The present invention relates to methods and apparatus for neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving pulsed electric field neuromodulation via an intra-to-extravascular approach.
Congestive Heart Failure (“CHF”) is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes impaired, which results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidneys and circulatory system.
It is believed that progressively decreasing perfusion of the kidneys is a principal non-cardiac cause perpetuating the downward spiral of CHF. Moreover, the fluid overload and associated clinical symptoms resulting from these physiologic changes result in additional hospital admissions, poor quality of life and additional costs to the health care system.
In addition to their role in the progression of CHF, the kidneys play a significant role in the progression of Chronic Renal Failure (“CRF”), End-Stage Renal Disease (“ESRD”), hypertension (pathologically high blood pressure) and other cardio-renal diseases. The functions of the kidneys can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow. Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions result from reduced renal function or renal failure (kidney failure) and are believed to increase the workload of the heart. In a CHF patient, renal failure will cause the heart to further deteriorate as fluids are retained and blood toxins accumulate due to the poorly functioning kidneys.
It has been established in animal models that the heart failure condition results in abnormally high sympathetic activation of the kidneys. An increase in renal sympathetic nerve activity leads to vasoconstriction of blood vessels supplying the kidneys, decreased renal blood flow, decreased removal of water and sodium from the body, and increased renin secretion. Reduction of sympathetic renal nerve activity, e.g., via denervation, may reverse these processes.
Applicants have previously described methods and apparatus for treating renal disorders by applying a pulsed electric field to neural fibers that contribute to renal function. See, for example, co-pending U.S. patent applications Ser. No. 11/129,765, filed on May 13, 2005, and Ser. No. 11/189,563, filed on Jul. 25, 2005, both of which are incorporated herein by reference in their entireties. A pulsed electric field (“PEF”) may initiate renal neuromodulation, e.g., denervation, for example, via irreversible electroporation or via electrofusion. The PEF may be delivered from apparatus positioned intravascularly, extravascularly, intra-to-extravascularly or a combination thereof. As used herein, electrofusion comprises fusion of neighboring cells induced by exposure to an electric field. Contact between target neighboring cells for the purposes of electrofusion may be achieved in a variety of ways, including, for example, via dielectrophoresis. In tissue, the target cells may already be in contact, thus facilitating electrofusion.
As used herein, electroporation and electropermeabilization are methods of manipulating the cell membrane or intracellular apparatus. For example, the porosity of a cell membrane may be increased by inducing a sufficient voltage across the cell membrane through, e.g., short, high-voltage pulses. The extent of porosity in the cell membrane (e.g., size and number of pores) and the duration of effect (e.g., temporary or permanent) are a function of multiple variables, such as field strength, pulse width, duty cycle, electric field orientation, cell type or size and other parameters.
Cell membrane pores will generally close spontaneously upon termination of relatively lower strength electric fields or relatively shorter pulse widths (herein defined as “reversible electroporation”). However, each cell or cell type has a critical threshold above which pores do not close such that pore formation is no longer reversible; this result is defined as “irreversible electroporation,” “irreversible breakdown” or “irreversible damage.” At this point, the cell membrane ruptures and/or irreversible chemical imbalances caused by the high porosity occur. Such high porosity can be the result of a single large hole and/or a plurality of smaller holes.
In some patients, when a PEF sufficient to initiate irreversible electroporation is applied to renal nerves and/or other neural fibers that contribute to renal neural functions, applicants believe that denervation induced by the PEF would result in increased urine output, decreased plasma renin levels, decreased tissue (e.g., kidney) and/or urine catecholamines (e.g., norepinephrine), increased urinary sodium excretion, and/or controlled blood pressure that would prevent or treat CHF, hypertension, renal system diseases, and other renal or cardio-renal anomalies. PEF systems could be used to modulate efferent or afferent nerve signals, as well as combinations of efferent and afferent nerve signals.
