Embodiments of the present disclosure relate to methods and apparatus for outputting a haptic signal to a haptic transducer. In particular, representations of parts of haptic signals are stored with associated user experiences to which they correspond.
Vibrational haptic devices, for example Linear Resonant Actuators (LRAs), have been used in devices such as mobile devices to generate vibrational feedback for user interaction with the device. Among various vibration feedbacks, haptic alter-tones or vibrational ringtones are an important type of vibrational notification.
The playback of haptic signals to produce haptic effects which may be sensed by a user may be similar to music and audio ringtones. The storage of the haptic signals used to create the haptic effects may use similar methods as those for storing ringtones, for example pulse code modulation (PCM) waveforms. However, when the content of the haptic signal is longer in duration, and a larger variety of haptic effects are required, the more memory is then required for both generation and storage of the haptic signals.
According to some embodiments, there is provided a method for outputting a haptic signal to a haptic transducer. The method comprises storing a representation of a part of the haptic signal comprising a first information point indicating a first amplitude and at least one first frequency of the part of the haptic signal at a first time, wherein the representation is associated with a user experience; responsive to receiving an indication of occurrence of the user experience, determining the haptic signal based on the first information point such that the part of the haptic signal has the first amplitude and the at least one first frequency at the first time; and outputting the haptic signal to the haptic transducer.
In some embodiments, the first time is defined relative to a start time of the part of the haptic signal.
In some embodiments, the representation of the part of the haptic signal further comprises a second information point indicating a second amplitude and a second frequency of the part of haptic signal at a second time. In some embodiments, the second time is defined relative to the first time.
In some embodiments, the method further comprises generating the haptic signal based on the second information point such that the part of the haptic signal has the second amplitude and the second frequency at the second time. In some embodiments, the method further comprises generating the haptic signal such that an amplitude of the part of the haptic signal increases from the first amplitude to the second amplitude between the first time and the second time.
In some embodiments, the method further comprises generating the haptic signal such that a frequency of the part of the haptic signal increases from the first frequency to the second frequency between the first time and the second time.
In some embodiments, the representation of the part of the haptic signal further comprises a repetition time. The haptic signal may be generated such that the part of the haptic signal is repeated after the repetition time.
In some embodiments the representation of the part of the haptic signal further comprises an indication of a number, X, of repetitions, where X is an integer value, and the method comprises generating the haptic signal such that the part of the haptic signal is repeated X times at intervals of the repetition time.
According to some embodiments, there is provided a method of generating a haptic signal for output to a haptic transducer. The method comprises responsive to receiving an indication of occurrence of a user experience, generating a first part of haptic signal based on a stored representation of the first part of the haptic signal comprising information relating to a first amplitude of the first part of haptic signal; and generating a second part haptic signal based on a stored representation of the second part of the haptic signal comprising information relating to a second amplitude of the second part of haptic signal, wherein the representation of the first part of the haptic signal and the representation of the second part of the haptic signal are associated with the user experience.
The second part of the haptic signal may be generated a desired wait time following the end of the first part of the haptic signal.
The stored representation of the first part of the haptic signal may comprise a pulse code modulation of the first part of the haptic signal. The stored representation of the second part of the haptic signal may comprise a pulse code modulation of the second part of the haptic signal. In some embodiments the stored representation of the first part of the haptic signal comprises a first information point indicating a first amplitude and at least one first frequency of the first part of the haptic signal at a first time. The stored representation of the second part of the haptic signal may comprise a second information point indicating a second amplitude and at least one second frequency of the second part of the haptic signal at a second time. Any combination of different types of stored representation may be used for the first part of the haptic signal and the second part of the haptic signal.
In some embodiments the method comprises receiving an audio signal for output to a speaker; wherein the step of receiving an indication of occurrence of a user experience comprises detecting the user experience in the audio signal.
The stored representation of the first part of the haptic signal and the stored representation of the second part of the haptic signal may be associated with the user experience as part of a stored code associated with the user experience. The stored code may comprise an indication of the stored representation of the first part of the haptic signal; an indication of the stored representation of the second part of the haptic signal; and an indication of a time to elapse between the stored representation of the first part of the haptic signal and the stored representation second part of the haptic signal.
In some embodiments the stored code further comprises an indication of an amplitude to playback the stored representation of the first part of the haptic signal.
According to some embodiments, there is provided a haptic signal generator for outputting a haptic signal to a haptic transducer. The haptic signal generator comprises a memory configured to store a representation of a part of the haptic signal comprising a first information point indicating a first amplitude and at least one first frequency of the part of the haptic signal at a first time, wherein the representation is associated with a user experience; and processing circuitry configured to, responsive to receiving an indication of occurrence of the user experience, determine the haptic signal based on the first information point such that the part of the haptic signal has the first amplitude and the at least one first frequency at the first time; and output the haptic signal to the haptic transducer.
