Methods and apparatus for performing endoluminal gastroplasty

Information

  • Patent Grant
  • 7918869
  • Patent Number
    7,918,869
  • Date Filed
    Friday, May 7, 2004
    21 years ago
  • Date Issued
    Tuesday, April 5, 2011
    14 years ago
Abstract
The present invention provides methods and apparatus for endoluminally performing gastroplasty. In one variation, the apparatus comprises a sizing tube, and a steerable guide that may be reversibly disposed within the sizing tube. In another variation, the sizing tube and steerable guide are integrated into a single device. In one method of utilizing the apparatus, a pouch is endoluminally formed within a patient's stomach, thereby partitioning or reducing the stomach and restricting the flow of food therethrough. The pouch may form a Vertical Banded Gastroplasty or Magenstrasse and Mill in an endoluminal fashion. Advantageously, the sizing tube or steerable guide may be used to properly size the endoluminal pouch.
Description
FIELD OF INVENTION

The present invention relates to methods and apparatus for endoluminally partitioning a patient's stomach to restrict the passage of food therethrough.


BACKGROUND OF THE INVENTION

Extreme or morbid obesity is a serious medical condition pervasive in the United States and other countries. Its complications include hypertension, diabetes, coronary artery disease, stroke, congestive heart failure, multiple orthopaedic problems and pulmonary insufficiency with markedly decreased life expectancy.


Several surgical techniques have been developed to treat morbid obesity, including bypassing an absorptive surface of the small intestine, bypassing a portion of the stomach, and reducing or partitioning the stomach size, e.g., via Vertical Banded Gastroplasty (“VBG”) or Magenstrasse and Mill. These procedures may be difficult to perform in morbidly obese patients and/or may present numerous potentially life-threatening post-operative complications. Thus, less invasive techniques have been pursued.


U.S. Pat. Nos. 4,416,267 and 4,485,805 to Garren et al. and Foster, Jr., respectively, propose disposal of an inflated bag within a patient's stomach to decrease the effective volume of the stomach that is available to store food. Accordingly, the patient is satiated without having to consume a large amount of food. A common problem with these inflated bags is that, since the bags float freely within the patient's stomach, the bags may migrate to, and block, a patient's pyloric opening, the portal leading from the stomach to the duodenum, thereby restricting passage of food to the remainder of the gastro-intestinal tract.


Apparatus and methods also are known in which an adjustable elongated gastric band is laparoscopically disposed around the outside of a patient's stomach near the esophagus to form a collar that, when tightened, squeezes the stomach into an hourglass shape, thereby providing a stoma that limits the amount of food that a patient may consume comfortably. An example of an adjustable gastric band is the LAP-BAND® made by INAMED Health of Santa Barbara, Calif.


Numerous disadvantages are associated with using an adjustable gastric band. First, the band may be dislodged if the patient grossly overeats, thereby requiring additional invasive surgery to either reposition or remove the band. Similarly, overeating may cause the band to injure the stomach wall if the stomach over-expands. Laparoscopic disposal of the gastric band around the stomach requires a complex procedure, requires considerable skill on the part of the clinician, and is not free of dangerous complications.


In view of the drawbacks associated with prior art techniques for treating morbid obesity, it would be desirable to provide methods and apparatus for endoluminally performing gastroplasty.


BRIEF SUMMARY OF THE INVENTION

Endoluminal gastroplasty is achieved by providing methods and apparatus for endoluminally partitioning a patient's stomach to restrict the passage of food therethrough. In one variation, the apparatus comprises a sizing tube (e.g., a modified bougie) and a steerable guide that may be advanced and/or retracted within the sizing tube. Endoluminal instruments or tools may be advanced along or through the steerable guide, or may be coupled thereto.


The sizing tube preferably comprises reversible adhering elements, such as suction ports, hooks or barbs, disposed along a length thereof for adhering the tube along the lesser curvature of a patient's stomach. The tube preferably also comprises a lumen in which the steerable guide may be reversibly disposed, and at least one side port or slot along the length of the tube, from which the steerable guide may exit the tube lumen. Furthermore, the sizing tube may comprise an optional inflatable member disposed near or at a distal region of the tube for distally securing the tube to the patient's pylorus in a reversible manner.


Applicant has previously described exemplary steerable guides, for example, in co-pending U.S. patent application Ser. No. 10/797,485, filed Mar. 9, 2004, which is incorporated herein by reference in its entirety. That reference describes guides, or endoluminal tool deployment systems, having multiple lumens and/or sections. Different sections of the guides may have varying capacities for steering, shape-locking or rigidizing, retroflexing, etc.


Applicant also has previously described exemplary instruments or tools configured for coupling to, or advancement through/along, a steerable guide, for example, in Applicant's co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which is incorporated herein by reference in its entirety. Such tools may include, but are not limited to, tools for endoluminally visualizing, grasping, plicating, manipulating, affixing and/or securing gastric tissue.


In one method of utilizing the apparatus, a pouch is endoluminally formed within a patient's stomach, thereby partitioning or reducing the stomach and restricting the flow of food therethrough. The pouch may form a Vertical Banded Gastroplasty or Magenstrasse and Mill in an endoluminal fashion. Advantageously, the sizing tube described previously may be used to properly size the pouch.


The method may comprise disposing the steerable guide within the lumen of the sizing tube and advancing the sizing tube down a patient's esophagus into the patient's stomach. The steerable guide may then be used to steer the sizing tube into a position whereby the length of the tube is disposed in proximity to the lesser curvature of the patient's stomach. The tube's distal region preferably is disposed in proximity to the patient's pylorus. The sizing tube's reversible adhering elements may be actuated to reversibly secure or couple the tube along its length to the lesser curvature of the patient's stomach. Likewise, the tube's optional inflatable member may be inflated to secure or couple the distal region of the tube against the patient's pylorus.