A potential challenge of using intravascular PEF systems for treating renal disorders is to selectively electroporate target cells without affecting other cells. For example, it may be desirable to irreversibly electroporate renal nerve cells that travel along or in proximity to renal vasculature, but it may not be desirable to damage the smooth muscle cells of which the vasculature is composed. As a result, an overly aggressive course of PEF therapy may persistently injure the renal vasculature, but an overly conservative course of PEF therapy may not achieve the desired renal neuromodulation.
Applicants have previously described methods and apparatus for monitoring tissue impedance or conductivity to determine the effects of pulsed electric field therapy, e.g., to determine an extent of electroporation and/or its degree of irreversibility. See, for example, Applicant's co-pending U.S. patent application Ser. No. 11/233,814, filed Sep. 23, 2005, which is incorporated herein by reference in its entirety. Pulsed electric field electroporation of tissue causes a decrease in tissue impedance and an increase in tissue conductivity. If induced electroporation is reversible, tissue impedance and conductivity should approximate baseline levels upon cessation of the pulsed electric field. However, if electroporation is irreversible, impedance and conductivity changes should persist after terminating the pulsed electric field. Thus, monitoring the impedance or conductivity of target and/or non-target tissue may be utilized to determine the onset of electroporation and to determine the type or extent of electroporation. Furthermore, monitoring data may be used in one or more manual or automatic feedback loops to control the electroporation.
Regardless of whether or not monitoring techniques are utilized, the applied energy or voltage from an intravascular PEF system necessary to establish an electric field of sufficient magnitude in the vicinity of target neural fibers in order to modulate the target neural fibers may be of a magnitude that causes persistent damage to non-target tissue, such as smooth muscle cells of the vessel wall. Thus, a desired treatment outcome, e.g., renal denervation, may not be achievable with some intravascular PEF systems in certain patients without concomitantly inducing persistent damage to the non-target tissue. It therefore would be desirable to provide methods and apparatus for reducing the required magnitude of applied energy or voltage necessary to achieve desired neuromodulation in target tissue and/or to increase localization of the sufficient magnitude induced electric field to the vicinity of the target tissue.
The present invention provides methods and apparatus for pulsed electric field (“PEF”) neuromodulation via an intra-to-extravascular (“ITEV”) approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation, and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of a patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly. The methods and apparatus of the present invention may, for example, be used to modulate one or more target neural fibers that contribute to renal function.
Pulsed electric field parameters may be altered and combined in any combination, as desired. Such parameters can include, but are not limited to, voltage, field strength, pulse width, pulse duration, the shape of the pulse, the number of pulses and/or the interval between pulses (e.g., duty cycle), etc. For example, suitable field strengths can be up to about 10,000 V/cm and suitable pulse widths can be up to about 1 second. Suitable shapes of the pulse waveform include, for example, AC waveforms, sinusoidal waves, cosine waves, combinations of sine and cosine waves, DC waveforms, DC-shifted AC waveforms, RF waveforms, square waves, trapezoidal waves, exponentially-decaying waves, or combinations. The field includes at least one pulse, and in many applications the field includes a plurality of pulses. Suitable pulse intervals include, for example, intervals less than about 10 seconds. These parameters are provided as suitable examples and in no way should be considered limiting.
Several embodiments of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
A. Overview
The present invention relates to methods and apparatus for neuromodulation, e.g., denervation. More particularly, the present invention relates to methods and apparatus for achieving pulsed electric field neuromodulation via an intravascular-to-extravascular approach. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation is reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly. The methods and apparatus of the present invention may, for example, be used to modulate one or more target neural fibers that contribute to renal function.
The methods and apparatus of the present invention may be used to modulate a neural fiber that contributes to renal function and may exploit any suitable electrical signal or field parameters, e.g., any electric field that will achieve the desired neuromodulation (e.g., electroporative effect). To better understand the structures of devices of the present invention and the methods of using such devices for renal neuromodulation and monitoring, it is instructive to examine the renal anatomy in humans.