According to some embodiments, there is provided a haptic signal generator for generating a haptic signal for output to a haptic transducer. The haptic signal generator comprises processing circuitry configured to responsive to receiving an indication of occurrence of a user experience, generate a first part of haptic signal based on a stored representation of the first part of the haptic signal comprising information relating to a first amplitude of the first part of haptic signal; and generate a second part haptic signal based on a stored representation of the second part of the haptic signal comprising information relating to a second amplitude of the second part of haptic signal, wherein the representation of the first part of the haptic signal and the representation of the second part of the haptic signal are associated with the user experience.
According to some embodiments there is provided an electronic apparatus comprising a haptic signal generator for outputting a haptic signal to a haptic transducer. The haptic signal generator may be as described above. The electronic apparatus may comprise at least one of: a portable device; a battery power device; a computing device; a communications device; a gaming device; a mobile telephone; a personal media player; a laptop, tablet; a notebook computing device, or a smart home device.
According to some embodiments there is provided an electronic apparatus comprising a haptic signal generator for generating a haptic signal for output to a haptic transducer. The haptic signal generator may be as described above. The electronic apparatus may comprise at least one of: a portable device; a battery power device; a computing device; a communications device; a gaming device; a mobile telephone; a personal media player; a laptop, tablet; a notebook computing device, or a smart home device.
For a better understanding of the embodiments of the present disclosure, and to show how it may be put into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:
The description below sets forth example embodiments according to this disclosure. Further example embodiments and implementations will be apparent to those having ordinary skill in the art. Further, those having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiment discussed below, and all such equivalents should be deemed as being encompassed by the present disclosure.
The device 100 comprises a processor 106, which may be, for example, an application processor. The processor 106 interfaces with a signal processor 108, which may be, for example, a digital signal processor (DSP). The signal processor 108 may interface with an audio output amplifier 110, which may be configured to output an audio signal to drive the audio output transducer 102. The signal processor 108 also interfaces with a haptic output amplifier 112, which is configured to output a haptic signal to drive the haptic transducer 104
The signal processor 108 may also interface with any other output devices capable of providing a sensory output to a user, for example a screen.
The processor 106 runs an operating environment of the device 100 to allow software applications to be executed by the device 100. Such an application may receive user inputs. The user inputs may include one or more of: touch and/or gestural user inputs that may be detected by a touch-sensitive surface (e.g. a touch screen) of the device (not shown); kinetic user inputs, such as rotating or tilting the device that may be detected by a sensor, such as an accelerometer or gyroscope of the device (also not shown); and audio user inputs, such as spoken commands that may be detected by a sensor, such as a microphone of the device (also not shown). In response to detection of a user input, the application may be operative to generate appropriate outputs at the device. For example, the application may be operative to cause images displayed on a display of the device (not shown) to be updated, and to cause appropriate audio effects to be output by the audio output transducer 102. The application may also be operative to cause appropriate haptic outputs to be provided by the haptic output transducer 104 in response to detection of user inputs. These user inputs, of all types, may be described as a user experience.
The sensory outputs provided to the user via any one of the output components of the device, for example the display (not shown) and the audio output transducer 102, may also be described as a user experience.
In some examples, signal processor 108 may be configured to actuate the haptic output transducer 104 to cause the device 100 to vibrate at the same in conjunction with a sensory output user experience (for example, the display of images on a display or screen being updated and/or an audio effect being output by the output audio transducer 102) thereby providing additional sensory information to the user.
Haptic effects, such as haptic ringtones, may comprise a sequence of shorter components. The haptic effects may be actuated together with some user experience, for example a user input such as a button press, or a touch on a specific location on a touch screen, or a sensory output such as the playback of some audio content to the user. The playback of a haptic signal to provide the haptic effect along with the user experience generates a composite sensory experience for the user.
There may be a variety of different haptic effects produced by driving the haptic output transducer 104 with haptic signals of different shapes, frequencies, and amplitudes. Each haptic effect may produce a different sensation for a user.
As previously described, pulse code modulation (PCM) waveforms may be used to store haptic signals that are used to drive a transducer to produce haptic effects. However, it may be difficult to store long (for example greater than 500 ms) PCM waveforms in memory, for example, in random access memory of a haptic driver integrated circuit or in a corresponding digital signal processor (DSP).
However, in some examples, the haptic signals contain periods of “silence” during which there is effectively no haptic effect produced. The PCM waveforms used to store these haptic signals also therefore include the periods of “silence”. However, the “silent” periods in the haptic signals still consume memory space.
