The present application relates to camera device methods and apparatus and, more particularly, to methods and apparatus for providing a lens or viewing point indicator to a camera user and/or subject of a photograph.
Cameras with multiple optical chains, e.g. camera modules, and thus camera lenses are beginning to be used. Such devices have advantages over single lens systems in size and weight for at least some applications.
In at least some such devices one or a set of camera modules may be used at a given time with one or more other camera modules going unused during a given period of time. Which camera module or modules is used at a given time may not be clear to a user of the camera and/or subject of an image. As a result, rather than looking at the lens of the camera module being used to capture an image, a subject of an image may look at the lens of an optical chain which is not being used to capture the subject's image at the time a photograph is being taken. While the outer lens of the optical chains of a camera maybe relatively close together, the difference between a user looking at the lens of the optical chain being used to capture the image or the lens of an optical chain not being used to capture the image can be noticeable in the captured image.
Thus the presence of multiple lenses in a camera with multiple camera modules, some of which may not be used at a given time, can make it difficult for a subject to know where to look when an image is being taken and different subjects in a photograph may look at different lenses based on confusion as to where to look at the time the photograph is taken.
While multiple lenses may create confusion as to where to look when a photograph is taken, it can also create confusion at other times as well. In some camera devices a user maybe provided an indication that one or more lenses are dirty, e.g., due to dust and/or other particles settling on them, and should be cleaned. Given that a camera device may include multiple lenses, it maybe difficult for a user to determine which of the multiple lenses needs to be cleaned and, in fact, the user may dirty a clean lens by trying to unnecessarily clean it.
In view of the above discussion, it should be appreciated that there is a need for methods and/or apparatus which could help with providing an indication with regard to at least one of where to look during the taking of a photograph or which lens should receive a user's attention would be desirable. In particular there is a need for methods and apparatus for providing a subject of a camera device an indication as to where to look during the taking of a photograph. There is also a need for providing information to a user of the camera as to which lens of the camera needs the user's attention, e.g., when cleaning of a lens is required. Addressing at least one of the above noted problems would be desirable but it would be even better if in some but not necessarily all systems some of the hardware used to provide information about a dirty lens could also be used to provide an indicator as to where a subject of a camera should look during a photograph.
Methods and apparatus for providing a user of a camera information about the status of one or more lenses and/or providing a subject of a photo an indicator of where to look while a photo is being taken are described. The methods can be used individual or in combination. For example, some cameras may support dirty lens indication functions. Other cameras may support an indicator of where a subject should look during taking of a picture and in still other embodiments a camera may support both indicators about lens condition and/or where a user should look during taking of a photo.
In some embodiments the camera includes multiple camera modules. During the taking of a photograph multiple camera modules maybe used but not necessarily all camera modules. In some embodiments different sets of camera modules are used for depending on the user input and/or the distance to the objects to be captured in images taken by the camera modules of the camera. For example, a first set of camera modules maybe used to capture a panoramic image while a different, e.g., second set of camera modules maybe used to capture a photograph of someone nearby. Still another set of camera modules, e.g., a third set of camera modules maybe used to capture a high dynamic range with multiple camera modules being used to capture an image but with different exposure times being used.
In various embodiments an indicator, e.g., light emitting element, is associated with each of the different sets of camera modules which maybe used to indicate where a subject should look when a photograph is being taken using the corresponding set of camera modules. The indicator corresponding to a set of camera modules is sometimes located at the center of the set of camera modules or near a reference camera included in the set of camera modules to which the indicator corresponds.
In some embodiments the indicator as to where a user should look is a ring around a camera module's outer lens. Because the place where a subject is to look may not correspond precisely to one camera module in the set of camera modules the indicator which is illuminated may, and sometimes is, an indicator surrounding a camera module which is not in the set being used to capture images but located at or near the center of the set of camera modules being used. In other embodiments where the controllable indicators are separate from the camera modules the indicator corresponding to the set of camera modules maybe and sometimes is placed on the front of the camera at the location where a subject should look. While this will normally correspond to or be adjacent a camera module being used to capture the photograph, the location maybe at the center of the set of camera modules being used for example. In some cases all the camera modules being used to capture a photograph have corresponding indicators, light rings, which are illuminated so the subject can see which camera modules are active but in many such cases in addition to the light rings of the active cameras, an light emitting element indicating where a subject should look is also illuminated during image capture.
In order to provide a user of a camera information about which lenses of a camera need cleaning, the camera can and sometimes does detect dirty lenses. In some embodiments, when a dirty lens condition is detected, the user is notified of the dirty lens condition through an audible or visual indication of a dirty lens condition and information as to which lens or lenses have been determined to be dirty and need cleaning is provided to the user of the camera. In some embodiments the indication of which lens or lenses are dirty is provided on the display device of the camera, e.g., located on the back of the camera. In one such embodiment an image of the face of the camera is displayed and one or more of the lenses are indicated to be dirty, e.g., by a mark, shading or other indicator.
In still other embodiments a light emitting elements included on the face of the camera and are associated with lenses, e.g., at least one light emitting element per lens. The light emitting element corresponding to a dirty lens is illuminated to facilitate identification of a lens in need of cleaning. Multiple light emitting elements, corresponding to multiple different dirty lenses are illuminated in some embodiments when multiple lenses are determined to be dirty. After providing the camera user an opportunity to clean the dirty lens or lens, the camera checks the lenses again for dirt. Light emitting elements corresponding to lenses which were previously found to be dirty but are now determined to be clean are deactivated while lenses determined to still be dirty or are newly determined to be dirty will have corresponding light indicators illuminated to facilitate additional cleaning to the extent necessary. In this way a user can be informed of the success or failure of a cleaning attempt and will not unnecessarily try and clean a clean lens which might actually lead to dirtying of the lens or scratching.
In some embodiments the light emitting elements used to indicate dirty lenses are light rings which surround individual lenses and which can be activated or deactivated on a per lens basis. In other embodiments a light, e.g., LED (Light Emitting Diode) or other indicator is positioned adjacent the lens and serves to indicate the status of the lens to which it corresponds and/or can also be used as an indicator where a subject should look when a photograph is being taken. Thus in some embodiments one or more of the light emitting devices used to indicate which lenses are dirty are also used during taking of a photograph to indicate where a subject should look.
In some embodiments light emitters on a face of a camera with multiple camera modules are used to support both a dirty lens indication and an indication where a user should look when a photograph is being taken. In other embodiments light emitters are used for dirty lens indication but not where a subject should look. In still other embodiments one or more light emitters are used to indicate where a subject should look but not to indicate a dirty lens condition.
The term lens in the present application is intended to cover flat protective optical elements with little or no optical power, e.g., a plate of glass or plastic with zero or near zero optical power, as well as optical elements with an optical power. Thus outer lens is used herein in various places to refer to an outer protective transparent cover, e.g., plate of glass or plastic or a lens with an optical power that serves as the outer element of an optical chain, e.g., camera module. Numerous variations benefits and embodiments are discussed further in the detailed description which follows.