B. Selected Embodiments of Methods for Neuromodulation
With reference now to
Referring to
Similarly, the lengthwise or longer dimensions of tissues overlying or underlying the target nerve are orthogonal or otherwise off-axis (e.g., transverse) with respect to the longer dimensions of the nerve cells. Thus, in addition to aligning the PEF with the lengthwise or longer dimensions of the target cells, the PEF may propagate along the lateral or shorter dimensions of the non-target cells (i.e., such that the PEF propagates at least partially out of alignment with non-target smooth muscle cells SMC). Therefore, as seen in
A PEF system placed within and/or at least partially across the wall of the renal artery, e.g., via an intra-to-extravascular (“ITEV”) approach, may propagate an electric field having a longitudinal portion that is aligned to run with the longitudinal dimension of the artery in the region of the renal nerves RN and the smooth muscle cell SMC of the vessel wall so that the wall of the artery remains at least substantially intact while the outer nerve cells are destroyed, fused or otherwise affected. Monitoring elements may be utilized to assess an extent of, e.g., electroporation, induced in renal nerves and/or in smooth muscle cells, as well as to adjust PEF parameters to achieve a desired effect.
C. Exemplary Embodiments of Systems and Additional Methods for Neuromodulation
With reference to
In
In the embodiment of
In use, the catheter 102 may be delivered to renal artery RA as shown in
The first electrode 106 preferably comprises the active electrode and the second electrode 108 preferably comprises the return electrode. However, it should be understood that the electrode polarities optionally may be reversed. The non-insulated distal regions 109a-b of the electrodes 106 and 108 optionally may be in substantial alignment along a cross-sectional plane through renal artery RA. Alternatively, the distal regions 109a-b may be spaced apart longitudinally. Such longitudinal spacing of the distal regions 109a-b may, for example, better align a pulsed electric field delivered across the electrodes with a longitudinal dimension of the renal artery to facilitate modulation of renal nerves with limited effect on non-target smooth muscle cells or other cells, as described previously with respect to
With the first and second electrodes 106 and 108 positioned as desired, a pulsed electric field generated by the PEF generator 50 is transmitted through the electrodes 106 and 108 and delivered across the non-insulated distal regions 109a-b of the electrodes. The PEF therapy modulates activity along neural fibers that directly or indirectly contribute to renal function (e.g., denervates neural fibers related to renal function). This may be achieved, for example, via irreversible electroporation, electrofusion, necrosis and/or inducement of apoptosis in the nerve cells, alteration of gene expression, changes in cytokine upregulation, and/or other suitable processes. After delivery of PEF therapy, the ITEV PEF system 100 may be removed from the patient to conclude the procedure.
It is expected that PEF therapy using the ITEV PEF system 100 will alleviate clinical symptoms of CHF, hypertension, renal disease and/or other cardio-renal diseases for a period of months, potentially up to six months or more. This time period might be sufficient to allow the body to heal; for example, this period might reduce the risk of CHF onset after an acute myocardial infarction, thereby alleviating a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient might return to the physician for a repeat therapy.
In order to denervate or otherwise modulate target neural fibers, the ITEV PEF system 100 should generate an electric field of sufficient strength or magnitude across the fibers to induce such denervation or modulation. When utilizing an intravascular PEF system, depending upon the arrangement and positioning of the PEF electrodes, as well as the physiology of the patient, the applied voltage necessary to achieve a field strength of sufficient magnitude at the target neural fibers also may be of sufficient magnitude to induce undesirable persistent injury in non-target tissue, such as smooth muscle cells and/or the vessel wall. It is expected that the extravascular positioning of electrode 106 via an intra-to-extravascular approach will reduce the necessary applied voltage for denervation or modulation (e.g., renal denervation or modulation) via PEF therapy compared to the applied voltage required when utilizing solely intravascular apparatus with similarly spaced and sized electrodes. Specifically, extravascular placement of electrode 106 in closer proximity to the target neural fibers is expected to increase localization of the peak induced electric field to the vicinity of the target neural fibers.
