Embodiments of the subject matter described herein relate generally to the use of artificial intelligence associated with online communications. More particularly, embodiments of the subject matter relate to providing a communication channel for live communication, by a chat-bot, under defined conditions.
Artificial intelligence (AI) may be used to provide information to users via online communications with “chat-bots” or other automated interactive tools. Using chat-bots, automated AI systems conduct text-based chat conversations with users, through which users request information. Chat-bots generally provide information to users for predetermined situations, such as a recognized input user question for which a known answer may be provided. However, a chat-bot may not have access to a predefined or known answer for certain input user questions. In this case, the text-based, online conversation with the chat-bot may fail or generate an error condition, which may result in user frustration due to the inability of the chat-bot to address the concerns of the user.
Accordingly, it is desirable to provide additional information to a user when AI embodiments are unable to do so. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
Some embodiments of the present disclosure provide a method for providing query responses to a user via online chat. The method establishes a first communication connection for online chat between a user interface and an artificial intelligence (AI) entity comprising at least one processor and a memory element configured to store a database of query answers; receives, by the at least one processor, a user input query transmitted via the first communication connection and from the user interface; performs a lookup, by the at least one processor, in the database of query answers, to locate a query answer corresponding to the user input query; when the at least one processor is unable to locate a query answer corresponding to the user input query, establishes a second communication connection for online chat between the user interface and a live agent interface, wherein the live agent interface transmits responses that are dynamically provided by a human operator; evaluates a chat between the user interface and the live agent interface, the chat transmitted via the second communication connection; identifies an answer to the user input query, based on evaluating the chat; and stores the answer to be provided by the AI entity during future chat instances of receiving the user input query.
Some embodiments of the present disclosure provide a system for providing query responses to a user via online chat, the system comprising an artificial intelligence (AI) entity. The system includes a system memory element configured to store a database of query answers; a communication device, configured to establish communication connections using a computer network; and at least one processor communicatively coupled to the system memory element and the communication device, the at least one processor configured to: establish a first communication connection, via the communication device, for online chat between a user interface and the AI entity; receive a user input query transmitted via the first communication connection and from the user interface; perform a lookup in the database of query answers, to locate a query answer corresponding to the user input query; when the database does not include a query answer corresponding to the user input query, establish a second communication connection for online chat between the user interface and a live agent interface, wherein the live agent interface transmits responses that are dynamically provided by a human operator; evaluate a chat between the user interface and the live agent interface, the chat transmitted via the second communication connection; identify an answer to the user input query, based on evaluating the chat; and store the answer to be provided by the AI entity during future chat instances of receiving the user input query.
Some embodiments of the present disclosure provide a non-transitory, computer-readable medium containing instructions thereon, which, when executed by a processor, are capable of performing a method. When the processor is unable to locate a query answer corresponding to a user input query submitted to an artificial intelligence (AI) entity via a user interface of an instant messaging platform, the method establishes a second communication connection for online chat between the user interface and a live agent interface, wherein the live agent interface transmits responses that are dynamically provided by a human operator; evaluates a chat between the user interface and the live agent interface, the chat transmitted via the second communication connection; identifies an answer to the user input query, based on evaluating the chat; and stores the answer to be provided by the AI entity during future chat instances of receiving the user input query.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
The subject matter presented herein relates to apparatus and methods for using artificial intelligence (AI) entities, also known as “chat-bots”, to provide information to an end user. More specifically, the subject matter relates to the use of chat-bots to provide automated responses to various end user queries, to connect the end user to a live agent when a query response is not available, and performing “machine learning” to acquire additional query responses through evaluation of online chat between the end user and a live agent.
Turning now to the figures,
The AI entity computer system 102 may be implemented using any suitable computer that includes at least one processor, some form of memory hardware, and communication hardware, as described herein with respect to
The user computer system 104 may be implemented by any computing device that includes at least one processor, some form of memory hardware, a user interface, and communication hardware, such that a user may communicate with the AI entity computer system 102 and/or the live agent computer system 108. The user computer system 104 is capable of communicating with the AI entity computer system 102 and the live agent computer system 108 via a data communication network 106. The user computer system 104 and the AI entity computer system 102 are generally disparately located. The user computer system 104 is configured to transmit text-based, voice-based, and/or video-based communications to an artificial intelligence (AI) entity stored and executed by the AI entity computer system 102, which provides predefined answers in response.