In step 201, the method comprises storing a representation of a part of the haptic signal comprising a first information point indicating a first amplitude and at least one first frequency of the part of the haptic signal at a first time.
In other words, the haptic signal may be deconstructed into parts of the haptic signal that may be referred to herein as a “haptic atoms”. These haptic atoms comprise parts of the haptic signal. The haptic atoms may be represented by information relating to the spectral content of the part of the haptic signal, a time duration of the part of the haptic signal, and an amplitude of the part of the haptic signal. The representations may comprise enough information to allow the haptic atom to be reconstructed by the signal processor based on the information that they contain.
In particular, where a haptic signal comprises periods of silence (i.e. where no haptic effect is output by the haptic transducer), the haptic signal may be deconstructed into the haptic atoms which comprise the parts of the haptic signal that are not “silent”.
The representation of a haptic atom may be associated with a user experience. For example, a first representation may be associated with a specific user input, for example a button click. A second representation may be associated with the playback of a specific audio event or alert. The representation may be stored with an indication of the associated user experience.
In step 202, the method comprises, responsive to receiving an indication of occurrence of the user experience, determining the haptic signal based on the first information point such that the part of the haptic signal has the first amplitude and the at least one first frequency at the first time.
In other words, in response to receiving an indication of occurrence of the user experience, for example a notification of a button press occurring, or a detection of a specific audio event in an audio signal to be output to an output audio transducer, the method comprises generating the haptic signal from the stored representation of the haptic atom which is associated with the user experience.
In step 202, the method comprises outputting the haptic signal to the haptic transducer.
The representation of the part of the haptic signal may be stored in a piece wise linear envelope format. A PWLE comprises one or more information points, each information point may comprise an amplitude value and at least one frequency value at a particular time in the part of the haptic signal.
For example, table 1 illustrates an example PWLE for a first haptic atom. In this example, the PWLE comprises four information points.
A first information point comprises the first time 120 ms. This time value may for example, represent the time 120 ms after the start of the part of the haptic signal (haptic atom).
The first information point also comprises the first amplitude value of 0.16234. This amplitude value is expressed as a fraction of the fullscale (FFS) voltage available for the haptic transducer, which in this example is 12.32V. However, it will be appreciated that the amplitude value may be expressed in any suitable way. The first information point further comprises the first frequency value of 200 Hz.
Effectively, this first information point conveys that the first haptic atom has a voltage of 0.16234 FFS and a frequency of 200 Hz at a time 120 ms after the start of the first haptic atom.
A second information point comprises the second time 200 ms. This second time may for example, represent the time 200 ms after the start of the part of the haptic signal (first haptic atom). In some examples, the second time may be defined relative to the first time. The second information point also comprises the second amplitude value of 0.07305. This amplitude value is expressed as a fraction of the full-scale voltage available for the haptic transducer, which in this example is 12.32V. However, it will be appreciated that the amplitude value may be expressed in any suitable way. The second information point further comprises the second frequency value of 200 Hz.
Effectively, this second information point conveys that the first haptic atom has a voltage of 0.07305 FFS and a frequency of 200 Hz at a time 200 ms after the start of the first haptic atom.
A third information point comprises the third time 500 ms. This third time may for example, represent the time 500 ms after the start of the part of the haptic signal. The third information point also comprises the third amplitude value of 0.07305. This amplitude value is expressed as a fraction of the full-scale voltage available for the haptic transducer, which in this example is 12.32V. However, it will be appreciated that the amplitude value may be expressed in any suitable way. The third information point further comprises the third frequency value of 200 Hz.
Effectively, this third information point conveys that the first haptic atom has a voltage of 0.07305 FFS and a frequency of 200 Hz at a time 500 ms after the start of the first haptic atom.
A fourth information point comprises the fourth time 540 ms. This fourth time may for example, represent the time 540 ms after the start of the part of the haptic signal (first haptic atom). The fourth information point also comprises the fourth amplitude value of 0. This amplitude value is expressed as a fraction of the full-scale voltage available for the haptic transducer, which in this example is 12.32V. However, it will be appreciated that the amplitude value may be expressed in any suitable way. The fourth information point further comprises the fourth frequency value of 200 Hz.
Effectively, this fourth information point conveys that the first haptic atom has a voltage of 0 FFS and a frequency of 200 Hz at a time 540 ms after the start of the first haptic atom.
The information contained in the representation of the first haptic atom 310 illustrated in Table 1 may be used to recreate the first haptic atom as illustrated in
The haptic signal 300 is created such that the haptic signal 300 has the amplitude and frequency in each information point at the time specified in each information point.
In other words, point 301 corresponds to the first information point, point 302 corresponds to the second information point, point 303 corresponds to the third information point, and point 304 corresponds to the fourth information point.