As seen in
The extravascular second electrode 106 optionally may be replaced with a virtual electrode. For example, conductive saline may be injected through cannula 104 into the extravascular space. The conductive saline may provide a virtual electrode surrounding all or part of the circumference of the vessel and may be used in a bipolar fashion with intravascular electrode 108.
The examples of the ITEV PEF systems of
The expandable element 114 comprises a member or structure configured for intravascular delivery to (and retrieval from) a target location in a low profile configuration and for expansion to an expanded deployed configuration at the target location. The expandable element 114 may comprise, for example, an inflatable balloon, an expandable basket or cage, or other expandable structure. As seen in
Referring now to
Referring now to
In
As seen in
Referring now to
Once properly positioned, PEF therapy may be delivered across the electrodes 174 to achieve desired neuromodulation. Upon completion of the PEF therapy, the needle electrodes 174 may be retracted relative to the sheath 172, and/or the sheath 172 may be advanced relative to the electrodes 174, such that the electrodes are removed from the wall of the patient's vasculature and coaxed back into a constrained retrieval configuration within the sheath. The ITEV PEF system 170 then may be removed from the patient to complete the procedure.
With reference to
As seen in
As seen in
As seen in
As seen in
With reference now to
The ITEV PEF system 200 may be delivered to an intravascular treatment site, such as a site within renal artery RA, using well-known percutaneous techniques. For example, the system 200 may be advanced over a guidewire G positioned with a lumen 203 of a catheter 202, which may be advanced through/within a guide catheter or a sheath 210. Once positioned at the treatment site, an expansion element 204 is expanded to force the bipolar needle electrodes 206 across the wall of the vessel such that the ends of the electrodes 206 are positioned extravascularly via an ITEV approach. The expansion element 204 may, for example, be expanded by (a) inflating a balloon, (b) self-expanding a basket or cage after positioning the element 204 distal of sheath 210, and/or (c) mechanical expanding a basket or cage via various push/pull and/or tension/compression techniques.
Positioning the electrodes 206 using an ITEV technique places the electrodes in closer proximity to target neural fibers that contribute to renal function. As discussed previously, renal nerves may be located in the adventitia of the renal arteries and/or in tissue immediately surrounding the renal arteries. Such ITEV positioning of the electrodes, as well as selected angular alignment of the bipolar electrode pair(s), may reduce energy requirements necessary to achieve desired neuromodulation, as compared to a PEF system comprising intravascularly-positioned electrodes.
The electrodes 206 preferably are of small enough caliber to safely cross the wall of renal artery RA without significant risk of bleeding, vessel wall injury, etc. For example, the electrodes may be of a caliber less than about 23 Gauge. Furthermore, the electrodes may be solid or may comprise one or more lumens. When with lumen(s), the needle electrodes may be configured for infusion of agents that either enhance the desired neuromodulatory effect (e.g., saline injection may be used to locally enhance conductivity during PEF therapy) or provide protective effects (e.g., cooling agents may be injected to protect non-target tissues).
The needle electrodes 206 also may be conductive along their entire lengths or may be insulated along at least part of their lengths. For example, the needle electrodes 206 can be insulated at locations other than their distal ends. Insulation along part of the lengths of electrodes 206 may reduce undesirable delivery of pulsed electric field therapy to non-target tissues, e.g., the intima or to the media of the patient's vessel. Such insulated electrodes preferably comprise lengths sufficient to place the non-insulated portions of the electrodes extravascularly at positions at least within the vasculature adventitia during ITEV positioning of the electrodes.
Referring now to
As illustrated by field lines L in
As seen in
In an additional or alternative embodiment of the apparatus of
Electrodes 310a and 310b form one or more longitudinally spaced pairs of bipolar electrodes. For example, electrodes 310a may comprise active electrodes and electrodes 310b comprise return electrodes, or vice versa. As seen in
As illustrated in
The proximal electrodes 328 can be connected to PEF generator 50 as active electrodes and the distal electrodes 329 can serve as return electrodes. In this manner, the proximal and distal electrodes form bipolar electrode pairs that align PEF therapy with a longitudinal axis or direction of the patient's vasculature. As will be apparent, the distal electrodes 329 alternatively may comprise the active electrodes and the proximal electrodes 328 may comprise the return electrodes. Furthermore, the proximal and/or the distal electrodes may comprise both active and return electrodes. Any combination of active and distal electrodes may be utilized, as desired.