Next, the steerable guide may be retracted relative to the sizing tube, and may be steered such that it exits the lumen of the sizing tube at the tube's side port or slot. The guide may then be steered, shape-locked or rigidized, retroflexed, etc., to properly position tools deployed via the guide for formation of the endoluminal pouch. Illustrative methods of forming such a pouch with tools deployed from a steerable guide are described, for example, in Applicant's co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which has been incorporated herein by reference. Advantageously, the endoluminal pouch may be formed about the sizing tube to ensure proper sizing of the pouch. Sizing tubes of various diameters may accordingly be utilized, provided that sufficient space is provided within the sizing tube for advancement of the appropriate tools. Thus, specified sizing tubes having a size which displaces a desired volume within the stomach may be utilized depending upon the desired size and volume of an endoluminal pouch to be formed about the sizing tube.


After formation of the pouch, the steerable guide and any instruments or tools may be retracted proximally within the lumen of the sizing tube for removal from the patient. Final formation of the pouch, e.g., via tightening of pre-placed sutures or anchors, optionally may be achieved after the steerable guide has been returned to the lumen of the sizing tube. At any time during or after formation of the pouch, the inflatable member of the sizing tube may be deflated, and its reversible adhering elements may be decoupled from the patient's stomach, pylorus, or duodenal tissue, depending upon where the sizing tube has been anchored, thereby facilitating removal of the sizing tube, as well as the steerable guide and any instruments, from the patient.


In a variation of the apparatus and method, the steerable guide may be provided with reversible adhering elements along at least a portion of its length. In such a configuration, no separate sizing tube may be required. Rather, the steerable guide may be reversibly coupled to, e.g., the lesser curvature of the patient's stomach, along a more proximal portion of its length disposed within the stomach. This more proximal portion may be used to properly size the endoluminal pouch. A more distal portion of the guide may be steered to facilitate formation of the pouch about the more proximal portion of the guide, with the more proximal portion facilitating proper sizing of the pouch.


Additional variations will be apparent to those of skill in the art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1F are a schematic side view of one variation of the apparatus, detail perspective views of variations of a sizing tube of the apparatus, and a detail side view of a variation of the sizing tube;



FIGS. 2A-2H are schematic side views, partially in section, illustrating a method of performing endoluminal gastroplasty with the apparatus of FIG. A-1F;



FIG. 3 is a schematic side view of another variation of the apparatus; and



FIGS. 4A-4D are schematic side views, partially in section, illustrating a method of performing endoluminal gastroplasty with the apparatus of FIG. 3.





DETAILED DESCRIPTION OF THE INVENTION

Methods and apparatus for endoluminally partitioning a patient's stomach to restrict the passage of food therethrough are described.


With reference to FIG. 1, one variation of the apparatus is described. As seen in FIG. 1A, apparatus 10 comprises sizing tube 20, as well as steerable guide 30 that may be advanced within the sizing tube. Endoluminal instruments or tools 40, such as endoscope 42 and exemplary tool 44, may be advanced along or through the steerable guide, or may be coupled thereto.


Sizing tube 20 illustratively comprises a modified bougie having at least one reversible adhering element and preferably a plurality of reversible adhering elements 22 disposed along a length thereof for reversibly adhering the tube onto a surface of tissue within the patient, for instance, the lesser curvature of a patient's stomach. Elements 22 may comprise any known reversible adhering element, including, for example, suction ports 23, extendable or retractable hooks 24, extendable or retractable barbs 25 and combinations thereof. FIGS. 1B and 1C are detail perspective views of two exemplary variations of sizing tube 20 having different configurations of elements 22.


The reversibility of elements 22 may allow for sizing tube 20 to attach, at least temporarily, to the tissue surface without damaging the underlying tissue. Moreover, the ability for sizing tube 20 to adhere to the tissue may provide a relatively stable platform with respect to the surrounding tissue when advancing various tools therethrough. Additionally, if a plurality of elements 22 are utilized along the length of sizing tube 20, elements 22 may be collinearly aligned along the length at uniform distances relative to one another, as shown in the detail perspective view of FIG. 1D, or they may be positioned at various angles or staggered relative to one another, as shown in the detail perspective view of FIG. 1E.


As seen in FIG. 1A, sizing tube 20 also comprises lumen 21 in which steerable guide 30 may be advanced and retracted. Furthermore, sizing tube 20 may comprise one or more side ports or slots 26 that communicate with lumen 21 defined through sizing tube 20. Moreover, sizing tube 20 may be configured to have lumen 21 extend entirely through tube 20 or at least partially therethrough.


Slot 26 may be configured such that steerable guide 30 may exit lumen 21 via the slot. Optional seal 27, which may comprise a foam or rubber seal, may be provided to selectively close off slot 26. Sizing tube 20 optionally also may comprise inflatable member 28, e.g., a balloon, disposed near a distal region of the tube for distally securing the tube to, or distally of, the patient's pylorus, also in a reversible manner. An inflation lumen (not shown) may be provided for transferring an inflation fluid or gas to/from the inflatable member 28. Alternatively, rather than having an inflatable member 28 (or in addition to the inflatable member), other types of mechanical anchors which may or may not be retractable may be utilized, e.g., expandable baskets or cages, hooks, barbs, clamps, helical fasteners, etc.


Sizing tube 20 may have a maximum diameter, e.g., of less than or equal to about 40 Fr. Preferably, the sizing tube may have a maximum diameter of between about 26 Fr and 40 Fr, and more preferably a diameter between about 30 Fr and 36 Fr. Optionally, the diameter of tube 20 may vary along its length, e.g., in a tapered manner transitioning distally from a larger diameter to a smaller diameter along the length of tube 20, as shown in the side view of FIG. 1F.