The live agent computer system 108, like the user computer system 104, may be implemented by any computing device that includes at least one processor, some form of memory hardware, and a user interface, such that a human operator may communicate with the user computer system 104 by sending and receiving text-based, voice-based (i.e., audio), and/or video-based messages from the live agent computer system 108. The user computer system 104 and the live agent computer system 108 are generally disparately located, and the exchange of text-based, voice-based, and/or video-based messages generally occurs over the data communication network 108.
The AI entity computer system 102, the user computer system 104, and the live agent computer system 108 are capable of communicating via a data communication network 106. The data communication network 106 may be any digital or other communications network capable of transmitting messages or data between devices, systems, or components. In certain embodiments, the data communication network 106 includes a packet switched network that facilitates packet-based data communication, addressing, and data routing. The packet switched network could be, for example, a wide area network, the Internet, or the like. In various embodiments, the data communication network 106 includes any number of public or private data connections, links or network connections supporting any number of communications protocols. The data communication network 106 may include the Internet, for example, or any other network based upon TCP/IP or other conventional protocols. In various embodiments, the data communication network 106 could also incorporate a wireless and/or wired telephone network, such as a cellular communications network for communicating with mobile phones, personal digital assistants, and/or the like. The data communication network 106 may also incorporate any sort of wireless or wired local and/or personal area networks, such as one or more IEEE 802.3, IEEE 802.16, and/or IEEE 802.11 networks, and/or networks that implement a short range (e.g., Bluetooth) protocol. For the sake of brevity, conventional techniques related to data transmission, signaling, network control, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail herein.
During typical operation, the user computer system 102 may request connection to an AI entity stored, maintained, and executed by the AI entity computer system 102. In response, the AI entity computer system 102 establishes a communication connection, via the data communication network 108, to the user computer system 104. A user may conduct (via the user computer system 104) a text-based, voice-based, and/or video-based chat session with the AI entity (via the AI entity computer system 102) which may be implemented as a “chat-bot”. Through this text-based, voice-based, and/or video-based chat session, the user computer system 104 transmits queries to the AI entity, and in response, the AI entity computer system 102 provides predefined query responses that are stored by the AI entity computer system 102. When the user computer system 104 transmits a user query for which no predefined query response exists (i.e., the AI entity computer system 102 does not recognize an answer to a received query), then the AI entity computer system 102 connects the user computer system 104 to the live agent computer system 108, such that a human operator of the live agent computer system 108 may provide an appropriate response to the transmitted query. In this scenario, the AI entity computer system 102 monitors that chat session that occurs between the user computer system 104 and the live agent computer system 108, identifies an answer to the previously unrecognized user query, and stores the answer for future query response purposes.
The at least one processor 202 may be implemented or performed with one or more general purpose processors, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination designed to perform the functions described here. In particular, the at least one processor 202 may be realized as one or more microprocessors, controllers, microcontrollers, or state machines. Moreover, the at least one processor 202 may be implemented as a combination of computing devices, e.g., a combination of digital signal processors and microprocessors, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
The at least one processor 202 is communicatively coupled to, and communicates with, the system memory 204. The system memory 204 is configured to store any obtained or generated data associated with storing, maintaining, and executing an AI entity used to conduct text-based, voice-based, and/or video-based online conversations (e.g., “chat”) with a user. The system memory 204 may be realized using any number of devices, components, or modules, as appropriate to the embodiment. Moreover, the AI entity computer system 200 could include system memory 204 integrated therein and/or a system memory 204 operatively coupled thereto, as appropriate to the particular embodiment. In practice, the system memory 204 could be realized as RAM memory, flash memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, or any other form of storage medium known in the art. In certain embodiments, the system memory 204 includes a hard disk, which may also be used to support functions of the server system 200. The system memory 204 can be coupled to the at least one processor 202 such that the at least one processor 202 can read information from, and write information to, the system memory 204. In the alternative, the system memory 204 may be integral to the at least one processor 202. As an example, the at least one processor 202 and the system memory 204 may reside in a suitably designed application-specific integrated circuit (ASIC).