The accelerometer module 122 includes accelerometer 1124, accelerometer 2, 126 and accelerometer 3128 which are arrayed on perpendicular axis providing a 3 axis accelerometer module. Thus, the accelerometer module 122 can measure along 3 independent axis.
Similarly, the 3-axis gyro 192, which includes 194, 196 and 198 can measure rotation along each of 3 different axis. The output of the accelerometer module 122 and the gyro module 192 can, and in some embodiments is, monitored with changes in accelerometer and gyro output being interpreted and checked over time by processor 110 and/or zoom control module, e.g., zoom controller 140 to detect changes in acceleration indicating motion in one or more directions. In some embodiments the input device 106 includes at least one zoom control button that can be used to enable or disable camera zoom functionality. In some such embodiments when the zoom control button is in a depressed state the camera zoom function is enabled while when the button is in a un-depressed state the camera zoom function is disabled. The input state detection module 148 is configured to detect the state of the input device, e.g., the zoom control button, to detect whether the button is in a depressed state or undepressed state. In some embodiments there is a status register in the camera device 100 that includes a bit indicating the state of the zoom control button detected by the state detection module 148, e.g., whether it is in the depressed state indicating that zoom is enabled or whether it is undepressed indicating that zoom is disabled.
The display device 102 may be, and in some embodiments is, a touch screen, used to display images, video, information regarding the configuration of the camera device, and/or status of data processing being performed on the camera device. In the case where the display device 102 is a touch screen, the display device 102 serves as an additional input device and/or as an alternative to the separate input device, e.g., buttons, 106. As will be discussed in some embodiments zooming operation can be controlled by pressing a zoom control sensor, e.g., a touch sensor. In some embodiments when the camera user touches the zoom control sensor the zoom functionality is enabled. For example a finger on the touch sensor activates/enables the zoom functionality. The I/O interface 112 couples the display 102 and input device 106 to the bus 116 and interfaces between the display 102, input device 106 and the other elements of the camera which can communicate and interact via the bus 116.
In addition to being coupled to the I/O interface 112, the bus 116 is coupled to the memory 108, processor 110, an optional autofocus controller 132, the wireless and/or wired interface 114, a zoom control module 140, and a plurality of optical chains 130, e.g., X optical chains also referred to herein as camera modules. In some embodiments X is an integer greater than 2, e.g., 3, 4, 7 or a larger value depending on the particular embodiment. The plurality of camera modules 130 may be implemented using any of the various camera module sets and/or arrangements described in the present application. For example, in some embodiments the camera device 100 is implemented using a set of camera modules as shown in
The X camera modules 131 through 133 may, and in various embodiments do, include camera modules having different focal lengths. Multiple camera modules may be provided at a given focal length. For example, multiple camera modules having a 35 mm equivalent focal length to a full frame DSLR camera, multiple camera modules having a 70 mm equivalent focal length to a full frame DSLR camera and multiple camera modules having a 140 mm equivalent focal length to a full frame DSLR camera are included in an individual camera device in some embodiments. The various focal lengths are exemplary and a wide variety of camera modules with different focal lengths may be used. The camera device 100 is to be considered exemplary. To the extent that other references are made to a camera or camera device with regard to some of the other figures, it is to be understood that at least in some embodiments the camera device or camera will include the elements shown in
As will be discussed below images from different camera modules captured at the same time or during a given time period can be combined to generate a composite image, e.g., an image having better resolution, frequency content and/or light range than an individual image captured by a single one of the camera modules 131, 133.
Multiple captured images and/or composite images may, and in some embodiments are, processed to form video, e.g., a series of images corresponding to a period of time. The interface 114 couples the internal components of the camera device 100 to an external network, e.g., the Internet, and/or one or more other devices e.g., memory or stand alone computer. Via interface 114 the camera device 100 can and does output data, e.g., captured images, generated composite images, and/or generated video. The output may be to a network or to another external device for processing, storage and/or to be shared. The captured image data, generated composite images and/or video can be provided as input data to another device for further processing and/or sent for storage, e.g., in external memory, an external device or in a network.
The interface 114 of the camera device 100 may be, and in some instances is, coupled to a computer so that image data may be processed on the external computer. In some embodiments the external computer has a higher computational processing capability than the camera device 100 which allows for more computationally complex image processing of the image data outputted to occur on the external computer. The interface 114 also allows data, information and instructions to be supplied to the camera device 100 from one or more networks and/or other external devices such as a computer or memory for storage and/or processing on the camera device 100. For example, background images may be supplied to the camera device to be combined by the camera processor 110 with one or more images captured by the camera device 100. Instructions and/or data updates can be loaded onto the camera via interface 114 and stored in memory 108.
The lighting module 104 in some embodiments includes a plurality of light emitting devices, e.g., light emitting diodes (LEDs) and/or other types of light emitters, which can be illuminated in a controlled manner with the LEDs being controlled in groups or individually, e.g., in a synchronized manner based on operation of the rolling shutter and/or the exposure time, and/or or in order to indicate a dirty lens condition. For purposes of discussion module 104 will be referred to as an LED module since in the exemplary embodiment LEDs are used as the light emitting devices but as discussed above the invention is not limited to LED embodiments and other light emitting sources may be used as well. In some embodiments the LED module 104 includes an array of light emitting devices, e.g., LEDs. In some embodiments the light emitting elements in the LED module 104 are arranged on a face of the camera with each individual light emitting device and/or a group of light emitting devices being able to be activated, e.g., illuminated, in accordance with the methods of the present invention. In some embodiments the light emitting elements in the LED module 104 include a plurality of sets of light emitting elements, each set of light emitting elements corresponding to a different image area which it illuminates and which is captured by a different portion of the image sensor. Lenses may, and in some embodiments are used to direct the light from different light emitting elements to different scene areas which will be captured by the camera through the use of one or more camera modules.
In accordance with one aspect of some embodiments various light emitting devices in the camera 100 can be activated individually to indicate a dirty lens condition and/or a point at which a subject of a photograph should look. In some such embodiments the light emitting devices arranged in the camera 100 in a way such that when a light emitting device is activated, e.g., powered to emit light, the light emitting device and/or the emitted light is visible from a face of the camera. In some embodiments one or more light emitting devices in the LED module 104 are on the face of said camera. In some embodiments light emitting devices are arranged, e.g., on the face of a camera, around outer lenses of the various camera modules in the camera such that when a given light emitting device is activated the light emitting device forms an illuminated ring around the lens of the corresponding camera module.
The rolling shutter controller 150 is an electronic shutter that controls reading out of different portions of one or more image sensors at different times. Each image sensor is read one row of pixel values at a time and the various rows are read in order. As will be discussed below, the reading out of images captured by different sensors is controlled in some embodiments so that the sensors capture a scene area of interest, also sometimes referred to as an image area of interest, in a synchronized manner with multiple sensors capturing the same image area at the same time in some embodiments.
