined as the inverse of impedance (i.e., peak current divided by peak voltage), and conductivity may be defined as conductance per unit distance. Applicants have previously described methods and apparatus for monitoring PEF therapy and have provided illustrative PEF waveforms, for example, in co-pending U.S. patent application Ser. No. 11/233,814, filed Sep. 23, 2005, which has been incorporated herein by reference in its entirety.
Referring now to
Referring now to
With reference now to
A bipolar electric field may be delivered between the first electrode 312 positioned within the renal artery and the second electrode 330 positioned within the renal vein to modulate target neural fibers that contribute to renal function via a multi-vessel approach. In
As discussed previously, a renal catecholamine (e.g., norepinephrine) spillover may indicate the extent of denervation or other renal neuromodulation achieved by methods in accordance with the present invention. A renal catecholamine spillover is defined as an imbalance between an amount of a renal catecholamine entering a kidney via a renal artery and an amount of the renal catecholamine exiting the kidney via a renal vein. For, example, neuromodulation may induce the kidney to excrete more norepinephrine into the renal vein than that which had entered the kidney via the renal artery. A baseline measurement of renal catecholamine spillover may be made prior to the renal neuromodulation. This baseline then may be compared to a measurement of the renal catecholamine spillover taken after the renal neuromodulation, and the difference may be attributed to the renal neuromodulation.
In order to measure the renal catecholamine spillover, blood may be drawn from the patient. For example, blood may be drawn from the renal artery and from the renal vein, and a differential in unit volume of the monitored renal catecholamine(s) between the arterial and venous blood may be used to quantify the renal catecholamine spillover and thus assess the degree of the renal neuromodulation. Such blood draws may, for example, be achieved by drawing blood through one or more guide catheters used to deliver a PEF system, such as the PEF system 300 of
The blood draws additionally or alternatively may be made via one or blood ports integrated into the PEF system. In the embodiment of
In addition to delivery of a bipolar electric field between a first electrode positioned within a first vessel or vessel branch, and a second electrode positioned within a second vessel or vessel branch, a bipolar electric field may be delivered between first and second electrodes positioned solely within a single vessel or vessel branch. As seen in
Tissue positioned within the overlap zone Z may exhibit locally enhanced intensity of an induced electric field within the tissue, as compared to the intensity within tissue positioned outside of the overlap zone. When a target neural fiber, such as a target renal neural fiber RN, passes through the overlap zone Z, the locally enhanced intensity of the induced electric field within the target neural fiber may be of a magnitude sufficient to desirably modulate the neural fiber. Furthermore, the intensity of induced electric fields outside of the overlap zone desirably may be of magnitudes insufficient to cause damage to non-target tissues. Overlapping electric fields thus may reduce a risk of undesirable damage to non-target tissues, while locally providing an induced electric field of sufficient magnitude to achieve desired renal neuromodulation.
Although preferred illustrative variations of the present invention are described above, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. For example, one or more electrodes may be positioned in other parts of the patient's venous vasculature, such as within the patient's inferior vena cava or within vessel branchings of the patient's renal vein. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
The present application is a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 11/129,765, filed on May 13, 2005, which claims the benefit of U.S. Provisional Application Nos. (a) 60/616,254, filed on Oct. 5, 2004, and (b) 60/624,793, filed on Nov. 2, 2004. All of these applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2130758 | Rose | Sep 1938 | A |
2276995 | Milinowski | Mar 1942 | A |
2276996 | Milinowski | Mar 1942 | A |
3043310 | Milinowski | Jul 1962 | A |
3127895 | Kendall et al. | Apr 1964 | A |
3181535 | Milinowski | May 1965 | A |
3270746 | Kendall et al. | Sep 1966 | A |