Steerable guide 30 illustratively comprises multiple sections and multiple lumens. In FIG. 1A, although the guide illustratively comprises three lumens and three sections, it will be apparent to those of skill in the art that any alternative number of lumens and/or sections may be provided. Furthermore, the functionality of the sections may be altered or varied, as desired. Exemplary steerable guides are described, for example, in Applicant's co-pending U.S. patent application Ser. No. 10/797,485, filed Mar. 9, 2004, which has been incorporated herein by reference.


As seen in FIG. 1A, guide 30 illustratively comprises first, second and third lumens 31a, 31b and 31c, respectively. The lumens may facilitate passage of endoluminal instruments or tools 40, as well as injection of fluids, introduction of suction, etc. The lumens optionally may comprise seals (not shown). Additional lumens or bores (not shown) may be provided for passage of control wires, rods, etc., that facilitate steering or shape-locking of guide 30 or portions thereof.


Guide 30 also comprises three distinct sections: proximal section 32, middle section 34 and distal section 36. Proximal section 32 may, for example, be compliant, such that the section may assume the profile of the patient's anatomy in which the section is disposed, e.g., the patient's esophagus. Section 32 optionally may also be shape-lockable when disposed in a desired configuration. Middle section 34 may be steerable and/or able to retroflex in order to position distal section 36 (as well as the distal openings of lumens 31) in proximity to a tissue region of interest. Distal section 36 may also be steerable, for example, in a plane substantially perpendicular to the plane of steering of middle section 34. In this manner, middle section 34 may provide for superior and inferior positioning within a patient's stomach, while distal section 36 provides for anterior and posterior positioning.


Endoluminal instruments or tools 40 are configured for deployment through lumens 31 of steerable guide 30. The tools may, for example, provide endoluminal visualization, grasping, plicating, manipulating, securing and/or affixing of gastric tissue. In FIG. 1, tools 40 illustratively comprise endoscope 42 for visualizing tissue, as well as exemplary tool 44 having end effector 46. End effector 46 may, for example, comprise a tissue grasper, a tissue plicator, a tissue manipulator and/or a tissue affixing or securing element, such as a stapler, a riveter, an anchor delivery and deployment system, a suturing system, etc. Applicant has previously described exemplary instruments or tools configured for coupling to, or advancement through/along, a steerable guide, for example, in co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which has been incorporated herein by reference.


Referring now to FIG. 2 in conjunction with FIG. 1A, an example of one method of utilizing apparatus 10 to endoluminally perform gastroplasty via partitioning of a patient's stomach is described. As seen in FIG. 2A, steerable guide 30 is disposed within lumen 21 of sizing tube 20. The sizing tube and guide have been advanced down a patient's esophagus E into the patient's stomach S, either concurrently or sequentially.


Endoscope 42 optionally may be disposed in a lumen 31 of guide 30 to provide visualization, as well as additional steering capabilities, during advancement of tube 20 and guide 30. Furthermore, the endoscope may be advanced into the patient's stomach prior to advancement of steerable guide 30 and sizing tube 20. The steerable guide and sizing tube then may be advanced over the endoscope into the stomach.


In FIG. 2B, sections 34 and/or 36 of guide 30 (or a distal region of endoscope 42) are steered during further advancement of the guide and sizing tube to position at least a portion of the length of tube 20 in proximity to lesser curvature L of stomach S. Reversible adhering elements 22 of sizing tube 20 may be rotated or positioned to face towards the lesser curvature, while slot 26 of the tube faces greater curvature G. Although adhering elements 22 and slot 26 are shown positioned on opposing sides of sizing tube 20, they may also be positioned at various positions and angles relative to each other over the circumference of sizing tube 20. The tube's distal region preferably is steered in proximity to the patient's pylorus Py.


As an alternative to directly steering guide 30 and sizing tube 20 into position, endoscope 42 may be steered into position prior to advancement of guide 30 and sizing tube 20; the sizing tube and guide then may be advanced over the endoscope. For example, endoscope 42 may be steered such that its distal region is disposed in proximity to the patient's pylorus Py, and at least a portion of its length is disposed in proximity to lesser curvature L. Steerable guide 30 and guiding tube 20 then may be advanced along the endoscope to position the distal region of tube 20 in proximity to the pylorus and at least a portion of the length of tube 20 in proximity to the lesser curvature.


With tube 20 properly positioned, reversible adhering elements 22 may be actuated to reversibly secure the tube along its length, or along a partial length, to the lesser curvature of the patient's stomach, as in FIG. 2C. Actuation may, for example, entail drawing of suction when the elements comprise suction ports 23, or may entail reversible extension of the elements into the wall of stomach S when the elements comprise hooks 24 or barbs 25. Additional adhering elements and/or actuation mechanisms will be apparent to those of skill in the art.


Optional inflatable member 28, e.g. a balloon, also may be inflated to secure the distal region of the tube against the proximal region of a patient's pylorus. Alternatively, inflatable member 28 may be advanced in an uninflated or unexpanded form distally past pylorus Py and then inflated or expanded against a distal region of the pylorus Py. As discussed previously, other types of mechanical anchors may be utilized as an alternative to, or in combination with, inflatable member 28


As seen in FIG. 2D, steerable guide 30 may be retracted relative to sizing tube 20, and may be steered such that it exits lumen 21 of sizing tube 20 at side slot 26 and seal 27. Guide 30 is then steered or retroflexed, e.g. via endoscope 42 or via section 34 and/or section 36 of the guide, to reach segments of the patient's stomach superior and/or inferior to slot 26, as in FIG. 2E. In the retroflexed configuration, the distal openings of lumens 31 are directed back towards sizing tube 20. Guide 30 optionally may be reversibly rigidized or shape-locked to maintain the retroflexed configuration, e.g., via tensioning wires disposed within the guide.