When the electrodes 328 and 329 are positioned extravascularly, PEF therapy may proceed to achieve desired neuromodulation. After completion of the PEF therapy, the electrodes may be retracted within lumens 324 and 326. The catheter 322, as well as the guidewire 321 then may be removed from the patient to complete the procedure. Additionally or alternatively, the catheter may be repositioned to provide PEF therapy at another treatment site.
In
Referring now to
The hypotube 358 can have extensions 359 that may be fabricated by cutting away portions of the hypotube. The hypotube 358 may be fabricated from a conductive material, such as a metal alloy or platinum, or the hypotube may comprise a relative non-conductive material. The extensions 359 may be selectively insulated and/or non-insulated, and they may be electrically coupled to the PEF generator 50 to provide one or more extension electrodes. The extension electrodes may, for example, be etched onto the hypotube and its extensions, e.g., via a metal deposition process. Electrical contacts for energy delivery may be exposed at the tips of insulated extensions 359; alternatively, the non-insulated contacts may extend across all or part of the lengths of the extensions. Furthermore, the entire hypotube 358 may comprise an electrode when the hypotube is fabricated from a conductive material.
The extension electrode(s) 359 may be of a common polarity or may be of different polarities. When of different polarities, PEF therapy may be delivered across the electrodes in a bipolar fashion. When of common polarity, the electrodes may be utilized in a monopolar fashion, e.g., with an external ground pad. Alternatively, the catheter 352 optionally may comprise one or more additional electrodes of opposite polarity along its length that may be utilized in a bipolar fashion with the extension electrode(s) 359 of the hypotube 358. In one embodiment, the outer shaft 356 comprises at least a second hypotube along its length having extension electrode(s) that serve as the additional electrode(s) of opposite polarity and may be utilized to form spaced bipolar electrode pair(s) for delivery of the PEF therapy.
As seen in
Upon completion of the PEF therapy, the extensions 359 once again may be collapsed against the outer shaft 356 for retrieval of the system 350 from the patient. If the deformation of the extensions 359 comprises elastic deformation, the outer shaft 356 may be retracted relative to the wall of renal artery RA to remove the extensions from the wall. The extensions 359 then will return to their at-rest configuration of
As seen in
In
Although several examples of the ITEV systems 350 shown in
With reference to
As with the hypotube 358, the stent-like element 370 may be completely conductive and may serve as a unitary electrode. Alternatively, the stent-like element 370 may be fabricated from a relatively insulating material with electrode contacts that are etched or deposited onto the element and/or its extensions. A variety of electrode configurations may be provided. Furthermore, the multiple elements 370 (or a combination of hypotubes 358 and elements 370) may be provided. In addition or as an alternative to the deployment mechanisms illustrated in
As seen in the embodiment of
As seen in
As seen in
Referring now to
As seen in
The system 400 facilitates repeat PEF therapy at a later time. For example, by temporarily electrically re-coupling the catheter 410 or some other electrical coupling element to the stent 402, the system 400 can repeat PEF therapy as desired. When utilized to achieve renal denervation, such repeat therapy may, for example, be repeated upon evidence of re-innervation of the renal(s).