In this example, the haptic signal is generated comprising the first haptic atom such that the amplitude of the first haptic atom decreases from the first amplitude to the second amplitude between the first time (i.e. 120 ms after a default start time) and the second time (i.e. 200 ms after a default start time). In this example, the amplitude decreases linearly between the first time and the second time. However, in some examples, a different rule for the way in which the first haptic atom is created between information points may be defined. For example, to produce a square wave type haptic atom, a haptic atom may be generated by switching the amplitude and/or frequency of the haptic atom at the occurrence of an information point.
In some examples, the haptic atom may comprise a default start at having an amplitude of 0 and a default start frequency of F1. The amplitude may then increase linearly between the start and the first time indicated in the first information point.
In this example illustrated in
By storing the representation of the first haptic atom in PWLE format rather than as a PCM waveform, the memory required to store haptic signal is reduced.
The PWLE in Table 2 comprises the same information points as in Table 1. However, the PWLE in Table 2 further comprises a repetition time. In this example, the repetition time is 260 ms.
The haptic signal 400 may therefore be generated such that the haptic atom 310 is repeated after the repetition time.
In some examples, the representation of the part of the haptic signal further comprises an indication of a number, X, of repetitions, where X is an integer value, and the method comprises: generating the haptic signal such that the part of the haptic signal is repeated X times at intervals of the repetition time.
In the example illustrated in table 2 and
In some examples, the haptic signal may comprise multiple haptic atoms, each having separate representations. For example, a haptic signal may comprise a first haptic atom that creates a short buzz haptic effect and a second haptic atom which creates a longer softer haptic effect. The two haptic atoms of the haptic signal may be represented and stored separately in separate representations. In some examples, different parts of a haptic signal (i.e. haptic atoms) may be stored in different types of representation. For example, one haptic atom may be stored using a PWLE and a different haptic atom may be stored using a PCM waveform.
In step 501, the method comprises, responsive to receiving an indication of occurrence of a user experience, generating a first part of haptic signal based on a stored representation of the first part of the haptic signal comprising information relating to a first amplitude of the first part of haptic signal.
In this example, the representation of the first part of the haptic signal (or the first haptic atom) may be any representation comprising information relating to a first amplitude of the first part of the haptic signal. For example, the representation may be a PWLE representation or a PCM waveform.
The PCM waveform representation may be used for short haptic effects, such as sharp high intensity vibration spikes. The short duration of these haptic effects may lower the storage requirement naturally in the time-domain. Depending on the characteristics of the haptic transducer, (for example a Linear Resonant Actuator (LRA)) the PCM waveform representation may need to be pre-processed to adjust the PCM waveform such that it is suitable for reproduction on the haptic transducer.
A PLWE representation of a haptic atom may be used for longer continuous tonal haptic effects as it may be more storage efficient that a PCM waveform. In particular, a sequence of haptic atoms may be represented by a plurality of different PWLEs.
In step 502, the method comprises generating a second part haptic signal based on a stored representation of the second part of the haptic signal comprising information relating to a second amplitude of the second part of haptic signal.
Again, in this example, the representation of the second part of the haptic signal (or the second haptic atom) may be any representation comprising information relating to a first amplitude of the first part of the haptic signal. For example, the representation of the second part of the haptic signal may be a PWLE representation or a PCM waveform.
The representation of the first part of the haptic signal and the representation of the second part of the haptic signal are stored such that they are both stored associated with the user experience.
In this example, the haptic signal is generated responsive to detecting a specific audio event in an audio signal. In other words, the user experience in this example comprises the audio event illustrated in
In other words, in some examples, the method of
In this example, a first haptic atom 610 is associated with two sections of the user experience. This first haptic atom 610 may be stored in a number of different ways. For example, the first haptic atom may be stored as associated with the user experience 614 between times t1 and t2, and times t3 and t4. Alternatively, the haptic atom 610 may be stored with a repetition period of the value of t5, with a repetition number of 1.
In this example, the user experience 614 is associated with a second haptic atom 612. The second haptic atom may be generated a desired wait time t6 following the end of first haptic atom. The desired wait time may be stored along with the associated first part of the haptic signal with the user experience. In other words, referring to the example in
In some examples, a sequence of haptic atoms (or sequence of parts of a haptic signal) may be associated with a user experience. For example, the method may comprise storing a sequence of haptic atoms associated with a user experience.
For example, for a user experience such as 614, the sequence of haptic atoms to be used to generate the haptic signal 600 may be stored using a code. For example, the first haptic atom 610 may be represented by “x” in a code, and the second haptic atom 612 is represented by “y” in a code.