While an electronic rolling shutter is used in most of the embodiments, a mechanical rolling shutter may be used in some embodiments. The light control device 152 (also referred to as the light controller 152) is configured to control light emitting devices in the camera, e.g., in a synchronized manner with the operation of the rolling shutter controller 150, individually or in groups in accordance with the features of the invention to support indication of dirty lens condition and/or a point where a subject of a photograph should look at during image capture. In some embodiments the light control device 152 is configured to activate different sets of light emitting devices to emit light based on a detected one or more dirty lenses and/or based on a selected set of camera modules being used for image capture at a given time. In some embodiments the light control device 152 is configured to activate a first light emitting device on a face of the camera 100 to emit light to indicate a dirty lens or a point at which a subject of a photograph should look. In some embodiments the light control device 152 is further configured to activate additional light emitting devices corresponding to additional lenses corresponding to camera modules in a set of camera modules at the same time the first light emitting device is activated, e.g., all light emitters corresponding to a group of camera modules so a user is able to determine which camera modules are being used to take a photo at the given time. In some embodiments the light control device 152 is further configured to deactivate one or more light emitting devices corresponding to lenses determined to no longer be dirty and keep light emitting devices corresponding to dirty lenses active and emitting light to signal that further cleaning is required.
In some embodiments the light control device 152 is further configured to activate at least one light emitting device on the face of the camera associated with a dirty lens to emit light to signal that the lens is dirty. In some embodiments activating at least one light emitting device on the face of the camera includes activating light emitting devices corresponding to multiple different dirty lenses to indicate which lenses are dirty while leaving light emitting devices corresponding to lenses which were not detected to be dirty unlit. In some embodiments the light control device 152 is further configured to deactivate the light emitting devices associated with lenses which were previously determined to be dirty but are no longer determined to be dirty.
The accelerometer module 122 includes a plurality of accelerometers including accelerometer 1124, accelerometer 2126, and accelerometer 3128. Each of the accelerometers is configured to detect camera acceleration in a given direction. Although three accelerometers 124, 126 and 128 are shown included in the accelerometer module 122 it should be appreciated that in some embodiments more than three accelerometers can be used. Similarly the gyro module 192 includes 3 gyros, 194, 196 and 198, one for each axis which is well suited for use in the 3 dimensional real world environments in which camera devices are normally used. The camera acceleration detected by an accelerometer in a given direction is monitored. Acceleration and/or changes in acceleration, and rotation indicative of camera motion, are monitored and processed to detect one or more directions, of motion e.g., forward camera motion, backward camera motion, etc. As discussed below, the acceleration/rotation indicative of camera motion can be used to control zoom operations and/or be provided in some cases to a camera mount which can then take actions such as rotating a camera mount or rotating a camera support to help stabilize the camera.
The camera device 100 may include, and in some embodiments does include, an autofocus controller 132 and/or autofocus drive assembly 134. The autofocus drive assembly 134 is, in some embodiments, implemented as a lens drive. The autofocus controller 132 is present in at least some autofocus embodiments but would be omitted in fixed focus embodiments. The autofocus controller 132 controls adjustment of at least one lens position in one or more optical chains used to achieve a desired, e.g., user indicated, focus. In the case where individual drive assemblies are included in each optical chain, the autofocus controller 132 may drive the autofocus drive of various optical chains to focus on the same target.
The zoom control module 140 is configured to perform a zoom operation in response to user input. The processor 110 controls operation of the camera device 100 to control the elements of the camera device 100 to implement the steps of the methods described herein. The processor may be a dedicated processor that is preconfigured to implement the methods. However, in many embodiments the processor 110 operates under direction of software modules and/or routines (e.g., in embodiments where one or more modules are implemented as software) stored in the memory 108 which include instructions that, when executed, cause the processor to control the camera device 100 to implement one, more or all of the methods described herein. Memory 108 includes an assembly of modules 118 wherein one or more modules include one or more software routines, e.g., machine executable instructions, for implementing the methods of the present invention. Individual steps and/or lines of code in the modules of 118 when executed by the processor 110 control the processor 110 to perform steps of the method of the invention. When executed by processor 110, the data processing modules 118 cause at least some data to be processed by the processor 110 in accordance with the method of the present invention.
The assembly of modules 118 includes a mode control module 111 which determines, e.g., based on user input which of a plurality of camera device modes of operation are to be implemented. In different modes of operation, different camera modules 131, 133 may and often are controlled differently based on the selected mode of operation. For example, depending on the mode of operation different camera modules may use different exposure times. In some depending on user input and/or a selected focus setting the mode control module 111 controls the camera to operate in different modes where different camera modules may be selected for image capture. In some such embodiments depending on a selected set of camera modules being active at a given time, one or more corresponding light emitting devices may be activated indicate a dirty lens or a point at which a subject of a photograph should look in accordance with the features of the present invention. In some embodiments, the operations performed by the processor when executing the instructions from one or more assembly of modules is instead performed by a hardware module which performs the same functionality and is included in the hardware assembly of modules 180.
The data and information 120 stored in memory 108 includes e.g., captured images of a scene, combined images of a scene, mapping information indicating association between light emitting devices and camera modules/lenses, received user input etc. and may be used by the camera device to perform various function in accordance with the invention, additional processing, and/or output, e.g., to display device 102 for display or to another device for transmission, processing and/or display. Mapping information 121 includes information indicating a mapping between different lenses corresponding to different camera modules in the camera and the light emitting devices corresponding to these lenses/camera modules. In some embodiments there is a one to one mapping between the lenses corresponding to different camera modules and the light emitting devices. Thus by using the stored mapping information the light emitters, e.g., LEDs, corresponding to various lenses (e.g., including dirty lenses) can be identified in accordance with the invention. In some embodiments the mapping information further indicates a mapping between different sets of camera modules (corresponding to different lenses) in the camera and corresponding light emitting devices, e.g., for example information indicating a first light emitting device being associated with a first set of camera modules. Thus in various embodiments the mapping information 121 indicates which light emitting device are associated with which set of camera modules. A set may include one or a plurality of camera modules. In some embodiments there is a one to one mapping between the lenses corresponding to the camera modules in the camera and the light emitting devices. Thus using the mapping information 121 light emitting device(s) corresponding to a selected set of camera module to be used for image capture s can be identified.
The received user input 123 is a current user input, e.g., indicating a currently selected type of photograph and/or other user selected input parameter. When a new user input is received indicating information which is different from the stored user input 123, the processor 110 updates the stored user input 123 to reflect the change. The focus setting to be used 125 includes focus setting value to be used for image capture operation at a given time and may be updated in a similar manner upon a user selected change and/or auto, e.g., camera selected, change in the focus setting.
