The technical field relates generally to methods and apparatus for configuring loudspeakers and their associated bass reflex outputs for use with a telephone handset, and more particularly to porting primary and bass reflex loudspeaker output to an earpiece.
Consumers increasingly desire to listen to telephone conversations through a private mode earpiece, and to otherwise view and listen to media on a variety of devices, such as mobile telephone handsets, gaming consoles, ebooks, MP3 and other audiovisual display and playback devices, personal digital assistants (PDAs), and numerous other computing and telecommunication devices.
The present disclosure will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the application and uses of the wearable device described herein. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Broadly, exemplary embodiments disclosed herein provide systems and methods for porting loudspeakers to an earpiece in a telephone handset. A hand-held electronic device is provided which includes an earpiece, a first speaker having a first primary audio output ported to the earpiece, and a second speaker having a second primary audio output and a second bass reflex output, wherein the second bass reflex audio output is also ported to the earpiece. A “use case manager” decides how the audio configured based on what is being played back. The use case management module may be configured to respond to user action: for example, if the user answers or places a call, the use case manager can select private mode unless the user selects speaker mode for the call. If, on the other hand, the user launches a video or an audio file, the use case management module can select landscape (broadcast) mode.
In an embodiment, the device has a first region and a second region remote from the first region and the first speaker includes a first bass reflex audio output. The first primary audio output is disposed proximate the second bass reflex audio output in the first region, the second primary audio output is disposed proximate the first bass reflex audio output in the second region, and the earpiece is disposed in the first region.
In another embodiment, the speaker volume in broadcast mode is substantially louder than the speaker volume in private mode. Broadcast mode may be monophonic or stereophonic, and private mode is preferable monophonic.
A display such as a flat screen video monitor may be positioned disposed between the first and second regions, such that the first position corresponds to a landscape viewing mode and the second position corresponds to a telephone mode (or private mode) of operation. The sensor may be a motion sensor such as an accelerometer.
In a further embodiment, the first speaker system includes a first audio transducer and the second speaker system includes a second audio transducer; the first primary audio output is located on an output side of the first audio transducer and a first volume portion is located on a reflex side of the first audio transducer; the second primary audio output is located on an output side of the second audio transducer and a second volume portion is located on a reflex side of the second audio transducer; the first bass reflex audio port is connected to the first volume portion through a first port extending from the first region to the second region; and the second bass reflex audio port is connected to the second volume portion through a second port extending from the first region to the second region.
In an embodiment, a shutter may be configured to block the first bass reflex output when the device is in broadcast mode. The shutter may be an electronic switch or, alternatively, a manually actuable (e.g., slidable) mechanism.
The controller may include a filter and a polarity inverter, and the controller may be configured to apply a first signal to the first speaker and a second signal to the second speaker. In one embodiment, the controller is configured to: apply the first and second signals in phase to the first and second speakers, respectively, for all frequencies when the device is operating in said broadcast mode; apply the first and second signals in phase for all frequencies above a predetermined threshold when the device is operating in private mode; and apply the first and second signals out of phase to the first and second speakers, respectively, for all frequencies below the predetermined threshold when the device is operating in private mode.
In one embodiment, the predetermined threshold generally corresponds to the resonant frequency of the first and second bass reflex outputs, which may be in the range from about 200 to about 400 Hertz, and particularly about 300 Hertz.
In a further embodiment, a handset includes an earpiece; a first speaker having a primary output ported to the earpiece; a second speaker having a bass reflex output ported to the earpiece and tuned to a resonance frequency; and a controller configured to apply a signal to the second speaker, the signal having a high frequency component at a first phase and a low frequency component at a second phase. In a preferred embodiment, the high frequency component is above the resonance frequency and the low frequency component is below the resonance frequency, wherein the resonance frequency may be in the range of about 300 Hertz. A filter may be employed to limit the signal to within the range of the resonance frequency.
In yet a further embodiment, a method of porting audio signals to an earpiece of a telephone operating in private mode is provided. The method includes applying a primary audio output of a first speaker to the earpiece; applying a bass reflex audio output of a second speaker to the earpiece; applying a first electronic signal to the first speaker; and applying a second electronic signal to the second speaker, wherein the second electronic signal has a first frequency component at a first phase, and a second frequency component at a second phase which is inverted with respect to the first phase. In this way, the primary output of the first speaker and the bass reflex output of the secondary speaker are in phase throughout the frequency range of interest for both speakers. The method may also involve blocking a bass reflex output of the first speaker.