The database of query answers 206 includes a plurality of stored, predefined responses for user queries received by the AI entity computer system 200. Each of the plurality of predefined responses is associated with one or more defined user queries, and may be provided in response to receiving a corresponding user query. The database of query answers 206 is generally stored in the system memory 204 element, and is accessed and searched by the AI entity module 208 in response to user queries.
The artificial intelligence (AI) entity module 208 is suitably configured to implement and use one or more AI entities, or in other words, “chat-bots”, to interact with a user (e.g., a user computer system, as described in
The application programming interface (API) module 210 is configured to store, maintain, and execute one or more APIs to facilitate communication between the AI entity computer system 200 and an end user, and between an end user and a human operator. For communications between the AI entity computer system 200 and an end user, the API module 210 may use text APIs, audio call APIs, video call APIs, and live agent text chat APIs. For communications between an end user and a human operator, the API module 210 functions to establish a communication connection between a user computer system and a live agent computer system, wherein the user computer system, the live agent computer system, and the AI entity computer system 200 are separate and distinct computers that communicate via a data communication network, as described with respect to
The machine learning module 212 is configured to identify previously unknown responses applicable to received user queries, and to associate and store the previously unknown responses with the corresponding user queries, for future use. Exemplary embodiments of the machine learning module 212 monitor online chat sessions between a user computer system and a live agent computer system, that have been established by the AI entity module 208, using the API module 210. Such chat sessions are established when the AI entity module 208 is unable to provide an answer to a user query, and the answer must be requested from a live agent. The machine learning module 212 evaluates the chat session to identify the answer, associates the answer to the submitted user query, and stores the user query and identified answer in the database of query answers 206, for future use when providing a query response to another instance of receiving the user query.
In practice, the artificial intelligence (AI) entity module 208, the application programming interface (API) module 210, and/or the machine learning module 212, may be implemented with (or cooperate with) the at least one processor 202 to perform at least some of the functions and operations described in more detail herein. In this regard the artificial intelligence (AI) entity module 208, the application programming interface (API) module 210, and/or the machine learning module 212 may be realized as suitably written processing logic, application program code, or the like.
The communication device 214 is suitably configured to communicate data between the AI entity computer system 200 and one or more user computer systems (e.g., user computer system 104 of
First, the process 300 establishes a first communication connection for online chat between a user interface and an artificial intelligence (AI) entity comprising at least one processor and a memory element configured to store a database of query answers (step 302). The first communication connection provides a mechanism by which a user computer system communicates with an AI entity, or “chat-bot”, provided by an AI entity computer system, as described with respect to
Once the user query is received by the AI entity (step 306), the process 300 performs a lookup, by the at least one processor, in the database of query answers, to locate a query answer corresponding to the user input query (step 306), and the process 300 then determines whether the processor is able to locate a query answer corresponding to the user input query (decision 308). In some embodiments, locating a query answer, by the at least one processor, includes performing the lookup to locate a match for the user input query in the database, wherein the query answer corresponding to the user input query further corresponds to the match in the database, and when there is no match for the user input query in the database, determining that the at least one processor is unable to locate a query answer. Here, the process 300 seeks an exact match to the user input query, and determines whether an appropriate response to the user input query is available by comparing the user input query to the contents of the database of query answers. The database of query answers includes a plurality of predefined query answers and corresponding user input queries, and the process 300 identifies the appropriate response by comparing the user input query to the contents of the database of query answers and locating a match among the stored, corresponding user input queries.
In other embodiments, the database comprises a plurality of candidate user input queries, and locating a query answer, by the at least one processor, includes performing the lookup to locate at least one of the plurality of candidate user input queries within a confidence threshold, and when the plurality of candidate user input queries are not within the confidence threshold, determining that the at least one processor is unable to locate a query answer. Here, the process 300 Natural Language Processing and machine learning to determine, within certain confidence level, the intent and sentiment of the user. Then the Confidence threshold, which is pre-set by an administrator, is used by the process 300 to evaluate whether the machine-determined understanding of the user query is accurate enough. If one of the plurality of candidate user input queries in within the predefined confidence threshold, then the process 300 handles the user request, as described herein with regard to step 310. If not, the user query is forwarded to a human agent, as described herein with regard to steps 312-318.