The memory 108 includes different types of memory for example, Random Access Memory (RAM) in which the assembly of modules 118 and data/information 120 may be, and in some embodiments are stored for future use. Read only Memory (ROM) in which the assembly of modules 118 may be stored for power failures. Non-volatile memory such as flash memory for storage of data, information and instructions may also be used to implement memory 108. Memory cards may be added to the device to provide additional memory for storing data (e.g., images and video) and/or instructions such as programming. Accordingly, memory 108 may be implemented using any of a wide variety of non-transitory computer or machine readable mediums which serve as storage devices.
The camera also includes one or more depth sensors, light emitting devices and a range finder and a flash unit. The range finder is an array based sensor capable of measuring depths to multiple objects corresponding to the area which may be captured by the image. The depth sensors measure a single depth and may be used to detect a hand being placed over the sensor or an object nearby. The depth sensors and range finder may be IR based devices. In some embodiments the range finder is used for focus control. In addition to the elements shown in
In accordance with one aspect of some embodiments one or more LEDs on the face 201 of the camera can be activated, e.g., controlled to emit light, to indicate a dirty lens and/or a point at which a subject of a photograph should look. Thus a user of the camera and/or a subject of a photograph can be informed, e.g., by way of one or more lit up LEDs, as to which one or more lenses corresponding to the camera modules needs cleaning and/or a position at which a subject of a photograph should look.
The selection of a set of camera module for a given image capture operation at a given time may depend on, e.g., user input selecting a type of photograph to be taken, e.g., panoramic, normal, high dynamic range (in terms of light range), color, black and white) or a focus setting to be used (near or far may use different sets of lenses). However in some embodiments it is transparent to the user of the camera and/or subject of a photograph as to which set of camera modules is being used for image capture at a given time. Still in accordance with the features of the invention the user and/or subject of a photograph is indicated a point where to look at during image capture by activating the light emitting device associated with the group of camera modules being used in the image capture. Furthermore in some embodiments the user of camera device is notified of one or more dirty lenses on the camera by activating the light emitting devices, e.g., light emitting device rings and/or individual light emitters, corresponding to these dirty lenses.
Operation proceeds from start step 1102 to step 1104. In step 1104 the dirty lens condition checking and remediation subroutine is called. The exemplary flowchart illustrating the steps of the dirty lens condition checking and remediation subroutine 1200 is illustrated in
Operation proceeds from step 1204 to step 1206. In step 1206 the camera detects one or more lenses of the camera which are dirty. In some embodiments the step 1206 of detecting one or more dirty lenses includes detecting a first lens which is dirty. In some embodiments step 1206 further includes optional step 1208 of detecting multiple dirty lenses in the camera for which cleaning is required or recommended. Operation proceeds from step 1206 to step 1210. In step 1210 the camera device identifies one or more light emitting devices, e.g., LEDs, in a plurality of light emitting devices in the camera to activate based on which of the lenses are detected as being dirty. In some embodiments the identification step 1210 includes the step 1212 of accessing memory, e.g., camera device memory, including information indicating a mapping between different lenses corresponding to different camera modules in the camera and the light emitting devices corresponding to these lenses/camera modules. In some embodiments there is a one to one mapping between the lenses corresponding to different camera modules which may be inspected for dirty conditions and the light emitting devices. Thus by using the stored mapping information the light emitters, e.g., LEDs, corresponding to dirty lenses can be identified in accordance with the invention. In some embodiments as part of implementing step 1210 the camera identifies a first light emitting device corresponding to the first dirty lens. The first light emitting device being one of the plurality of light emitting devices on the face of the camera. In some embodiments the first light emitting device is a light emitter positioned at a first position on the face of the camera. In some embodiments the first position is at or near a center of a cluster of lenses of camera modules included in the first set of camera modules. In some embodiments the first position is adjacent a lens of a reference camera included in the first set of camera modules. In some embodiments the first light emitting device is arranged on the face of the camera adjacent the first lens. In some embodiments the first light emitting device is a light emitting ring surrounding said first lens. In some embodiments 1210 the camera further identifies multiple additional light emitting devices corresponding to multiple additional dirty lenses.
Operation proceeds from step 1210 to step 1214. In some embodiments the operation also simultaneously proceeds to step 1216 which may be performed in parallel with step 1214 or as an alternative to step 1214. In step 1214 the camera activates a first light emitting device on the face of the camera (e.g., such as face 201 of camera 200) to emit light to indicate the first dirty lens, e.g., indicating that the first lenses is dirty and need cleaning. In some embodiments where multiple additional dirty lenses are detected, step 1215 is performed as part of step 1214 where additional individual light emitting devices corresponding to the individual additional dirty lenses are activated to indicate the detected multiple dirty lenses. As can be appreciated step 1214 and 1215 show one way of indicating the dirty lenses to the user by activating light emitters corresponding to the detected one or more dirty lenses on the face of the camera. Operation proceeds from step 1214 to step 1222. Step 1216 (including steps 1218, 1220) illustrates another way of indicating the dirty lenses to the user of the camera in accordance with the invention. In step 1216 the camera device displays on a camera display device, e.g., display screen on the back of the camera, an image of the face of the camera and an indication as to which lens or lenses are dirty. For example an actual, simulated and/or camera generated image of the face of the camera (e.g., such as shown in
In step 1222 a user of the camera is provided an opportunity to clean the lenses which have been indicated as being dirty in the above discussed manner. In some embodiments providing an opportunity to the user includes waiting for a predetermined time period (after an indication has been shown to the user in any manner as discussed in steps 1214 and 1216) before checking for the dirty lens condition of the lenses indicated as being dirty.
Operation proceeds from step 1222 to step 1224. In step 1224 after the predetermined time the lens condition of one or more camera lenses is checked to determine if the lenses are clean or still dirty. Operation proceeds from step 1224 to step 1226 and/or 1228, e.g., based on the checking performed in step 1224 one or both of the steps 1226 and 1228 are performed. In step 1226 the light emitting devices corresponding to the lenses which are determined to be no longer dirty are deactivated, e.g., to indicate that dirty lens(es) have been cleaned and are in good condition. In step 1228 the light emitting devices corresponding to the lenses which are determined to be still unclean/dirty are controlled to continue to emit light to signal to the user that further cleaning is required.
Operation proceeds from steps 1226 and 1228 to step 1230. In step 1230 it is determined if there are any remaining dirty lenses. In some embodiments step 1230 may be performed after waiting for a predetermined time in order to provide the user an opportunity to clean the still dirty lenses indicated in step 1228. If in step 1230 it is determined that there are more dirty lenses that require cleaning, the operation proceeds from step 1230 back to step 1222 to provide the user an opportunity to clean the still dirty lenses and the relevant steps are repeated until the dirty lenses are cleaned or the user manually overrides to ignore the indication regarding the dirty lenses. If in step 1230 it is determined that there are no more dirty lenses, the operation proceeds from step 1230 to the return step 1232 via which the process returns back to the method of flowchart 1100 (e.g., step 1104).