3329149 | Kendall et al. | Jul 1967 | A |
3522811 | Schwartz et al. | Aug 1970 | A |
3563246 | Puharich et al. | Feb 1971 | A |
3650277 | Sjostrand et al. | Mar 1972 | A |
3670737 | Pearo | Jun 1972 | A |
3760812 | Timm et al. | Sep 1973 | A |
3774620 | Hansjurgens | Nov 1973 | A |
3794022 | Nawracaj et al. | Feb 1974 | A |
3800802 | Berry et al. | Apr 1974 | A |
3803463 | Cover | Apr 1974 | A |
3894532 | Morey | Jul 1975 | A |
3895639 | Rodler | Jul 1975 | A |
3897789 | Blanchard | Aug 1975 | A |
3911930 | Hagfors et al. | Oct 1975 | A |
3952751 | Yarger | Apr 1976 | A |
3987790 | Eckenhoff et al. | Oct 1976 | A |
4011861 | Enger | Mar 1977 | A |
4026300 | DeLuca et al. | May 1977 | A |
4055190 | Tany | Oct 1977 | A |
4071033 | Nawracaj et al. | Jan 1978 | A |
4105017 | Ryaby et al. | Aug 1978 | A |
4141365 | Fischell et al. | Feb 1979 | A |
4266532 | Ryaby et al. | May 1981 | A |
4266533 | Ryaby et al. | May 1981 | A |
4305115 | Armitage | Dec 1981 | A |
4315503 | Ryaby et al. | Feb 1982 | A |
4360019 | Portner et al. | Nov 1982 | A |
4379462 | Borkan et al. | Apr 1983 | A |
4405305 | Stephen et al. | Sep 1983 | A |
4454883 | Fellus | Jun 1984 | A |
4467808 | Brighton et al. | Aug 1984 | A |
4487603 | Harris | Dec 1984 | A |
4530840 | Tice et al. | Jul 1985 | A |
4587975 | Salo et al. | May 1986 | A |
4608985 | Crish et al. | Sep 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4671286 | Renault | Jun 1987 | A |
4674482 | Waltonen et al. | Jun 1987 | A |
4692147 | Duggan | Sep 1987 | A |
4715852 | Reinicke et al. | Dec 1987 | A |
4774967 | Zanakis | Oct 1988 | A |
4791931 | Slate | Dec 1988 | A |
4816016 | Schulte et al. | Mar 1989 | A |
4852573 | Kennedy | Aug 1989 | A |
4865845 | Eckenhoff et al. | Sep 1989 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4981146 | Bertolucci | Jan 1991 | A |
4998532 | Griffith | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5014699 | Pollack et al. | May 1991 | A |
5057318 | Magruder et al. | Oct 1991 | A |
5058584 | Bourgeois | Oct 1991 | A |
5059423 | Magruder et al. | Oct 1991 | A |
5061492 | Okada et al. | Oct 1991 | A |
5094242 | Gleason et al. | Mar 1992 | A |
5111815 | Mower | May 1992 | A |
5112614 | Magruder et al. | May 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5131409 | Lobarev et al. | Jul 1992 | A |
5137727 | Eckenhoff | Aug 1992 | A |
5188837 | Domb | Feb 1993 | A |
5193048 | Kaufman et al. | Mar 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5199428 | Obel et al. | Apr 1993 | A |
5203326 | Collins et al. | Apr 1993 | A |
5213098 | Bennett et al. | May 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5234692 | Magruder et al. | Aug 1993 | A |
5234693 | Magruder et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5251643 | Osypka | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5282468 | Klepinski | Feb 1994 | A |
5282785 | Shapland et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304120 | Crandell et al. | Apr 1994 | A |
5304206 | Baker et al. | Apr 1994 | A |
5317155 | King | May 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5338662 | Sadri | Aug 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5370680 | Proctor | Dec 1994 | A |
5389069 | Weaver | Feb 1995 | A |
5397308 | Ellis et al. | Mar 1995 | A |
5397338 | Grey et al. | Mar 1995 | A |
5400784 | Durand et al. | Mar 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5429634 | Narciso, Jr. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5458626 | Krause | Oct 1995 | A |
5458631 | Xavier | Oct 1995 | A |
5472406 | de la Torre et al. | Dec 1995 | A |
5478303 | Foley-Nolan et al. | Dec 1995 | A |
5494822 | Sadri | Feb 1996 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5499971 | Shapland et al. | Mar 1996 | A |
5507724 | Hofmann et al. | Apr 1996 | A |
5507791 | Sit'ko | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5560360 | Filler et al. | Oct 1996 | A |
5569198 | Racchini | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5573552 | Hansjurgens | Nov 1996 | A |
5584863 | Rauch et al. | Dec 1996 | A |
5589192 | Okabe et al. | Dec 1996 | A |
5618563 | Berde et al. | Apr 1997 | A |
5626576 | Janssen | May 1997 | A |
5626862 | Brem et al. | May 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5634899 | Shapland et al. | Jun 1997 | A |
5689877 | Grill, Jr. et al. | Nov 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5700485 | Berde et al. | Dec 1997 | A |
5704908 | Hofmann et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5711326 | Thies et al. | Jan 1998 | A |