When the processor is able to locate a query answer corresponding to the user input query (the “Yes” branch of 308), then the process 300 provides the query answer, by the at least one processor, via the first communication connection (step 310). Here, the query answer has been located in the database of query answers and is transmitted, via the first communication connection, to the user interface for presentation to the user.
However, when the processor is unable to locate a query answer corresponding to the user input query (the “No” branch of 308), then the process 300 establishes a second communication connection for online chat between the user interface and a live agent interface, wherein the live agent interface transmits responses that are dynamically provided by a human operator (step 312). Here, because the process 300 is unable to provide a recognized appropriate response to the user input query, the process 300 establishes a separate and distinct communication connection between the user computer system and a live agent computer system (described previously with respect to
In some embodiments, the process 300 uses an application programming interface (API) to establish the second communication connection, by the at least one processor, wherein the API comprises at least one of a text API, an audio call API, a video call API, and a live agent text chat API. The API used by the process 300 to establish the second communication connection may facilitate any type of communication, and the format of the chat session between the end user computer and the live agent computer is determined by the type of API used. Exemplary embodiments of the API may include, without limitation, a Salesforce Live Agent API, Salesforce Snap-ins API, and/or a Salesforce Live Text API.
Once the second communication connection is established (step 312), the process 300 monitors the chat session that occurs using the second communication connection, and evaluates the chat between the user interface and the live agent interface, the chat transmitted via the second communication connection (step 314). The process 300 then identifies an answer to the user input query, based on evaluating the chat (step 316). Here, the process 300 identifies contents of the chat, wherein the contents comprise the user input query and a response provided by the live agent interface. The process 300 recognizes the response provided by the live agent as the answer. In certain embodiments, the process 300 records the interactions between human agent and the user, including the contents of the chat. The contents of the chat are then used by the process 300 to analyze a general pattern of conversation associated with the contents of the chat. The general pattern of conversation is then used by the process 300 in future to handle user query without resorting to the handoff to a human agent, if the confidence level exceeds the threshold.
After identifying the answer (step 316), the process 300 stores the answer to be provided by the AI entity during future chat instances of receiving the user input query (step 318). The process 300 associates the response to the user input query, to generate an associated response, and stores the user input query and the associated response in the database of query responses. Once stored, the new query response will be provided by the process 300 when the user input query is submitted by any chat user in the future.
The multi-tenant system 400 may be used to in conjunction with the CRM software applications described previously. Platform as a Service (PaaS) is the foundation of the multi-tenant architecture. At the heart, this PaaS is a relational database management system. All of the core mechanisms in a relational database management system (RDBMS) (e.g., a system catalog, caching mechanisms, query optimizer, and application development features) are built to support multi-tenant applications and to be run directly on top of a specifically tuned host operating system and raw hardware. The runtime engine has the intelligence to access the metadata and transactional data and perform the application functionality that can scale.
The multi-tenant system 400 of
As used herein, a “tenant” or an “organization” should be understood as referring to a group of one or more users that shares access to common subset of the data within the multi-tenant database 430. In this regard, each tenant includes one or more users associated with, assigned to, or otherwise belonging to that respective tenant. To put it another way, each respective user within the multi-tenant system 400 is associated with, assigned to, or otherwise belongs to a particular tenant of the plurality of tenants supported by the multi-tenant system 400. Tenants may represent customers, customer departments, business or legal organizations, and/or any other entities that maintain data for particular sets of users within the multi-tenant system 400 (i.e., in the multi-tenant database 430). For example, the application server 402 may be associated with one or more tenants supported by the multi-tenant system 400. Although multiple tenants may share access to the server 402 and the database 430, the particular data and services provided from the server 402 to each tenant can be securely isolated from those provided to other tenants (e.g., by restricting other tenants from accessing a particular tenant's data using that tenant's unique organization identifier as a filtering criterion). The multi-tenant architecture therefore allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 432 belonging to or otherwise associated with other tenants.