The following code may then be used to represent the haptic signal 600:
x.100, t5, x.100, t6, y.40
This code may be understood as instructions to a signal processor to perform the following:
1) play back the first haptic atom “x” at 100% of design amplitude,
2) follow the first haptic atom “x” by t5 seconds of blank time,
3) play back the first haptic atom “x” again at 100% of design amplitude,
4) follow the first haptic atom “x” with t6 seconds of blank time,
5) play the second haptic atom “y” at 40% of design amplitude.
In other words, the first haptic atom and the second haptic atom are associated with the user experience as part of a stored code associated with the user experience. The stored code may comprise an indication of the first haptic atom (in this example “x”); an indication of the second haptic atom (in this example “y”); and an indication of a time to elapse between the first haptic atom and the second haptic atom (in this example t6).
In some examples the stored code may further comprise an indication of an amplitude to playback the first haptic atom (in this example 100% of the design amplitude, although it will be appreciated that other method for defining the amplitude may be used).
In this example therefore, when the user experience in
When using a haptic driver integrated circuit (IC) (or other amplifier+DSP), during the playback of a haptic signal that comprises multiple haptic atoms separated by periods of silence, as for example illustrated in
When considering the example illustrated in
Processing circuitry 701 may comprise an input for receiving an indication of occurrence of a user experience. As explained previously, this indication may be a notification of the occurrence of a user input, for example, a button press, touch screen activation, tilting a device, or a voice activation. The indication may alternatively be the detection of a sensory event (e.g. an audio event) in a sensory output signal (e.g. audio signal) to be output to the user.
The haptic signal generator 700 further comprises memory 703. The memory 703 may be configured to store representations of haptic atoms as described above with reference to
The processing circuitry 701 may be configured to; responsive to receiving an indication of the user experience, determine the haptic signal based on the first information point such that the part of the haptic signal has the first amplitude and the at least one first frequency at the first time. For example, the processing circuitry 701 may be configured to retrieve the representation of the part of the haptic signal from the memory 703 by transmitting the indication of the user experience to the memory 703, and receiving the representation of the part of the haptic signal in response.
The processing circuitry 701 may then be further configured to output the haptic signal to the haptic transducer.
In some examples, the processing circuitry 701 may be configured to generate a second part haptic signal based on a stored representation of the second part of the haptic signal comprising information relating to a second amplitude of the second part of haptic signal, wherein the representation of the first part of the haptic signal and the representation of the second part of the haptic signal are associated with the user experience in the memory 703. In some examples, the representation of the second part of the haptic signal may comprise a PLWE representation or a PCM waveform.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. The word “comprising” does not exclude the presence of elements or steps other than those listed in the claim, “a” or “an” does not exclude a plurality, and a single feature or other unit may fulfill the functions of several units recited in the claims. Any reference numerals or labels in the claims shall not be construed so as to limit their scope. Terms such as amplify or gain include possible applying a scaling factor or less than unity to a signal.
It will of course be appreciated that various embodiments of the analog conditioning circuit as described above or various blocks or parts thereof may be co-integrated with other blocks or parts thereof or with other functions of a host device on an integrated circuit such as a Smart Codec.
The skilled person will thus recognize that some aspects of the above-described apparatus and methods may be embodied as processor control code, for example on a non-volatile carrier medium such as a disk, CD- or DVD-ROM, programmed memory such as read only memory (Firmware), or on a data carrier such as an optical or electrical signal carrier. For many applications embodiments of the invention will be implemented on a DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array). Thus, the code may comprise conventional program code or microcode or, for example code for setting up or controlling an ASIC or FPGA. The code may also comprise code for dynamically configuring re-configurable apparatus such as re-programmable logic gate arrays. Similarly, the code may comprise code for a hardware description language such as Verilog™ or VHDL (Very high speed integrated circuit Hardware Description Language). As the skilled person will appreciate, the code may be distributed between a plurality of coupled components in communication with one another. Where appropriate, the embodiments may also be implemented using code running on a field-(re)programmable analogue array or similar device in order to configure analogue hardware.
It should be understood—especially by those having ordinary skill in the art with the benefit of this disclosure—that the various operations described herein, particularly in connection with the figures, may be implemented by other circuitry or other hardware components. The order in which each operation of a given method is performed may be changed, and various elements of the systems illustrated herein may be added, reordered, combined, omitted, modified, etc. It is intended that this disclosure embrace all such modifications and changes and, accordingly, the above description should be regarded in an illustrative rather than a restrictive sense.
Similarly, although this disclosure makes reference to specific embodiments, certain modifications and changes can be made to those embodiments without departing from the scope and coverage of this disclosure. Moreover, any benefits, advantages, or solution to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature of element.
Further embodiments likewise, with the benefit of this disclosure, will be apparent to those having ordinary skill in the art, and such embodiments should be deemed as being encompasses herein.