After proper superior/inferior positioning, guide 30 may be steered (e.g. via section 36) to grasp, manipulate, plicate, approximate, secure, and/or affix, or otherwise treat, opposing anterior and posterior segments of stomach S via tools 44 advanced through lumens 31 and under visual guidance provided by endoscope 42. The posterior portion of such a secured approximation A is visible in the side-section of FIG. 2E. Advantageously, approximation A may be formed about sizing tube 20 to ensure proper sizing of a partition created in the stomach by the approximation. Thus, the diameter or profile of tube 20 may determine, or aid specification of, the diameter or profile of the partition.


As seen in FIG. 2F, the degree of retroflexing or steering of guide 30, and/or the position of the guide within slot 26 of sizing tube 20, may be altered to change the location and/or orientation of the distal end of guide 30 at different levels within the superior-inferior plane of the patient's stomach for formation of further approximations A of opposing tissue segments about tube 20. Likewise, as seen in dotted profile, the guide may be retroflexed from superior to inferior, and vice versa, to extend the reach of the guide and to form approximations inferior or distal to slot 26. The spacing of approximations A may be about 1 cm, though alternative spacing(s) may be provided.


Visual markings or other indicators optionally may be provided on sizing tube 20 to map out and/or facilitate proper spacing of the approximations. Applicant has previously described methods and apparatus for mapping out formation of such approximations during creation of an endoluminal pouch, for example, in co-pending U.S. patent application Ser. No. 10/797,910, filed Mar. 9, 2004, which is incorporated herein by reference in its entirety.


As can be seen in FIG. 2F, a pouch P is formed within stomach S just inferior to the patient's gastroesophageal junction GEJ upon formation of a plurality of approximations A about sizing tube 20. The profile or diameter of sizing tube 20 may determine, or aid specification of, the profile of pouch P and facilitate proper sizing of the pouch. The pouch partitions or reduces the stomach and restricts the passage of food by directing food through the pouch and bypassing a significant portion of the patient's stomach. The pouch also may effectively form a Vertical Banded Gastroplasty or Magenstrasse and Mill in an endoluminal fashion.


Additional illustrative methods and apparatus for forming an endoluminal pouch with tools deployed via a steerable guide (including methods and apparatus for forming and securing approximations A) are described, for example, in Applicant's co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which has been incorporated herein by reference. Aspects of the methods and apparatus described in that reference may be incorporated into, or used in combination with, the methods and apparatus described herein.


During or after formation of pouch P, steerable guide 30, as well as any instruments or tools 40, may be retracted within lumen 21 of sizing tube 20 for removal from the patient, as in FIG. 2G. Final formation of pouch P, e.g., formation of a final approximation AF at the location where guide 30 had exited slot 26 of sizing tube 20, optionally may be achieved after the guide has been returned to lumen 21 of the sizing tube. For example, approximation AF may be formed by tightening sutures or anchors that were placed prior to returning guide 30 to the lumen of tube 20


At any time during or after formation of pouch P, inflatable member 28 of sizing tube 20 may be deflated to decouple tube 20 from the patient's pylorus Py, and/or reversible adhering elements 22 may be removed from lesser curvature L of stomach S. As seen in FIG. 2H, after member 28 has been deflated and elements 22 have been removed, sizing tube 20, as well as guide 30 and tools 40, may be removed from the patient to complete endoluminal formation of pouch P. Thereafter, the partition provided by pouch P regulates the passage of food through stomach S to promote weight loss.


Referring now to FIG. 3, another variation of the apparatus is described. Apparatus 100 comprises steerable guide 110 having reversible adhering elements 112 disposed along at least a portion of its length. Guide 110 may comprise multiple lumens and/or multiple sections, and illustratively comprises previously described lumens 31 and previously described sections 32, 34 and 36. Reversible adhering elements 112 illustratively are disposed along section 32 of the guide. Sections 32, 34 and 36 of guide 110 may comprise varying capacities for steering, shape-locking or rigidizing, retroflexing, etc. Endoluminal instruments or tools 40, such as previously described endoscope 42 and exemplary tool 44, may be advanced along or through steerable guide 110, e.g., through lumens 31, or may be coupled thereto.


By providing steerable guide 110 with reversible adhering elements 112, apparatus 100 mitigates a need for a separate sizing tube. Rather, as described hereinbelow with respect to FIG. 4, section 32 of the guide may engage, for example, the lesser curvature of a patient's stomach, while sections 34 and 36 are used to steer and position a more distal portion of the guide for formation of an endoluminal pouch. Advantageously, in order to facilitate proper sizing of such a pouch, the pouch may be formed about section 32 of the guide while that section is coupled to the patient's lesser curvature. Thus, the diameter or profile of section 32 may facilitate formation of the endoluminal pouch with a specified profile or diameter.


Steerable guide 110 may have a maximum diameter of less than or equal to about 40 Fr. Preferably, the guide may have a maximum diameter of between about 26 Fr and 40 Fr, and more preferably may have a diameter between about 30 Fr and 36 Fr. Optionally, the diameter of guide 110 may vary along its length. Visual markings or other indicators may be provided along section 32 guide 110 to map out or facilitate proper spacing of approximations formed during creation of an endoluminal pouch about section 32.


With reference to FIG. 4, a method of using apparatus 100 to perform endoluminal gastroplasty is described. In FIG. 4A, apparatus 100 is advanced down a patient's throat through esophagus E into stomach S, for example, under visual guidance provided by endoscope 42 and/or along the endoscope. Apparatus 100 may, for example, be advanced concurrently with endoscope 42, or the apparatus may be advanced over the endoscope after a distal region of the endoscope has been disposed within the patient's stomach. A combination of these approaches, as well as alternative approaches, also may be utilized to properly position apparatus 100.


Once disposed within the stomach, steerable guide 110 of apparatus 100 is steered such that section 32 of the guide is disposed in proximity to lesser curvature L of the patient's stomach. Reversible adhering elements 112 are then actuated to reversibly couple section 32 of the guide to the lesser curvature, as in FIG. 4B.