The multi-tenant database 430 is any sort of repository or other data storage system capable of storing and managing the data 432 associated with any number of tenants. The database 430 may be implemented using any type of conventional database server hardware. In various embodiments, the database 430 shares processing hardware 404 with the server 402. In other embodiments, the database 430 is implemented using separate physical and/or virtual database server hardware that communicates with the server 402 to perform the various functions described herein. In an exemplary embodiment, the database 430 includes a database management system or other equivalent software capable of determining an optimal query plan for retrieving and providing a particular subset of the data 432 to an instance of virtual application 428 in response to a query initiated or otherwise provided by a virtual application 428. The multi-tenant database 430 may alternatively be referred to herein as an on-demand database, in that the multi-tenant database 430 provides (or is available to provide) data at run-time to on-demand virtual applications 428 generated by the application platform 410.
In practice, the data 432 may be organized and formatted in any manner to support the application platform 410. In various embodiments, the data 432 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format. The data 432 can then be organized as needed for a particular virtual application 428. In various embodiments, conventional data relationships are established using any number of pivot tables 434 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired. Further data manipulation and report formatting is generally performed at run-time using a variety of metadata constructs. Metadata within a universal data directory (UDD) 436, for example, can be used to describe any number of forms, reports, workflows, user access privileges, business logic and other constructs that are common to multiple tenants. Tenant-specific formatting, functions and other constructs may be maintained as tenant-specific metadata 438 for each tenant, as desired. Rather than forcing the data 432 into an inflexible global structure that is common to all tenants and applications, the database 430 is organized to be relatively amorphous, with the pivot tables 434 and the metadata 438 providing additional structure on an as-needed basis. To that end, the application platform 410 suitably uses the pivot tables 434 and/or the metadata 438 to generate “virtual” components of the virtual applications 428 to logically obtain, process, and present the relatively amorphous data 432 from the database 430.
The server 402 is implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 410 for generating the virtual applications 428. For example, the server 402 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate. The server 402 operates with any sort of conventional processing hardware 404, such as a processor 405, memory 406, input/output features 408 and the like. The input/output features 408 generally represent the interface(s) to networks (e.g., to the network 445, or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like. The processor 405 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems. The memory 406 represents any non-transitory short or long term storage or other computer-readable media capable of storing programming instructions for execution on the processor 405, including any sort of random access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like. The computer-executable programming instructions, when read and executed by the server 402 and/or processor 405, cause the server 402 and/or processor 405 to create, generate, or otherwise facilitate the application platform 410 and/or virtual applications 428 and perform one or more additional tasks, operations, functions, and/or processes described herein. It should be noted that the memory 406 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 402 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or application platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
The application platform 410 is any sort of software application or other data processing engine that generates the virtual applications 428 that provide data and/or services to the client devices 440. In a typical embodiment, the application platform 410 gains access to processing resources, communications interfaces and other features of the processing hardware 404 using any sort of conventional or proprietary operating system 409. The virtual applications 428 are typically generated at run-time in response to input received from the client devices 440. For the illustrated embodiment, the application platform 410 includes a bulk data processing engine 412, a query generator 414, a search engine 416 that provides text indexing and other search functionality, and a runtime application generator 420. Each of these features may be implemented as a separate process or other module, and many equivalent embodiments could include different and/or additional features, components or other modules as desired.
The runtime application generator 420 dynamically builds and executes the virtual applications 428 in response to specific requests received from the client devices 440. The virtual applications 428 are typically constructed in accordance with the tenant-specific metadata 438, which describes the particular tables, reports, interfaces and/or other features of the particular application 428. In various embodiments, each virtual application 428 generates dynamic web content that can be served to a browser or other client program 442 associated with its client device 440, as appropriate.
The runtime application generator 420 suitably interacts with the query generator 414 to efficiently obtain multi-tenant data 432 from the database 430 as needed in response to input queries initiated or otherwise provided by users of the client devices 440. In a typical embodiment, the query generator 414 considers the identity of the user requesting a particular function (along with the user's associated tenant), and then builds and executes queries to the database 430 using system-wide metadata 436, tenant specific metadata 438, pivot tables 434, and/or any other available resources. The query generator 414 in this example therefore maintains security of the common database 430 by ensuring that queries are consistent with access privileges granted to the user and/or tenant that initiated the request. In this manner, the query generator 414 suitably obtains requested subsets of data 432 accessible to a user and/or tenant from the database 430 as needed to populate the tables, reports or other features of the particular virtual application 428 for that user and/or tenant.