Referring back to flowchart 1100 of
Operation proceeds from step 1110 to step 1112. In step 1112 the camera device selects a first set of camera modules to use to take a first photograph based on i) the user input selecting a type of picture to be taken and/or ii) focus setting to be used. In various embodiments the camera includes a plurality of camera modules. In various embodiments the first set of camera modules is from a plurality of different sets of camera modules included in the camera device. In accordance with one aspect the exemplary camera devices of the present invention include a plurality of camera modules. Various different camera modules among the plurality of camera modules can be grouped into various different sets. For example three different sets of camera modules are shown in
Operation proceeds from step 1112 to step 1114. In step 1114 the camera device identifies a first light emitting device in a plurality of light emitting devices to activate based on the selected first set of camera modules. In some embodiments the identification step 1114 includes the step 1116 of accessing memory, e.g., camera device memory, including information indicating a mapping between sets of camera modules (corresponding to different lenses) in the camera and corresponding light emitting devices, the information indicating the first light emitting device being associated with the first set of camera modules. Thus in various embodiments the mapping information indicates which light emitting device are associated with which set of camera modules. A set may include one or a plurality of camera modules. In some embodiments there is a one to one mapping between the sets of camera modules and the light emitting devices. In some embodiments there is a one to one mapping between the lenses corresponding to the camera modules in the camera and the light emitting devices. Thus in some embodiments depending on which of the plurality of different sets of camera modules is selected for use in image picture at the given time, one or more corresponding light emitting devices are identified, e.g., using stored mapping information.
Operation proceeds from step 1114 to step 1118. In step 1118 the camera device activates the first light emitting device on the face of the camera to emit light to indicate a point at which a subject of the first photograph should look. In some embodiments step 1118 includes optional step 1120 in which additional light emitting devices corresponding to additional lenses corresponding to the camera modules in the first set of camera modules are activated at the same time the first light emitting device is activated. For example in some embodiments all light emitters corresponding to the first set of camera modules may be activated to indicate to the user all camera modules which are being used to take the photograph.
Operation proceeds from step 1118 to step 1122. In step 1122 the camera receives additional user input selecting a type of photograph to be taken and/or a focus setting to be used. Operation proceeds from step 1122 to step 1124. In step 1124 it is determined if the user selected type of photograph and/or focus setting is different from the last selected type of photograph and/or focus setting. If in step 1124 it is determined that the user selected type of photograph and/or focus setting is same as the last selected type of photograph and/or focus setting, the operation proceeds from step 1124 to step 1118 and one or more of the relevant steps are repeated to indicate to a subject of the photograph where to look. If however it is determined that the user selected type of photograph and/or focus setting is different from the last selected type of photograph and/or focus setting the operation proceeds from step 1124 to step 1128 via connecting node A 1126. In step 1128 the information indicating user selected type of photograph to be taken and/or focus setting to be used is updated.
Operation proceeds from step 1128 to step 1130. In step 1130 a second set of camera modules to be used to take a second photograph is selected based on i) the additional user input selecting a type of picture to be taken and/or ii) focus setting to be used. In various embodiments the second set of camera modules is another set of camera modules from the plurality of different sets of camera modules in the camera.
Operation proceeds from step 1130 to step 1132. In step 1132 the camera device identifies a second light emitting device in the plurality of light emitting devices to activate based on the selected second set of camera modules. In some embodiments the identification step 1132 includes the step 1132 of accessing stored information indicating a mapping between sets of camera modules/lenses in the camera and corresponding light emitting devices, the information indicating the second light emitting device being associated with the second set of camera modules. Following identification of the second light emitting device associated with the second set of camera modules the operation proceeds from step 1132 to step 1136. In step 1136 the camera device activates the second light emitting device on the face of the camera to emit light to indicate a point at which a subject of the second photograph should look. In some embodiments additional light emitting devices corresponding to additional lenses corresponding to the camera modules in the second set of camera modules are activated at the same time the second light emitting device is activated. Operation proceeds from step 1136 back to step 1122 via connecting node B 1138 and the operation may continue in this manner for additional received inputs.
In addition to the mode control module 111 already discussed above with regard to
The dirty lens determination module 1502 is configured to detect/determine one or more dirty lenses of the camera. In some embodiments one or more dirty lenses includes a first lens which is dirty. In some embodiments one or more dirty lenses includes multiple dirty lenses. Thus in some embodiments the dirty lens determination module 1502 detects multiple dirty lenses in addition to the first dirty lens. In some embodiments the dirty lens determination module 1502 is implemented in hardware as a dirty lens determinator 1502.
The selection module 1502 is configured to select a set of camera modules, from a plurality of different sets of camera modules in the camera, to use to take a photograph. In some embodiments the selection module 1502 is configured to select a first set of camera modules to use to take a first photograph, the first set of camera modules being from the plurality of different sets of camera modules in the camera. In some embodiments the selection module 1502 is further configured to select a second set of camera modules to use to take a second photograph, the second set of camera modules being another set of camera modules from the plurality of different sets of camera modules. In some embodiments the selection module 1502 is configured to select the set of camera modules, e.g., first and/or second set of camera modules, based on i) user input selecting a type of photograph to be taken (e.g., panoramic, normal, high dynamic range (in terms of light range), color, black and white) or ii) a focus setting to be used (near or far may use different sets of lenses). Thus in various embodiments the selection modules 1502 uses the current received user input 123 selecting a type of photograph to be taken and/or focus setting 125 stored in memory 108 to make the selection.
The identification module 1506 is configured to identify one or more light emitting devices in the camera to activate based on detected one or more dirty lenses. In some embodiments to identify one or more light emitting devices corresponding to the detected one or more dirty lenses the identification module 1506 accesses stored mapping information 121 in memory 108 indicating a mapping between camera modules and/or the lenses corresponding to the camera modules and light emitting devices. In some embodiments the identification module 1506 is configured to identify a first light emitting device corresponding to a first dirty lens. In some embodiments the identification module 1506 is further configured to identify additional light emitting devices corresponding to additional dirty lenses.
In some embodiments the identification module 1506 is configured to identify a first light emitting device in a plurality of light emitting devices to activate based on which of the plurality of different sets of camera modules is selected to be the first set of camera modules, e.g., to take a first photograph. In some embodiments the first light emitting device is associated with the first set of camera modules. In some embodiments the identification module 1506 is further configured to identify (e.g., by accessing memory indicating which light emitter corresponds to the second set of camera modules) a second light emitting device in the plurality of light emitting devices to activate based on which set of camera modules is selected to be the second set of camera modules, the light emitting device being associated with the second set of camera modules. In various embodiments when the first and/or second sets of camera modules are used to take a photograph at the given time the corresponding light emitting device (e.g., first or second) is identified by the identification module to activate, e.g., so a user can be indicated a point to look at during image capture.