Number | Name | Date | Kind |
---|---|---|---|
3686927 | Scharton | Aug 1972 | A |
4902136 | Mueller et al. | Feb 1990 | A |
5684722 | Thorner et al. | Nov 1997 | A |
5748578 | Schell | May 1998 | A |
5857986 | Moriyasu | Jan 1999 | A |
6050393 | Murai et al. | Apr 2000 | A |
6278790 | Davis et al. | Aug 2001 | B1 |
6332029 | Azima et al. | Dec 2001 | B1 |
6388520 | Wada et al. | May 2002 | B2 |
6580796 | Kuroki | Jun 2003 | B1 |
6683437 | Tierling | Jan 2004 | B2 |
6703550 | Chu | Mar 2004 | B2 |
6762745 | Braun et al. | Jul 2004 | B1 |
6906697 | Rosenberg | Jun 2005 | B2 |
6995747 | Casebolt et al. | Feb 2006 | B2 |
7154470 | Tierling | Dec 2006 | B2 |
7623114 | Rank | Nov 2009 | B2 |
7639232 | Grant et al. | Dec 2009 | B2 |
7791588 | Tierling et al. | Sep 2010 | B2 |
7979146 | Ulrich et al. | Jul 2011 | B2 |
8068025 | Devenyi et al. | Nov 2011 | B2 |
8098234 | Lacroix et al. | Jan 2012 | B2 |
8102364 | Tierling | Jan 2012 | B2 |
8325144 | Tierling et al. | Dec 2012 | B1 |
8427286 | Grant et al. | Apr 2013 | B2 |
8441444 | Moore et al. | May 2013 | B2 |
8466778 | Hwang et al. | Jun 2013 | B2 |
8480240 | Kashiyama | Jul 2013 | B2 |
8572293 | Cruz-Hernandez et al. | Oct 2013 | B2 |
8572296 | Shasha et al. | Oct 2013 | B2 |
8593269 | Grant et al. | Nov 2013 | B2 |
8648829 | Shahoian et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8754757 | Ullrich et al. | Jun 2014 | B1 |
8947216 | Da Costa et al. | Feb 2015 | B2 |
8981915 | Birnbaum et al. | Mar 2015 | B2 |
8994518 | Gregorio et al. | Mar 2015 | B2 |
9030428 | Fleming | May 2015 | B2 |
9063570 | Weddle et al. | Jun 2015 | B2 |
9083821 | Hughes | Jul 2015 | B2 |
9092059 | Bhatia | Jul 2015 | B2 |
9117347 | Matthews | Aug 2015 | B2 |
9128523 | Buuck et al. | Sep 2015 | B2 |
9164587 | Da Costa | Oct 2015 | B2 |
9196135 | Shah et al. | Nov 2015 | B2 |
9248840 | Truong | Feb 2016 | B2 |
9326066 | Kilppel | Apr 2016 | B2 |
9329721 | Buuck et al. | May 2016 | B1 |
9354704 | Lacroix et al. | May 2016 | B2 |
9368005 | Cruz-Hernandez et al. | Jun 2016 | B2 |
9489047 | Jiang et al. | Nov 2016 | B2 |
9507423 | Gandhi et al. | Nov 2016 | B2 |
9513709 | Gregorio et al. | Dec 2016 | B2 |
9520036 | Buuck et al. | Dec 2016 | B1 |
9588586 | Rihn | Mar 2017 | B2 |
9640047 | Choi et al. | May 2017 | B2 |
9652041 | Jiang et al. | May 2017 | B2 |
9697450 | Lee | Jul 2017 | B1 |
9715300 | Sinclair et al. | Jul 2017 | B2 |
9740381 | Chaudhri et al. | Aug 2017 | B1 |
9842476 | Rihn et al. | Dec 2017 | B2 |
9864567 | Seo | Jan 2018 | B2 |
9881467 | Levesque | Jan 2018 | B2 |
9886829 | Levesque | Feb 2018 | B2 |
9946348 | Saboune et al. | Apr 2018 | B2 |
9947186 | Macours | Apr 2018 | B2 |
9959744 | Koskan et al. | May 2018 | B2 |
9965092 | Smith | May 2018 | B2 |
10032550 | Zhang et al. | Jul 2018 | B1 |
10055950 | Bhatia et al. | Aug 2018 | B2 |
10074246 | Da Costa et al. | Sep 2018 | B2 |
10110152 | Hajati | Oct 2018 | B1 |
10171008 | Nishitani et al. | Jan 2019 | B2 |
10175763 | Shah | Jan 2019 | B2 |
10264348 | Harris et al. | Apr 2019 | B1 |
10275087 | Smith | Apr 2019 | B1 |
10447217 | Zhao et al. | Oct 2019 | B2 |
10564727 | Billington et al. | Feb 2020 | B2 |
10620704 | Rand et al. | Apr 2020 | B2 |
10732714 | Rao et al. | Aug 2020 | B2 |
20010043714 | Asada et al. | Nov 2001 | A1 |
20020018578 | Burton | Feb 2002 | A1 |
20030068053 | Chu | Apr 2003 | A1 |
20030214485 | Roberts | Nov 2003 | A1 |
20060028095 | Maruyama et al. | Feb 2006 | A1 |