As seen in FIG. 4C, guide 110 is then steered, retroflexed, shape-locked, rigidized and/or otherwise maneuvered to form a plurality of approximations A about section 32 of the guide, thereby creating pouch P. The approximations and pouch may, for example, be formed via tools 44 deployed through lumens 31 of the guide under visual guidance from endoscope 42. Advantageously, by forming pouch P about section 32 of guide 110, which is reversibly adhered to lesser curvature L of stomach S, a specified sizing or profile of the pouch may be achieved. In FIG. 4D, elements 112 may be removed from the lesser curvature of the patient's stomach, and apparatus 100, as well as any tools 40, may be removed from stomach S and pouch P, thereby completing endoluminal gastroplasty. Thereafter, pouch P regulates the passage of food through stomach S to promote weight loss.


Although various illustrative embodiments are described above, it will be evident to one skilled in the art that various changes and modifications are within the scope of the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A system for endoluminally performing gastroplasty, comprising: a sizing tube for endoluminal passage through a patient's esophagus into the patient's stomach, the sizing tube having a plurality of reversible adhering elements, at least one reversible adhering element comprising a suction port, a sizing tube lumen extending at least partially through the sizing tube, and at least one side port in the sizing tube:a steerable guide for insertion within the sizing tube lumen and out through the side port, with the steerable guide having at least one control wire to facilitate steering, and with the steerable guide having at least one tool lumen to allow movement of an endoscopic tool through the steerable guide; anda first endoluminal tool extendable through the tool lumen, the first endoluminal tool comprising a tissue grasper and a tissue anchor delivery system.
  • 2. The system of claim 1 wherein the sizing tube is configured to engage a lesser curvature of the patient's stomach with the at least one reversible adhering element.
  • 3. The system of claim 1. wherein the sizing tube further comprises a mechanical anchor comprising an inflatable member located adjacent to a front end of the sizing tube.
  • 4. The system of claim 1 with the sizing tube further comprising a seal for sealing the at least one side port.
  • 5. The system of claim 1, further comprising a second endoluminal tool extendable through the tool lumen and configured to perform at least one or more of tissue visualization, tissue grasping, tissue plication, tissue manipulation, tissue approximation, tissue securing, tissue treatment and combinations thereof.
  • 6. The system of claim 1, wherein the steerable guide comprises multiple sections.
  • 7. The system of claim 6, wherein the multiple sections comprise varying capacities for performing tasks chosen from the group consisting of steering, rigidizing, shape-locking, retroflexing and combinations thereof.
  • 8. The system of claim 1, wherein the adhering elements are substantially aligned in a row on the sizing tube.
  • 9. The system of claim 1, wherein the adhering elements are spaced in a staggered pattern on the sizing tube.
  • 10. The system of claim 1 wherein the adhering elements are positioned on an opposing side of the sizing tube with respect to the side port.
  • 11. The system of claim 1 wherein the adhering elements are positioned at an angle about the circumference of the sizing tube with respect to the side port.
  • 12. A method for endoluminally performing gastroplasty, comprising: advancing a sizing tube down a patient's throat into the patient's stomach;reversibly adhering a curved sidewall of the sizing tube to the patient's stomach with a plurality of reversible adhering elements, at least one reversible adhering element comprising a suction port;endoluminally forming a pouch around the sizing tube by steering a steerable guide in at least two dimensions to form multiple approximations of opposing anterior and posterior portions of the stomach around the sizing tube at different levels within the superior-inferior plane of the patient's stomach, with the sizing tube assisting in determining a dimension of the pouch, and with the steerable guide comprising a tissue grasper and a tissue anchor delivery system; andremoving the sizing tube from the patient.
  • 13. The method of claim 12, wherein advancing a sizing tube further comprises advancing a steerable guide with an integrated sizing tube.
  • 14. The method of claim 12, wherein advancing a sizing tube further comprises advancing the sizing tube while the steerable guide is disposed within a lumen of the sizing tube.
  • 15. The method of claim 14, wherein endoluminally forming a pouch about the sizing tube further comprises: passing the steerable guide from the lumen of the sizing tube through a side port of the sizing tube; steering the guide within the patient's stomach; advancing tools through or along the guide; and endoluminally forming the pouch with the tools.
  • 16. A system for endoluminally performing gastroplasty, the system comprising: a steerable guide having a plurality of reversible adhering elements, with at least one reversible adhering element comprising a suction port, disposed along a length thereof for engaging a lesser curvature of a patient's stomach; andat least one endoluminal tool comprising a tissue grasper and a tissue anchor delivery system advanceable through or along the steerable guide.
  • 17. The system of claim 16, wherein the steerable guide further comprises multiple sections, the multiple sections comprising: a first section having the plurality of reversible adhering elements for engaging the lesser curvature; and at least one additional section that is steerable to facilitate formation of an endoluminal pouch about the first section within the patient's stomach via the endoluminal tool.