5713847 | Howard, III et al. | Feb 1998 | A |
5723001 | Pilla et al. | Mar 1998 | A |
5725563 | Klotz et al. | Mar 1998 | A |
5728396 | Peery et al. | Mar 1998 | A |
5747060 | Sackler et al. | May 1998 | A |
5755750 | Petruska et al. | May 1998 | A |
5756115 | Moo-Young et al. | May 1998 | A |
5792187 | Adams | Aug 1998 | A |
5800464 | Kieval | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5814079 | Kieval | Sep 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
RE35987 | Harris et al. | Dec 1998 | E |
5843069 | Butler et al. | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5891181 | Zhu | Apr 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5906817 | Moullier et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916154 | Hobbs et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919187 | Guglielmi et al. | Jul 1999 | A |
5924997 | Campbell | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6010613 | Walters et al. | Jan 2000 | A |
6026326 | Bardy | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6058328 | Levine et al. | May 2000 | A |
6058331 | King | May 2000 | A |
6073048 | Kieval et al. | Jun 2000 | A |
6077227 | Miesel et al. | Jun 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6122548 | Starkebaum et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6178349 | Kieval | Jan 2001 | B1 |
6192889 | Morrish | Feb 2001 | B1 |
6205361 | Kuzma et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6214032 | Loeb et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6238702 | Berde et al. | May 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6251130 | Dobak, III et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6259952 | Sluijter et al. | Jul 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6272383 | Grey et al. | Aug 2001 | B1 |
6280377 | Talpade | Aug 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6287608 | Levin et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6304777 | Ben-Haim et al. | Oct 2001 | B1 |
6304787 | Kuzma et al. | Oct 2001 | B1 |
6306423 | Donovan et al. | Oct 2001 | B1 |
6326020 | Kohane et al. | Dec 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6334069 | George et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6353763 | George et al. | Mar 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6366808 | Schroeppel et al. | Apr 2002 | B1 |
6366815 | Haugland et al. | Apr 2002 | B1 |
6393324 | Gruzdowich et al. | May 2002 | B2 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6405079 | Ansarinia | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6415183 | Scheiner et al. | Jul 2002 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6442424 | Ben-Haim et al. | Aug 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6450942 | Lapanashvili et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6464687 | Ishikawa et al. | Oct 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6516211 | Acker et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6522932 | Kuzma et al. | Feb 2003 | B1 |
6524607 | Goldenheim et al. | Feb 2003 | B1 |
6534081 | Goldenheim et al. | Mar 2003 | B2 |
6536949 | Heuser | Mar 2003 | B1 |
6564096 | Mest | May 2003 | B2 |
6571127 | Ben-Haim et al. | May 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6601459 | Jenni et al. | Aug 2003 | B1 |
6605084 | Acker et al. | Aug 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6620151 | Blischak et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6666845 | Hooper et al. | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6672312 | Acker | Jan 2004 | B2 |
6676657 | Wood | Jan 2004 | B2 |
6681136 | Schuler et al. | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690971 | Schauerte et al. | Feb 2004 | B2 |
6692738 | MacLaughlin et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6738663 | Schroeppel et al. | May 2004 | B2 |
6749598 | Keren et al. | Jun 2004 | B1 |
6786904 | Doscher et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6916656 | Walters et al. | Jul 2005 | B2 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6939345 | KenKnight et al. | Sep 2005 | B2 |
6958060 | Mathiesen et al. | Oct 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6994700 | Elkins et al. | Feb 2006 | B2 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7081115 | Taimisto | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7191015 | Lamson et al. | Mar 2007 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020026222 | Schauerte et al. | Feb 2002 | A1 |