In various embodiments the light control device 152 used in the camera of the present invention is configured to activate one or more light emitting devices on the face of the camera identified as corresponding to dirty lenses to emit light to indicate that the corresponding lenses are dirty. For example in some embodiments where the dirty lens determination module 1502 detects that the first lens is dirty, the identification module 1506 identifies the first light emitting device corresponding to the first lens and the light control device 152 is configured to activate the first light emitting device to emit light to indicate the first dirty lens and activate individual light emitting devices corresponding to individual dirty lenses to indicate the additional dirty lenses.
In various embodiments the light control device 152 is configured to activate one or more light emitting devices on a face of a camera to emit light to indicate a point at which a subject of a photograph should look. In some embodiments when the selection module 1504 selects the first set of camera modules to take a first photograph, the identification module 1506 identifies a light emitting device corresponding to the first set of camera modules and the light control device 152 is configured to activate the identified light emitting device to emit light to indicate a point at which a subject of a photograph should look, e.g., during image capture by the selected first set of camera modules. In some embodiments when the selection module 1504 selects the second set of camera modules to take a second photograph, the identification module 1506 identifies a second light emitting device corresponding to the second set of camera modules and the light control device 152 is configured to activate the second identified light emitting device to emit light to indicate a point at which a subject of the second photograph should look, e.g., during image capture by the selected second set of camera modules.
The timer module 1508 is configured to monitor time elapsed since the first light emitting device was activated to indicate the first dirty lens. In some embodiments the timer module 1508 is further configured to generate a recheck trigger signal when the time exceeds a predetermined time interval which has been set to provide a user an opportunity to clean the lenses which were indicated as being dirty. In some such embodiments the dirty lens determination module 1502 is further configured to recheck the lenses (e.g., lenses which were detected to be dirty and/or indicated as being dirty) for dirty condition, e.g., to determine if they are still dirty, in response to receiving the recheck trigger signal from the timer module 1508. In some such embodiments the light control device 152 is further configured to deactivate light emitting devices corresponding to lenses determined to no longer be dirty and keep light emitting devices corresponding to dirty lenses active and emitting light to signal that further cleaning is required.
The display controller 1510 is configured to control the camera to display, on a display device such as display 102, an image of a face of the camera and an indication as to which of the camera lenses are dirty.
The control module 1512 controls various modules of the assembly to perform their respective functions in accordance with the features of the present invention and manages input and output of the modules, e.g., providing input to a module in the assembly 118 from another module or element of the camera device 100 and/or providing the generated output from any of the modules in the assembly 118 to another module or element, e.g., for further processing, storage, display or transmission.
While
The techniques of the present invention may be implemented using software, hardware and/or a combination of software and hardware. The present invention is directed to apparatus, e.g., dedicated camera devices, cell phones, and/or other devices which include one or more cameras or camera modules. It is also directed to methods, e.g., method of controlling and/or operating cameras, devices including a camera, camera modules, etc. in accordance with the present invention. The present invention is also directed to machine readable medium, e.g., ROM, RAM, CDs, hard discs, etc., which include machine readable instructions for controlling a machine to implement one or more steps in accordance with the present invention.
In various embodiments devices described herein are implemented using one or more modules to perform the steps corresponding to one or more methods of the present invention, for example, control of image capture and/or combining of images. Thus, in some embodiments various features of the present invention are implemented using modules. Such modules may be implemented using software, hardware or a combination of software and hardware. In the case of hardware implementations embodiments implemented in hardware may use circuits as part of or all of a module. Alternatively, modules may be implemented in hardware as a combination of one or more circuits and optical elements such as lenses and/or other hardware elements. Thus in at least some embodiments one or more modules, and sometimes all modules, are implemented completely in hardware. Many of the above described methods or method steps can be implemented using machine executable instructions, such as software, included in a machine readable medium such as a memory device, e.g., RAM, floppy disk, etc. to control a machine, e.g., a camera device or general purpose computer with or without additional hardware, to implement all or portions of the above described methods, e.g., in one or more nodes. Accordingly, among other things, the present invention is directed to a machine-readable medium including machine executable instructions for causing or controlling a machine, e.g., processor and associated hardware, to perform e.g., one or more, or all of the steps of the above-described method(s).
While described in the context of cameras, at least some of the methods and apparatus of the present invention, are applicable to a wide range of image captures systems including tablet and cell phone devices which support or provide image capture functionality.
Images captured by the camera devices described herein may be real world images useful for documenting conditions on a construction site, at an accident and/or for preserving personal information whether be information about the condition of a house or vehicle.
Captured images and/or composite images maybe and sometimes are displayed on the camera device or sent to a printer for printing as a photo or permanent document which can be maintained in a file as part of a personal or business record.
Numerous additional variations on the methods and apparatus of the present invention described above will be apparent to those skilled in the art in view of the above description of the invention. Such variations are to be considered within the scope of the invention. In various embodiments the camera devices are implemented as digital cameras, video cameras, notebook computers, personal data assistants (PDAs), or other portable devices including receiver/transmitter circuits and logic and/or routines, for implementing the methods of the present invention and/or for transiting captured images or generated composite images to other devices for storage or display.
Numerous additional variations and combinations are possible while remaining within the scope of the invention. Cameras implemented in some embodiments have optical chains which do not extend out beyond the front of the camera during use and which are implemented as portable handheld cameras or devices including cameras. Such devices may and in some embodiments do have a relatively flat front with the outermost lens or clear, e.g., (flat glass or plastic) optical chain covering used to cover the aperture at the front of an optical chain being fixed. However, in other embodiments lenses and/or other elements of an optical chain may, and sometimes do, extend beyond the face of the camera device.
In various embodiments the camera devices are implemented as digital cameras, video cameras, notebook computers, personal data assistants (PDAs), or other portable devices including receiver/transmitter circuits and logic and/or routines, for implementing the methods of the present invention and/or for transiting captured images or generated composite images to other devices for storage or display.
Numerous additional embodiments are possible while staying within the scope of the above discussed features.