  • 18. A system for endoluminally performing gastroplasty comprising: a sizing tube having a plurality of reversible adhering elements, at least one reversible adhering element comprising a suction port, a lumen extending at least partially through the sizing tube, and at least one side port in the sizing tube;a steerable guide configured for insertion within the lumen and passage through the side port, with the steerable guide having multiple sections to allow the steerable guide to steer, retroflex, rigidize, or shape-lock, or a combination of them; andat least one endoluminal tool comprising a tissue grasper and a tissue anchor delivery system advanceable through or along the steerable guide.
  • 19. The system of claim 18, with the steerable guide having at least one control wire to facilitate steering.
  • 20. A system for endoluminally performing gastroplasty, comprising: a sizing tube for endoluminal passage through a patient's esophagus into the patient's stomach, the sizing tube having at least one reversible adhering element comprising a suction port, a sizing tube lumen extending at least partially through the sizing tube, at least one side port in the sizing tube, and a mechanical anchor comprising an inflatable member located adjacent to a front end of the sizing tube;a steerable guide for insertion within the sizing tube lumen and out through the side port, with the steerable guide having at least one control wire to facilitate steering, and with the steerable guide having at least one tool lumen to allow movement of an endoscopic tool through the steerable guide; anda first endoluminal tool extendable through the tool lumen, the first endoluminal tool comprising a tissue grasper and a tissue anchor delivery system.
  • 21. The system of claim 20 wherein the sizing tube is configured to engage a lesser curvature of the patient's stomach with the at least one reversible adhering element.
  • 22. The system of claim 20 with the sizing tube further comprising a seal for sealing the at least one side port.
  • 23. The system of claim 20, further comprising a second endoluminal tool extendable through the tool lumen and configured to perform at least one or more of tissue visualization, tissue grasping, tissue plication, tissue manipulation, tissue approximation, tissue securing, tissue treatment and combinations thereof.
  • 24. The system of claim 20, wherein the steerable guide comprises multiple sections.
  • 25. The system of claim 24, wherein the multiple sections comprise varying capacities for performing tasks chosen from the group consisting of steering, rigidizing, shape-locking, retroflexing and combinations thereof.
  • 26. The system of claim 20 wherein the sizing tube further comprises a plurality of additional reversible adhering elements.
  • 27. The system of claim 26, wherein the adhering elements are substantially aligned in a row on the sizing tube.
  • 28. The system of claim 26, wherein the adhering elements are spaced in a staggered pattern on the sizing tube.
  • 29. The system of claim 20 wherein the adhering elements are positioned on an opposing side of the sizing tube with respect to the side port.
  • 30. The system of claim 20 wherein the adhering elements are positioned at an angle about the circumference of the sizing tube with respect to the side port.
US Referenced Citations (486)
Number Name Date Kind
616672 Kelling Dec 1898 A
1814791 Ende Jul 1931 A
2201610 Dawson, Jr. May 1940 A
2413142 Jones et al. Dec 1946 A
2510198 Tesmer Jun 1950 A
2533494 Mitchell, Jr. Dec 1950 A
3060972 Sheldon Oct 1962 A
3096962 Johannes Jul 1963 A
3150379 Brown Sep 1964 A
3162214 Bazinet, Jr. Dec 1964 A
3166072 Sullivan, Jr. Jan 1965 A
3168274 Street Feb 1965 A
3430662 Guarnaschelli Mar 1969 A
3494006 Brumlik Feb 1970 A
3546961 Marton Dec 1970 A
3551987 Wilkinson Jan 1971 A
3643653 Takahashi et al. Feb 1972 A
3646615 Ness Mar 1972 A
3664345 Dabbs et al. May 1972 A
3753438 Wood et al. Aug 1973 A
3858578 Milo Jan 1975 A
3867944 Samuels Feb 1975 A
3874388 King et al. Apr 1975 A
3910281 Kletschka et al. Oct 1975 A
3913565 Kawahara Oct 1975 A
3974834 Kane Aug 1976 A
3976079 Samuels et al. Aug 1976 A
4007743 Blake Feb 1977 A
4036218 Yamashita et al. Jul 1977 A
4054128 Seufert et al. Oct 1977 A
4060089 Noiles Nov 1977 A
4069825 Akiyama Jan 1978 A
4245624 Komiya Jan 1981 A
4366810 Slanetz Jan 1983 A
4367746 Derechinsky Jan 1983 A
4414720 Crooms Nov 1983 A
4462402 Burgio et al. Jul 1984 A
4474174 Petruzzi Oct 1984 A
4494531 Gianturco Jan 1985 A
4532926 O'holla Aug 1985 A
4534350 Golden et al. Aug 1985 A
4548202 Duncan Oct 1985 A
4586503 Kirsch et al. May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592356 Gutierrez Jun 1986 A
4595007 Mericle Jun 1986 A
4601283 Chikama Jul 1986 A
4610250 Green Sep 1986 A
4648733 Merkt Mar 1987 A
4655257 Iwashita Apr 1987 A
4669473 Richards et al. Jun 1987 A
4705040 Mueller et al. Nov 1987 A
4711002 Kreeger Dec 1987 A
4724840 McVay et al. Feb 1988 A
4750492 Jacobs Jun 1988 A
4765335 Schmidt et al. Aug 1988 A
4832055 Palestrant May 1989 A
4841888 Mills et al. Jun 1989 A
4841949 Shimizu et al. Jun 1989 A
4873976 Schreiber Oct 1989 A
4890615 Caspari et al. Jan 1990 A
4923461 Caspari et al. May 1990 A
4929240 Kirsch et al. May 1990 A
4949927 Madocks et al. Aug 1990 A
4957498 Caspari et al. Sep 1990 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5059201 Asnis Oct 1991 A
5088979 Filipi et al. Feb 1992 A
5100418 Yoon et al. Mar 1992 A
5108420 Marks Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123914 Cope Jun 1992 A
RE34021 Mueller et al. Aug 1992 E
5156046 Tanimoto et al. Oct 1992 A
5201746 Shichman Apr 1993 A
5203864 Phillips Apr 1993 A
5217471 Burkhart Jun 1993 A
5217473 Yoon Jun 1993 A
5222508 Contarini Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5234430 Huebner Aug 1993 A
5234445 Walker et al. Aug 1993 A
5250053 Snyder Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5258016 Dipoto et al. Nov 1993 A
5261916 Engelson Nov 1993 A
5268001 Nicholson et al. Dec 1993 A
5282827 Kensey et al. Feb 1994 A