20060284856 | Soss | Dec 2006 | A1 |
20080226109 | Yamakata et al. | Sep 2008 | A1 |
20080240458 | Goldstein et al. | Oct 2008 | A1 |
20080293453 | Atlas et al. | Nov 2008 | A1 |
20080294984 | Ramsay et al. | Nov 2008 | A1 |
20080316181 | Nurmi | Dec 2008 | A1 |
20090020343 | Rothkopf et al. | Jan 2009 | A1 |
20090079690 | Watson et al. | Mar 2009 | A1 |
20090088220 | Persson | Apr 2009 | A1 |
20090096632 | Ullrich et al. | Apr 2009 | A1 |
20090102805 | Meijer et al. | Apr 2009 | A1 |
20090153499 | Kim et al. | Jun 2009 | A1 |
20090278819 | Goldenberg et al. | Nov 2009 | A1 |
20100013761 | Birnbaum et al. | Jan 2010 | A1 |
20100141408 | Doy et al. | Jun 2010 | A1 |
20110056763 | Tanase et al. | Mar 2011 | A1 |
20110141052 | Bernstein et al. | Jun 2011 | A1 |
20110163985 | Bae et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120112894 | Yang et al. | May 2012 | A1 |
20120206246 | Cruz-Hernandez et al. | Aug 2012 | A1 |
20120206247 | Bhatia et al. | Aug 2012 | A1 |
20120229264 | Company Bosch et al. | Sep 2012 | A1 |
20120253698 | Cokonaj | Oct 2012 | A1 |
20120306631 | Hughes | Dec 2012 | A1 |
20130027359 | Schevin et al. | Jan 2013 | A1 |
20130038792 | Quigley et al. | Feb 2013 | A1 |
20130141382 | Simmons et al. | Jun 2013 | A1 |
20130275058 | Awad | Oct 2013 | A1 |
20130289994 | Newman et al. | Oct 2013 | A1 |
20140056461 | Afshar | Feb 2014 | A1 |
20140064516 | Cruz-Hernandez et al. | Mar 2014 | A1 |
20140079248 | Short et al. | Mar 2014 | A1 |
20140118125 | Bhatia | May 2014 | A1 |
20140119244 | Steer et al. | May 2014 | A1 |
20140139327 | Bau et al. | May 2014 | A1 |
20140226068 | Lacroix et al. | Aug 2014 | A1 |
20140292501 | Lim et al. | Oct 2014 | A1 |
20140340209 | Lacroix | Nov 2014 | A1 |
20140347176 | Modarres et al. | Nov 2014 | A1 |
20150070260 | Saboune et al. | Mar 2015 | A1 |
20150084752 | Heubel et al. | Mar 2015 | A1 |
20150216762 | Oohashi et al. | Aug 2015 | A1 |
20150324116 | Marsden et al. | Nov 2015 | A1 |
20150325116 | Umminger, III | Nov 2015 | A1 |
20150341714 | Ahn et al. | Nov 2015 | A1 |
20160063826 | Morrell | Mar 2016 | A1 |
20160070392 | Wang et al. | Mar 2016 | A1 |
20160074278 | Muench | Mar 2016 | A1 |
20160132118 | Park et al. | May 2016 | A1 |
20160141606 | Ahn et al. | May 2016 | A1 |
20160162031 | Westerman et al. | Jun 2016 | A1 |
20160179203 | Modarres et al. | Jun 2016 | A1 |
20160239089 | Taninaka et al. | Aug 2016 | A1 |
20160246378 | Sampanes | Aug 2016 | A1 |
20160358605 | Ganong, III et al. | Dec 2016 | A1 |
20170078804 | Guo et al. | Mar 2017 | A1 |
20170090572 | Holenarsipur et al. | Mar 2017 | A1 |
20170153760 | Chawda et al. | Jun 2017 | A1 |
20170168574 | Zhang | Jun 2017 | A1 |
20170220197 | Matsumoto et al. | Aug 2017 | A1 |
20170277350 | Wang et al. | Sep 2017 | A1 |
20180059733 | Gault et al. | Mar 2018 | A1 |
20180059793 | Hajati | Mar 2018 | A1 |
20180067557 | Robert et al. | Mar 2018 | A1 |
20180074637 | Rosenberg et al. | Mar 2018 | A1 |
20180082673 | Tzanetos | Mar 2018 | A1 |
20180084362 | Zhang et al. | Mar 2018 | A1 |
20180151036 | Cha et al. | May 2018 | A1 |
20180158289 | Vasilev et al. | Jun 2018 | A1 |
20180160227 | Lawrence et al. | Jun 2018 | A1 |
20180178114 | Mizuta | Jun 2018 | A1 |
20180182212 | Li et al. | Jun 2018 | A1 |
20180183372 | Li et al. | Jun 2018 | A1 |
20180196567 | Klein et al. | Jul 2018 | A1 |
20180237033 | Hakeem et al. | Aug 2018 | A1 |
20180253123 | Levesque et al. | Sep 2018 | A1 |