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/269,732 filed Dec. 18, 2015 which is hereby expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4427888 | Galvin | Jan 1984 | A |
4544241 | LaBudde et al. | Oct 1985 | A |
4890133 | Ogawa et al. | Dec 1989 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5153569 | Kawamura et al. | Oct 1992 | A |
5353068 | Moriwake | Oct 1994 | A |
5583602 | Yamamoto | Dec 1996 | A |
5781331 | Carr et al. | Jul 1998 | A |
5889553 | Kino et al. | Mar 1999 | A |
5975710 | Luster | Nov 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6011661 | Weng | Jan 2000 | A |
6028600 | Rosin et al. | Feb 2000 | A |
6081670 | Madsen et al. | Jun 2000 | A |
6141034 | McCutchen | Oct 2000 | A |
6255651 | Laluvein | Jul 2001 | B1 |
7009652 | Tanida et al. | Mar 2006 | B1 |
7280735 | Thibault | Oct 2007 | B2 |
7315423 | Sato | Jan 2008 | B2 |
7551358 | Lee et al. | Jun 2009 | B2 |
7561201 | Hong | Jul 2009 | B2 |
7801428 | Nagaishi et al. | Sep 2010 | B2 |
7810511 | Fagrenius et al. | Oct 2010 | B2 |
8144230 | Watanabe et al. | Mar 2012 | B2 |
8194169 | Tamaki et al. | Jun 2012 | B2 |
8199222 | Drimbarean et al. | Jun 2012 | B2 |
8237841 | Tanida et al. | Aug 2012 | B2 |
8320051 | Matsumura et al. | Nov 2012 | B2 |
8417058 | Tardif | Apr 2013 | B2 |
8482637 | Ohara et al. | Jul 2013 | B2 |
8520022 | Cohen et al. | Aug 2013 | B1 |
8553106 | Scarff | Oct 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8639296 | Ahn et al. | Jan 2014 | B2 |
8665341 | Georgiev et al. | Mar 2014 | B2 |
8704944 | Wierzoch et al. | Apr 2014 | B1 |
8762895 | Mehta et al. | Jun 2014 | B2 |
8780258 | Lee | Jul 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
9041826 | Jung et al. | May 2015 | B2 |
9104705 | Fujinaga | Aug 2015 | B2 |
9135732 | Winn et al. | Sep 2015 | B2 |
9197816 | Laroia | Nov 2015 | B2 |
9270876 | Laroia | Feb 2016 | B2 |
9282228 | Laroia | Mar 2016 | B2 |
9325906 | Laroia | Apr 2016 | B2 |
9374514 | Laroia | Jun 2016 | B2 |
89707652 | Akiyama | Jun 2016 | |
9423588 | Laroia | Aug 2016 | B2 |
9426365 | Laroia et al. | Aug 2016 | B2 |
9451171 | Laroia | Sep 2016 | B2 |
9462170 | Laroia et al. | Oct 2016 | B2 |
9467627 | Laroia | Oct 2016 | B2 |
9544501 | Laroia | Jan 2017 | B2 |
9544503 | Shroff | Jan 2017 | B2 |
9547160 | Laroia | Jan 2017 | B2 |
9549127 | Laroia | Jan 2017 | B2 |
9551854 | Laroia | Jan 2017 | B2 |
9554031 | Laroia et al. | Jan 2017 | B2 |
9557519 | Laroia | Jan 2017 | B2 |
9557520 | Laroia | Jan 2017 | B2 |
9563033 | Laroia | Feb 2017 | B2 |
9568713 | Laroia | Feb 2017 | B2 |
9578252 | Laroia | Feb 2017 | B2 |
9671595 | Laroia | Jun 2017 | B2 |
9686471 | Laroia et al. | Jun 2017 | B2 |
9690079 | Laroia | Jun 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9749511 | Laroia | Aug 2017 | B2 |
9749549 | Shroff | Aug 2017 | B2 |
D802646 | Laroia et al. | Nov 2017 | S |
9824427 | Pulli et al. | Nov 2017 | B2 |
20020149691 | Pereira et al. | Oct 2002 | A1 |
20030018427 | Yakota et al. | Jan 2003 | A1 |
20030020814 | Ono | Jan 2003 | A1 |
20030185551 | Chen | Oct 2003 | A1 |
20030193604 | Robins et al. | Oct 2003 | A1 |
20040027695 | Lin | Feb 2004 | A1 |
20040100479 | Nakano et al. | May 2004 | A1 |
20040227839 | Stavely et al. | Nov 2004 | A1 |
20050088546 | Wang | Apr 2005 | A1 |
20050200012 | Kinsman | Sep 2005 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060187311 | Labaziewicz et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060221218 | Alder et al. | Oct 2006 | A1 |
20060238886 | Kushida et al. | Oct 2006 | A1 |
20060281453 | Jaiswal et al. | Dec 2006 | A1 |
20070050139 | Sidman | Mar 2007 | A1 |
20070065012 | Yamakado et al. | Mar 2007 | A1 |
20070127915 | Lu et al. | Jun 2007 | A1 |
20070177047 | Goto | Aug 2007 | A1 |
20070182528 | Breed et al. | Aug 2007 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080074755 | Smith | Mar 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080111881 | Gibbs et al. | May 2008 | A1 |
20080180562 | Kobayashi | Jul 2008 | A1 |
20080211941 | Deever et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080240698 | Bartilson et al. | Oct 2008 | A1 |
20080247745 | Nilsson | Oct 2008 | A1 |
20080251697 | Park et al. | Oct 2008 | A1 |
20080278610 | Boettiger | Nov 2008 | A1 |
20090059037 | Naick | Mar 2009 | A1 |
20090086032 | Li | Apr 2009 | A1 |
20090136223 | Motomura et al. | May 2009 | A1 |
20090154821 | Sorek et al. | Jun 2009 | A1 |
20090225203 | Tanida et al. | Sep 2009 | A1 |
20090278950 | Deng et al. | Nov 2009 | A1 |
20090290042 | Shiohara | Nov 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100034531 | Go | Feb 2010 | A1 |
20100045774 | Len et al. | Feb 2010 | A1 |
20100053414 | Tamaki et al. | Mar 2010 | A1 |
20100079635 | Yano et al. | Apr 2010 | A1 |
20100091089 | Cromwell et al. | Apr 2010 | A1 |
20100097443 | Lablans | Apr 2010 | A1 |
20100225755 | Tamaki et al. | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100265346 | Iizuka | Oct 2010 | A1 |
20100283842 | Gussin et al. | Nov 2010 | A1 |
20100296802 | Davies | Nov 2010 | A1 |
20110051243 | Su | Mar 2011 | A1 |
20110063325 | Saunders | Mar 2011 | A1 |
20110069189 | Venkataraman et al. | Mar 2011 | A1 |
20110080655 | Mori | Apr 2011 | A1 |
20110123115 | Lee et al. | May 2011 | A1 |
20110128393 | Tavi et al. | Jun 2011 | A1 |
20110157430 | Hosoya et al. | Jun 2011 | A1 |
20110157451 | Chang | Jun 2011 | A1 |
20110187878 | Mor et al. | Aug 2011 | A1 |
20110193984 | Kitaya et al. | Aug 2011 | A1 |