5284488 Sideris Feb 1994 A
5289817 Williams et al. Mar 1994 A
5300065 Anderson Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304195 Twyford et al. Apr 1994 A
5304204 Bregen Apr 1994 A
5316543 Eberbach May 1994 A
5327914 Shlain Jul 1994 A
5330503 Yoon Jul 1994 A
5334217 Das Aug 1994 A
5336222 Durgin et al. Aug 1994 A
5336227 Nakao et al. Aug 1994 A
5337732 Grundfest et al. Aug 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5342376 Ruff Aug 1994 A
5345949 Shlain Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5354298 Lee et al. Oct 1994 A
5366459 Yoon Nov 1994 A
5366479 Mcgarry et al. Nov 1994 A
5372146 Branch Dec 1994 A
5372604 Trott Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5382231 Shlain Jan 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395331 O'Neill et al. Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5403329 Hinchcliffe Apr 1995 A
5417691 Hayhurst May 1995 A
5417699 Klein et al. May 1995 A
5425744 Fagan et al. Jun 1995 A
5429583 Paulus et al. Jul 1995 A
5429598 Waxman et al. Jul 1995 A
5431666 Sauer et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5433727 Sideris Jul 1995 A
5437266 Mcpherson et al. Aug 1995 A
5437680 Yoon Aug 1995 A
5437681 Meade et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5458609 Gordon et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5465894 Clark et al. Nov 1995 A
5470337 Moss Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5476470 Fitzgibbons Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480405 Yoon Jan 1996 A
5496332 Sierra et al. Mar 1996 A
5496334 Klundt et al. Mar 1996 A
5499991 Garman et al. Mar 1996 A
5501691 Goldrath Mar 1996 A
5507811 Koike et al. Apr 1996 A
5520691 Branch May 1996 A
5520701 Lerch May 1996 A
5522843 Zang Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5531759 Kensey et al. Jul 1996 A
5531788 Dibie et al. Jul 1996 A
5535759 Wilk Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5549621 Bessler et al. Aug 1996 A
5556410 Mittermeir et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5562684 Kammerer Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569306 Thal Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571119 Atala Nov 1996 A
5573496 Mcpherson et al. Nov 1996 A
5573540 Yoon Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5578045 Das Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5584859 Brotz Dec 1996 A
5601557 Hayhurst Feb 1997 A
5603718 Xu Feb 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5624381 Kieturakis Apr 1997 A
5626553 Frassica et al. May 1997 A
5626588 Sauer et al. May 1997 A
5626614 Hart May 1997 A
5630540 Blewett May 1997 A
5632752 Buelna May 1997 A
5643274 Sander et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643317 Pavcnik et al. Jul 1997 A
5643320 Lower et al. Jul 1997 A
5651788 Fleischer et al. Jul 1997 A
5658312 Green et al. Aug 1997 A
5658313 Thal Aug 1997 A
5662587 Grundfest et al. Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662663 Shallman Sep 1997 A
5665109 Yoon Sep 1997 A
5665112 Thal Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5679005 Einstein Oct 1997 A
5683417 Cooper Nov 1997 A
5683419 Thal Nov 1997 A
5690655 Hart et al. Nov 1997 A
5693060 Martin Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5702421 Schneidt Dec 1997 A
5707394 Miller et al. Jan 1998 A
5709708 Thal Jan 1998 A
5713903 Sander et al. Feb 1998 A
5720765 Thal Feb 1998 A
5724978 Tenhoff Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5728045 Komi Mar 1998 A
5732707 Widder et al. Mar 1998 A
5741297 Simon Apr 1998 A
5749828 Solomon et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752963 Allard et al. May 1998 A
5759151 Sturges Jun 1998 A
5766189 Matsuno Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782865 Grotz Jul 1998 A
5787897 Kieturakis Aug 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810849 Kontos Sep 1998 A
5810851 Yoon Sep 1998 A
5810853 Yoon Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5814070 Borzone et al. Sep 1998 A
5817110 Kronner Oct 1998 A
5823956 Roth et al. Oct 1998 A
5824011 Stone et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5840078 Yerys Nov 1998 A
5843084 Hart et al. Dec 1998 A
5843126 Jameel Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5888247 Benetti Mar 1999 A
5891168 Thal Apr 1999 A
5893856 Jacob et al. Apr 1999 A
5895404 Ruiz Apr 1999 A
5897417 Grey Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899920 Desatnick et al. May 1999 A
5899921 Caspari et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902254 Magram May 1999 A
5904647 Ouchi May 1999 A
5916147 Boury Jun 1999 A
5916224 Esplin Jun 1999 A
5921915 Aznoian et al. Jul 1999 A
5925059 Palermo et al. Jul 1999 A
5928264 Sugarbaker et al. Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5947983 Solar et al. Sep 1999 A
5947997 Pavcnik et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5954732 Hart et al. Sep 1999 A
5961440 Schweich et al. Oct 1999 A
5964765 Fenton et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5976073 Ouchi Nov 1999 A
5976127 Lax Nov 1999 A
5976158 Adams et al. Nov 1999 A
5976159 Bolduc et al. Nov 1999 A
5980558 Wiley Nov 1999 A
5984933 Yoon Nov 1999 A
5993476 Groiso Nov 1999 A
6013083 Bennett Jan 2000 A
6027523 Schmieding Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6042155 Lockwood Mar 2000 A
6045497 Schweich et al. Apr 2000 A
6045573 Wenstrom et al. Apr 2000 A
6050936 Schweich et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6059715 Schweich et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6077214 Mortier et al. Jun 2000 A
6077281 Das Jun 2000 A
6077291 Das Jun 2000 A
6079414 Roth Jun 2000 A
6086600 Kortenbach Jul 2000 A
6110183 Cope Aug 2000 A
6113609 Adams Sep 2000 A
6113611 Allen et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6149658 Gardiner et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6159146 El Gazayerli Dec 2000 A
6162168 Schweich et al. Dec 2000 A
6165119 Schweich et al. Dec 2000 A
6165120 Schweich et al. Dec 2000 A
6167889 Benetti Jan 2001 B1
6171320 Monassevitch Jan 2001 B1