20180321748 | Rao et al. | Nov 2018 | A1 |
20180329172 | Tabuchi | Nov 2018 | A1 |
20180335848 | Moussette et al. | Nov 2018 | A1 |
20180367897 | Bjork | Dec 2018 | A1 |
20190227628 | Rand et al. | Jan 2019 | A1 |
20190064925 | Kim et al. | Feb 2019 | A1 |
20190073078 | Sheng et al. | Mar 2019 | A1 |
20190103829 | Vasudevan et al. | Apr 2019 | A1 |
20190138098 | Shah | May 2019 | A1 |
20190163234 | Kim et al. | May 2019 | A1 |
20190206396 | Chen | Jul 2019 | A1 |
20190215349 | Adams et al. | Jul 2019 | A1 |
20190114496 | Lesso | Aug 2019 | A1 |
20190235629 | Hu et al. | Aug 2019 | A1 |
20190294247 | Hu et al. | Sep 2019 | A1 |
20190296674 | Janko et al. | Sep 2019 | A1 |
20190297418 | Stahl | Sep 2019 | A1 |
20190311590 | Doy et al. | Oct 2019 | A1 |
20190341903 | Kim | Nov 2019 | A1 |
20200117506 | Chan | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2002347829 | Apr 2003 | AU |
103165328 | Jun 2013 | CN |
103403796 | Nov 2013 | CN |
204903757 | Dec 2015 | CN |
105264551 | Jan 2016 | CN |
106438890 | Feb 2017 | CN |
106950832 | Jul 2017 | CN |
107665051 | Feb 2018 | CN |
0784844 | Jun 2005 | EP |
2363785 | Sep 2011 | EP |
2487780 | Aug 2012 | EP |
2600225 | Jun 2013 | EP |
2846218 | Mar 2015 | EP |
2846229 | Mar 2015 | EP |
2846329 | Mar 2015 | EP |
3379382 | Sep 2018 | EP |
201747044027 | Aug 2018 | IN |
H02130433 | May 1990 | JP |
08149006 | Jun 1996 | JP |
6026751 | Nov 2016 | JP |
6250985 | Dec 2017 | JP |
6321351 | May 2018 | JP |
20120126446 | Nov 2012 | KR |
2013104919 | Jul 2013 | WO |
2013186845 | Dec 2013 | WO |
2014018086 | Jan 2014 | WO |
2014094283 | Jun 2014 | WO |
2016105496 | Jun 2016 | WO |
2016164193 | Oct 2016 | WO |
2017113651 | Jul 2017 | WO |
2018053159 | Mar 2018 | WO |
2018067613 | Apr 2018 | WO |
2018125347 | Jul 2018 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/051189, dated Jul. 2, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050964, dated Sep. 3, 2019. |
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/US2018/031329, dated Jul. 20, 2018. |
Combined Search and Examination Report, UKIPO, Application No. GB1720424.9, dated Jun. 5, 2018. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050770, dated Jul. 5, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/052991, dated Mar. 17, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/023342, dated Jun. 9, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050823, dated Jun. 30, 2020. |
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/GB2020/050822, dated Jul. 9, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051037, dated Jul. 9, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051035, dated Jul. 10, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/024864, dated Jul. 6, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/056610, dated Jan. 21, 2021. |
First Examination Opinion Notice, State Intellectual Property Office of the People's Republic of China, Application No. 201880037435.X, dated Dec. 31, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/052537, dated Mar. 9, 2021. |
Office Action of the Intellectual Property Office, ROC (Taiwan) Patent Application No. 107115475, dated Apr. 30, 2021. |
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800208570, dated Jun. 3, 2021. |
Number | Date | Country | |
---|---|---|---|
20190340895 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62667009 | May 2018 | US | |
62670325 | May 2018 | US |