20110221920 | Gwak | Sep 2011 | A1 |
20110222167 | Iwasawa | Sep 2011 | A1 |
20110242342 | Goma et al. | Oct 2011 | A1 |
20110280565 | Chapman et al. | Nov 2011 | A1 |
20110285895 | Weng et al. | Nov 2011 | A1 |
20120002096 | Choi et al. | Jan 2012 | A1 |
20120013708 | Okubo | Jan 2012 | A1 |
20120027462 | Nozawa | Feb 2012 | A1 |
20120033069 | Becker et al. | Feb 2012 | A1 |
20120062691 | Fowler et al. | Mar 2012 | A1 |
20120155848 | Labowicz et al. | Jun 2012 | A1 |
20120162464 | Kim | Jun 2012 | A1 |
20120188391 | Smith | Jul 2012 | A1 |
20120212651 | Sawada | Aug 2012 | A1 |
20120242881 | Suzuki | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120257013 | Witt et al. | Oct 2012 | A1 |
20120257077 | Suzuki | Oct 2012 | A1 |
20120268642 | Kawai | Oct 2012 | A1 |
20130020470 | Luo et al. | Jan 2013 | A1 |
20130027353 | Hyun | Jan 2013 | A1 |
20130050564 | Adams, Jr. et al. | Feb 2013 | A1 |
20130057743 | Minagawa et al. | Mar 2013 | A1 |
20130064531 | Pillman et al. | Mar 2013 | A1 |
20130076928 | Olsen et al. | Mar 2013 | A1 |
20130086765 | Chen | Apr 2013 | A1 |
20130088614 | Lee | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130093947 | Lee et al. | Apr 2013 | A1 |
20130100272 | Price et al. | Apr 2013 | A1 |
20130153772 | Rossi et al. | Jun 2013 | A1 |
20130155194 | Sacre et al. | Jun 2013 | A1 |
20130194475 | Okamoto | Aug 2013 | A1 |
20130222676 | Ono | Aug 2013 | A1 |
20130223759 | Nishiyama | Aug 2013 | A1 |
20130250125 | Garrow et al. | Sep 2013 | A1 |
20130258044 | Betts-Lacroix | Oct 2013 | A1 |
20130300869 | Lu et al. | Nov 2013 | A1 |
20140049677 | Kawaguchi | Feb 2014 | A1 |
20140063018 | Takeshita | Mar 2014 | A1 |
20140111650 | Georgiev et al. | Apr 2014 | A1 |
20140152802 | Olsson et al. | Jun 2014 | A1 |
20140192214 | Laroia | Jul 2014 | A1 |
20140192224 | Laroia | Jul 2014 | A1 |
20140192225 | Laroia | Jul 2014 | A1 |
20140192240 | Laroia | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140204244 | Choi et al. | Jul 2014 | A1 |
20140226041 | Eguchi et al. | Aug 2014 | A1 |
20140240579 | Park et al. | Aug 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267844 | Iwata et al. | Sep 2014 | A1 |
20140293079 | Milanfar | Oct 2014 | A1 |
20140354714 | Hirschler et al. | Dec 2014 | A1 |
20150029595 | Swihart et al. | Jan 2015 | A1 |
20150035824 | Takahashi et al. | Feb 2015 | A1 |
20150043808 | Takahashi et al. | Feb 2015 | A1 |
20150049233 | Choi | Feb 2015 | A1 |
20150154449 | Ito et al. | Jun 2015 | A1 |
20150156399 | Chen et al. | Jun 2015 | A1 |
20150163400 | Geiss | Jun 2015 | A1 |
20150234149 | Kreitzer et al. | Aug 2015 | A1 |
20150241713 | Laroia et al. | Aug 2015 | A1 |
20150244927 | Laroia et al. | Aug 2015 | A1 |
20150244949 | Laroia et al. | Aug 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150279012 | Brown et al. | Oct 2015 | A1 |
20150296149 | Laroia | Oct 2015 | A1 |
20160004144 | Laroia | Jan 2016 | A1 |
20160014314 | Laroia et al. | Jan 2016 | A1 |
20160091861 | Liu et al. | Mar 2016 | A1 |
20160112637 | Laroia et al. | Apr 2016 | A1 |
20160112650 | Laroia et al. | Apr 2016 | A1 |
20160142610 | Rivard et al. | May 2016 | A1 |
20160165101 | Akiyama | Jun 2016 | A1 |
20160182777 | Laroia et al. | Jun 2016 | A1 |
20160306168 | Singh et al. | Oct 2016 | A1 |
20160309095 | Laroia et al. | Oct 2016 | A1 |
20160309110 | Laroia et al. | Oct 2016 | A1 |
20160309133 | Laroia et al. | Oct 2016 | A1 |
20160316117 | Singh et al. | Oct 2016 | A1 |
20160360109 | Laroia et al. | Dec 2016 | A1 |
20160381301 | Shroff | Dec 2016 | A1 |
20170031138 | Laroia | Feb 2017 | A1 |
20170041528 | Lai et al. | Feb 2017 | A1 |
20170054919 | Laroia | Feb 2017 | A1 |
20170059857 | Laroia et al. | Mar 2017 | A1 |
20170070683 | Laroia | Mar 2017 | A1 |
20170099439 | Pulli et al. | Apr 2017 | A1 |
20170123189 | Laroia | May 2017 | A1 |
20170126976 | Laroia | May 2017 | A1 |
20170180615 | Lautenbach | Jun 2017 | A1 |
20170180637 | Lautenbach et al. | Jun 2017 | A1 |
20170201699 | Laroia | Jul 2017 | A1 |
20170208230 | Laroia | Jul 2017 | A1 |
20170208257 | Laroia | Jul 2017 | A1 |
20170223286 | Laroia et al. | Aug 2017 | A1 |
20170280135 | Shroff et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2642757 | Sep 2013 | EP |
10091765 | Apr 1998 | JP |
2001061109 | Mar 2001 | JP |
2007164258 | Jun 2004 | JP |
2004289214 | Oct 2004 | JP |
2006106230 | Apr 2006 | JP |
2007201915 | Aug 2007 | JP |
2008268937 | Nov 2008 | JP |
2010049263 | Mar 2010 | JP |
2010114760 | May 2010 | JP |
2010256397 | Nov 2010 | JP |
100153873 | Jul 1998 | KR |
1020080022260 | Mar 2008 | KR |
1020110022279 | Mar 2011 | KR |
1020130038076 | Apr 2013 | KR |
2009145401 | Dec 2009 | WO |
2012089895 | Jul 2012 | WO |
Entry |
---|
Segan,S. “Hands on with the 41-Megapixel Nokia PureView 808”, Feb. 27, 2012, PC Mag, [online], [retrieved on Apr. 16, 2014]. Retrieved from the Internet: , URL:http://www.pcmag.com/article2/0,2817,2400773,00.asp>, pp. 1-9. |
Robertson, M et al “Dynamic Range Improvement Through Multiple Exposures”. 1999. [online] [retrieved on Apr. 16, 2014]:<URL:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=817091&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D817091>, pp. 1-6. |
Notification Concerning Transmittal of International Preliminary Report on Patentability with the Written Opinion of the International Searching Authority dated Jun. 28, 2018, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20170180615 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62269732 | Dec 2015 | US |