6174323 Biggs et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
RE37117 Palermo Mar 2001 E
6197022 Baker Mar 2001 B1
6214007 Anderson Apr 2001 B1
6228023 Zaslavsky et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6283973 Hubbard et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6293907 Axon et al. Sep 2001 B1
6293956 Crainich et al. Sep 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6315789 Cragg Nov 2001 B1
6322563 Cummings et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6332468 Benetti Dec 2001 B1
6332863 Schweich et al. Dec 2001 B1
6332864 Schweich et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6336940 Graf et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6348064 Kanner Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6355052 Neuss et al. Mar 2002 B1
6358197 Silverman et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6368339 Amplatz Apr 2002 B1
6387104 Pugsley, Jr. May 2002 B1
6394949 Crowley et al. May 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6406420 Mccarthy et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6423087 Sawada Jul 2002 B1
6425911 Akerfeldt et al. Jul 2002 B1
6447533 Adams Sep 2002 B1
6494888 Laufer et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6533796 Sauer et al. Mar 2003 B1
6537285 Hatasaka, Jr. et al. Mar 2003 B1
6540789 Silverman et al. Apr 2003 B1
6551315 Kortenbach et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6610056 Durgin et al. Aug 2003 B2
6641592 Sauer et al. Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6695764 Silverman et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6716232 Vidal et al. Apr 2004 B1
6719763 Chung et al. Apr 2004 B2
6719764 Gellman et al. Apr 2004 B1
6736828 Adams et al. May 2004 B1
6746460 Gannoe et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6761685 Adams et al. Jul 2004 B2
6767339 Reydel Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6821285 Laufer et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
7431725 Stack et al. Oct 2008 B2
20010000040 Adams et al. Mar 2001 A1
20010016675 Mortier et al. Aug 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20010049509 Sekine et al. Dec 2001 A1
20010051815 Esplin Dec 2001 A1
20010056282 Sonnenschein et al. Dec 2001 A1
20020010490 Schaller et al. Jan 2002 A1
20020013608 Elattrache et al. Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022851 Kalloo et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020055757 Torre et al. May 2002 A1
20020058855 Schweich et al. May 2002 A1
20020058905 Madrid et al. May 2002 A1
20020062062 Belson et al. May 2002 A1
20020065534 Hermann et al. May 2002 A1
20020068849 Schweich et al. Jun 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020077524 Schweich et al. Jun 2002 A1
20020077661 Saadat Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020082622 Kane Jun 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020120178 Tartaglia et al. Aug 2002 A1
20020147385 Butler et al. Oct 2002 A1
20020161281 Jaffe et al. Oct 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020193661 Belson Dec 2002 A1
20020193662 Belson Dec 2002 A1
20020193816 Laufer et al. Dec 2002 A1
20030009085 Arai et al. Jan 2003 A1
20030045778 Ohline et al. Mar 2003 A1
20030055442 Laufer et al. Mar 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030139752 Pasricha et al. Jul 2003 A1
20030158582 Bonutti et al. Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030171760 Gambale Sep 2003 A1
20030176890 Buckman et al. Sep 2003 A1
20030181924 Yamamoto et al. Sep 2003 A1
20030204205 Sauer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030216613 Suzuki et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030229296 Ishikawa et al. Dec 2003 A1
20030233066 Ewers et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236536 Grigoryants et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040010271 Kortenbach Jan 2004 A1
20040030347 Gannoe et al. Feb 2004 A1
20040034371 Lehman et al. Feb 2004 A1
20040049095 Goto et al. Mar 2004 A1
20040059346 Adams et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040088008 Gannoe et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122474 Gellman et al. Jun 2004 A1
20040138682 Onuki et al. Jul 2004 A1
20040147941 Takemoto Jul 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040176784 Okada Sep 2004 A1
20040193117 Laufer et al. Sep 2004 A1
20040193184 Laufer et al. Sep 2004 A1
20040193193 Laufer et al. Sep 2004 A1
20040193194 Laufer et al. Sep 2004 A1
20040194790 Laufer et al. Oct 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20040249362 Levine et al. Dec 2004 A1
20040249392 Mikkaichi et al. Dec 2004 A1
20040249395 Mikkaichi et al. Dec 2004 A1
20050033320 Mcguckin et al. Feb 2005 A1
20050033328 Laufer et al. Feb 2005 A1
20050043758 Golden et al. Feb 2005 A1
20050049617 Chatlynne et al. Mar 2005 A1
20050070931 Li et al. Mar 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050203489 Saadat et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20060020276 Saadat et al. Jan 2006 A1
Foreign Referenced Citations (34)
Number Date Country
0 480 428 Apr 1992 EP
2 768 324 Mar 1999 FR
2 165 559 Apr 1986 GB
WO 9204870 Apr 1992 WO
WO 9525468 Sep 1995 WO
WO 9922649 May 1999 WO
WO 0078227 Dec 2000 WO
WO 0078229 Dec 2000 WO
WO 0166018 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0187144 Nov 2001 WO
WO 0189370 Nov 2001 WO
WO 0189393 Nov 2001 WO
WO 0224080 Mar 2002 WO
WO 0239880 May 2002 WO
WO 02094105 Nov 2002 WO
WO 03007796 Jan 2003 WO
WO 03090633 Nov 2003 WO
WO 03092509 Nov 2003 WO
WO 03096909 Nov 2003 WO
WO 03099137 Dec 2003 WO
WO 03105732 Dec 2003 WO
WO 2004004544 Jan 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004019788 Mar 2004 WO
WO 2004021865 Mar 2004 WO
WO 2004021867 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004021873 Mar 2004 WO
WO 2004021894 Mar 2004 WO
WO 2004084808 Oct 2004 WO
WO 2004103189 Dec 2004 WO
WO 2005037072 Apr 2005 WO
WO 2005037152 Apr 2005 WO
Related Publications (1)
Number Date Country
20050251158 A1 Nov 2005 US