20020026228 | Schauerte | Feb 2002 | A1 |
20020032468 | Hill et al. | Mar 2002 | A1 |
20020038137 | Stein | Mar 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020045853 | Dev et al. | Apr 2002 | A1 |
20020072782 | Osorio et al. | Jun 2002 | A1 |
20020107553 | Hill et al. | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020120304 | Mest | Aug 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020169413 | Keren et al. | Nov 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020188325 | Hill et al. | Dec 2002 | A1 |
20020198512 | Seward | Dec 2002 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030009145 | Struijker-Boudier et al. | Jan 2003 | A1 |
20030040774 | Terry et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030060848 | Kieval et al. | Mar 2003 | A1 |
20030060857 | Perrson et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030100924 | Foreman et al. | May 2003 | A1 |
20030120270 | Acker | Jun 2003 | A1 |
20030150464 | Casscells | Aug 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20030199767 | Cespedes et al. | Oct 2003 | A1 |
20030199768 | Cespedes et al. | Oct 2003 | A1 |
20030199806 | Kieval | Oct 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030220521 | Reitz et al. | Nov 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040019364 | Kieval et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040065615 | Hooper et al. | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040101523 | Reitz et al. | May 2004 | A1 |
20040106953 | Yomtov et al. | Jun 2004 | A1 |
20040111080 | Harper et al. | Jun 2004 | A1 |
20040163655 | Gelfand et al. | Aug 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040176699 | Walker et al. | Sep 2004 | A1 |
20040176757 | Sinelnikov et al. | Sep 2004 | A1 |
20040193228 | Gerber | Sep 2004 | A1 |
20040220511 | Scott et al. | Nov 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040254616 | Rossing et al. | Dec 2004 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050038409 | Segal et al. | Feb 2005 | A1 |
20050049542 | Sigg et al. | Mar 2005 | A1 |
20050065562 | Rezai | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065574 | Rezai | Mar 2005 | A1 |
20050075681 | Rezai et al. | Apr 2005 | A1 |
20050080459 | Jacobson et al. | Apr 2005 | A1 |
20050096710 | Kieval | May 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154418 | Kieval et al. | Jul 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050171575 | Dev et al. | Aug 2005 | A1 |
20050197624 | Goodson et al. | Sep 2005 | A1 |
20050209548 | Dev et al. | Sep 2005 | A1 |
20050209642 | Palti | Sep 2005 | A1 |
20050228459 | Levin et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050240126 | Foley et al. | Oct 2005 | A1 |
20050240173 | Palti | Oct 2005 | A1 |
20050240228 | Palti | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050245882 | Elkins et al. | Nov 2005 | A1 |
20050251212 | Kieval et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050267010 | Goodson et al. | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060004417 | Rossing et al. | Jan 2006 | A1 |
20060004430 | Rossing et al. | Jan 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060030814 | Valencia et al. | Feb 2006 | A1 |
20060036218 | Goodson et al. | Feb 2006 | A1 |
20060041277 | Deem et al. | Feb 2006 | A1 |
20060041283 | Gelfand et al. | Feb 2006 | A1 |
20060067972 | Kesten et al. | Mar 2006 | A1 |
20060069323 | Elkins et al. | Mar 2006 | A1 |
20060074453 | Kieval et al. | Apr 2006 | A1 |
20060079859 | Elkins et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060089674 | Walters et al. | Apr 2006 | A1 |
20060100667 | Machado et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060116720 | Knoblich | Jun 2006 | A1 |
20060121016 | Lee | Jun 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060155344 | Rezai et al. | Jul 2006 | A1 |
20060167437 | Valencia | Jul 2006 | A1 |
20060167499 | Palti | Jul 2006 | A1 |
20060189941 | Seward et al. | Aug 2006 | A1 |
20060189960 | Kesten et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060206149 | Yun | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060265015 | Demarais et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
WO-2006041881 | Apr 2006 | WO |
WO-2007035537 | Mar 2007 | WO |
WO-2007078997 | Jul 2007 | WO |
WO-2007146834 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20060235474 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60616254 | Oct 2004 | US | |
60624793 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11129765 | May 2005 | US |
Child | 11451728 | US |