Still referring to
In exemplary embodiments, the application platform 410 is utilized to create and/or generate data-driven virtual applications 428 for the tenants that they support. Such virtual applications 428 may make use of interface features such as custom (or tenant-specific) screens 424, standard (or universal) screens 422 or the like. Any number of custom and/or standard objects 426 may also be available for integration into tenant-developed virtual applications 428. As used herein, “custom” should be understood as meaning that a respective object or application is tenant-specific (e.g., only available to users associated with a particular tenant in the multi-tenant system) or user-specific (e.g., only available to a particular subset of users within the multi-tenant system), whereas “standard” or “universal” applications or objects are available across multiple tenants in the multi-tenant system. For example, a virtual CRM application may utilize standard objects 426 such as “account” objects, “opportunity” objects, “contact” objects, or the like. The data 432 associated with each virtual application 428 is provided to the database 430, as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 438 that describes the particular features (e.g., reports, tables, functions, objects, fields, formulas, code, etc.) of that particular virtual application 428. For example, a virtual application 428 may include a number of objects 426 accessible to a tenant, wherein for each object 426 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 438 in the database 430. In this regard, the object type defines the structure (e.g., the formatting, functions and other constructs) of each respective object 426 and the various fields associated therewith.
Still referring to
Techniques and technologies may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented. In practice, one or more processor devices can carry out the described operations, tasks, and functions by manipulating electrical signals representing data bits at memory locations in the system memory, as well as other processing of signals. The memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits. It should be appreciated that the various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
When implemented in software or firmware, various elements of the systems described herein are essentially the code segments or instructions that perform the various tasks. The program or code segments can be stored in a processor-readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication path. The “computer-readable medium”, “processor-readable medium”, or “machine-readable medium” may include any medium that can store or transfer information. Examples of the processor-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, or the like. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic paths, or RF links. The code segments may be downloaded via computer networks such as the Internet, an intranet, a LAN, or the like.
The following description refers to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically. Likewise, unless expressly stated otherwise, “connected” means that one element/node/feature is directly joined to (or directly communicates with) another element/node/feature, and not necessarily mechanically. Thus, although the schematic shown in
For the sake of brevity, conventional techniques related to signal processing, data transmission, signaling, network control, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the subject matter.
Some of the functional units described in this specification have been referred to as “modules” in order to more particularly emphasize their implementation independence. For example, functionality referred to herein as a module may be implemented wholly, or partially, as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, or the like. Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical modules of computer instructions that may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations that, when joined logically together, comprise the module and achieve the stated purpose for the module. Indeed, a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
This application is a continuation of U.S. patent application Ser. No. 15/471,838, filed Mar. 28, 2017, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7181758 | Chan | Feb 2007 | B1 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8280874 | Weissman | Oct 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
8719281 | LeBeau | May 2014 | B2 |
9336526 | Tuchman | May 2016 | B2 |
9626966 | Berndt | Apr 2017 | B2 |
10474673 | Vora | Nov 2019 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramanian et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063414 | White et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090245500 | Wampler | Oct 2009 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20120218958 | Rangaiah | Aug 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20140119531 | Tuchman | May 2014 | A1 |
20140357961 | Meltzer | Dec 2014 | A1 |
20150227941 | Tuchman | Aug 2015 | A1 |
20160037187 | Das | Feb 2016 | A1 |
20160132564 | Sabnani | May 2016 | A1 |
20160352656 | Galley | Dec 2016 | A1 |
20170017694 | Roytman | Jan 2017 | A1 |
20170250936 | Rosenberg | Aug 2017 | A1 |
20170310613 | Lalji | Oct 2017 | A1 |
20170324866 | Segre | Nov 2017 | A1 |
20180165554 | Zhang | Jun 2018 | A1 |
20180232741 | Jadhav | Aug 2018 | A1 |
20180233057 | Sitton | Aug 2018 | A1 |
20180285413 | Vora | Oct 2018 | A1 |
20180287968 | Koukoumidis | Oct 2018 | A1 |
20200042515 | Vora | Feb 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200042515 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15471838 | Mar 2017 | US |
Child | 16595113 | US |