In the embodiment shown in
In particular, the air volume within chamber 106 functions as a mechanical spring and the air volume within port 108 functions as a movable mass; together, chamber 106 and port 108 may be modeled as a mass/spring combination, as is known in the art. The bass reflex output terminates at an open end of port 108, namely, bass reflex audio output portion 110. In the embodiment shown in
The geometric configuration of the bass reflex output system described above may be “tuned”—or optimized—to provide desired frequency response characteristics from the combined outputs of the primary and bass reflex outputs from speaker 104. More particularly, the various components may be configured such that the resonance frequency of the combined primary/bass reflex outputs is in the range of 100-450 Hertz, and particularly around 250-350 Hertz, and preferably about 300 Hertz.
With continued reference to
Referring now to
More particularly, a handset 300 includes first and second speakers 302, 304, respectively, an earpiece 310, a screen display and/or touch screen monitor 306 for viewing text, images, graphics, and/or video, and a sensor (detector) 312 (or a use case management module) for determining whether a horizontal/landscape or vertical/telephone mode of operation is desired. First speaker 302 includes a bass reflex output port 303 terminating near second speaker 304. Second speaker 304 includes a bass reflex output port 308 which terminates near first speaker 302. The primary audio output of first speaker 302, as well as the bass reflex output port 308 of second speaker 304, are both ported to earpiece 310.
With continued reference to
Notably, either or both speakers can be operated in stereophonic or monophonic mode when the device is operated in broadcast mode, and either or both speakers can be operated in stereophonic or monophonic mode when the device is operated in private mode. Moreover, either or both of the bass reflex ports can be blocked or unblocked in both broadcast and private modes, as desired.
Referring now to
Turning now to
With continued reference to
Detector 902 is configured to determine whether the audio should be driven in landscape mode or telephone mode. Detector 902 may be configured to apply a signal 903 to amplifier 904 to indicate the mode of operation of the device. Amplifier 904 outputs a first drive signal 906 corresponding to first speaker 910, and a second drive signal 908 corresponding to second speaker 912. Depending on the value of signal 903, amplifier may generate signals 906, 908 at a relatively high volume level (broadcast mode) or a relatively low volume level (private mode).
In order to implement the polarity reversal discussed above in conjunction with
In one embodiment, signal 933 may be narrowly limited to the frequency range surrounding the bass port resonance frequency of speaker 912, e.g., about 100 to 450 Hertz, and preferably about 250 to 350 Hertz. Splitter 934 may be implemented as a combination high pass and low pass filter, such that filter 934 outputs a signal 937 representing the component of signal 908 above a threshold value T (corresponding to port resonance), and a signal 935 representing the component of signal 908 below threshold value T. Inverter 936 may be configured to invert the phase of signal 935 relative to the phase of signal 937, and to output an inverted signal 939 as discussed above. Both the high frequency component (signal 937) and the inverted low frequency component (signal 939) of second speaker signal 908 (or, alternatively, the of band limited signal 933) may then be applied as a drive signal 938 to second speaker 912.
It is understood that the use of relational terms such as first and second, top and bottom, and the like, if any, are used to distinguish one from another entity, item, or action without necessarily requiring or implying any actual such relationship or order between such entities, items or actions. Much of the functionality and many of the principles are best implemented with or in software programs or instructions. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs with minimal experimentation. Therefore, further discussion of such software, if any, will be limited in the interest of brevity and minimization of any risk of obscuring the principles and concepts described herein.
As understood by those in the art, controller 204 includes a processor that executes computer program code to implement the methods described herein. Embodiments include computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a processor, the processor becomes an apparatus for implementing the methods and apparatus described herein.
Embodiments of the various techniques described herein may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Embodiments may be implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program, such as the computer program(s) described above, can be written in any form of programming language, including compiled or interpreted languages, and can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. Generally, a computer also may include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory may be supplemented by, or incorporated in special purpose logic circuitry.
Method steps may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method steps also may be performed by, and an apparatus may be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
It will be appreciated that the above description for clarity has described various embodiments with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units or processors may be used. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processor or controllers. Hence, references to specific functional units are only to be seen as references to suitable means for providing the described functionality rather than indicative of a strict logical or physical structure or organization.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the devices and methods described herein. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing exemplary embodiments. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5832079 | Rabe | Nov 1998 | A |
6411828 | Lands | Jun 2002 | B1 |
7343181 | Chan et al. | Mar 2008 | B2 |
20040264727 | Kim | Dec 2004 | A1 |
20070019820 | Zurek et al. | Jan 2007 | A1 |
20090003639 | Aylward | Jan 2009 | A1 |
20090129623 | Weckstrom et al. | May 2009 | A1 |
20110026720 | Ohta | Feb 2011 | A1 |
20140086415 | Sim | Mar 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140126757 A1 | May 2014 | US |