Although preferred illustrative variations of the present invention are described above, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. For example, although the variations primarily have been described for use in combination with pulsed electric fields, it should be understood that any other electric field may be delivered as desired. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
The present application claims the benefit of U.S. Provisional Application No. 60/813,589, filed on Dec. 29, 2005, entitled “METHODS AND APPARATUS FOR PULSED ELECTRIC FIELD NEUROMODULATION VIA AN INTRA-TO-EXTRAVASCULAR APPROACH” and originally filed as U.S. application Ser. No. 11/324,188), which is incorporated by reference herein. Further the present application is a continuation-in-part of each of the following co-pending U.S. Patent Applications: (a) U.S. patent application Ser. No. 11/129,765, filed on May 13, 2005, which claims the benefit of U.S. Provisional Application Nos. 60/616,254, filed on Oct. 5, 2004; and 60/624,793, filed on Nov. 2, 2004. Further, this application is a continuation-in-part of U.S. patent application Ser. No. 10/408,665, filed on Apr. 8, 2003 (published as United States Patent Publication 2003/0216792 on Nov. 20, 2003), which claims the benefit of U.S. Provisional Patent Application Nos. 60/442,970, filed on Jan. 29, 2003; 60/415,575, filed on Oct. 3, 2002; and 60/370,190, filed on Apr. 8, 2002. (b) U.S. patent application Ser. No. 11/189,563, filed on Jul. 25, 2005. (c) U.S. patent application Ser. No. 11/266,933, filed on Nov. 4, 2005.
Number | Name | Date | Kind |
---|---|---|---|
2130758 | Rose | Sep 1938 | A |
2276995 | Milinowski | Mar 1942 | A |
2276996 | Milinowski | Mar 1942 | A |
3043310 | Milinowski | Jul 1962 | A |
3127895 | Kendall et al. | Apr 1964 | A |
3181535 | Milinowski | May 1965 | A |
3270746 | Kendall et al. | Sep 1966 | A |
3329149 | Kendall et al. | Jul 1967 | A |
3522811 | Schwartz et al. | Aug 1970 | A |
3563246 | Puharich et al. | Feb 1971 | A |
3650277 | Sjostrand et al. | Mar 1972 | A |
3670737 | Pearo | Jun 1972 | A |
3760812 | Timm et al. | Sep 1973 | A |
3774620 | Hansjurgens | Nov 1973 | A |
3794022 | Nawracaj et al. | Feb 1974 | A |
3800802 | Berry et al. | Apr 1974 | A |
3803463 | Cover | Apr 1974 | A |
3894532 | Morey | Jul 1975 | A |
3895639 | Rodler | Jul 1975 | A |
3897789 | Blanchard | Aug 1975 | A |
3911930 | Hagfors et al. | Oct 1975 | A |
3952751 | Yarger | Apr 1976 | A |
3987790 | Eckenhoff et al. | Oct 1976 | A |
4011861 | Enger | Mar 1977 | A |
4026300 | DeLuca et al. | May 1977 | A |
4055190 | Tany | Oct 1977 | A |
4071033 | Nawracaj et al. | Jan 1978 | A |
4105017 | Ryaby et al. | Aug 1978 | A |
4141365 | Fischell et al. | Feb 1979 | A |
4266532 | Ryaby et al. | May 1981 | A |
4266533 | Ryaby et al. | May 1981 | A |
4305115 | Armitage | Dec 1981 | A |
4315503 | Ryaby et al. | Feb 1982 | A |
4360019 | Portner et al. | Nov 1982 | A |
4379462 | Borkan et al. | Apr 1983 | A |
4405305 | Stephen et al. | Sep 1983 | A |
4454883 | Fellus | Jun 1984 | A |
4467808 | Brighton et al. | Aug 1984 | A |
4487603 | Harris | Dec 1984 | A |
4530840 | Tice et al. | Jul 1985 | A |
4587975 | Salo et al. | May 1986 | A |
4608985 | Crish et al. | Sep 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4671286 | Renault | Jun 1987 | A |
4674482 | Waltonen et al. | Jun 1987 | A |
4692147 | Duggan | Sep 1987 | A |
4715852 | Reinicke et al. | Dec 1987 | A |
4774967 | Zanakis et al. | Oct 1988 | A |
4791931 | Slate | Dec 1988 | A |
4816016 | Schulte et al. | Mar 1989 | A |
4852573 | Kennedy | Aug 1989 | A |
4865845 | Eckenhoff et al. | Sep 1989 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4981146 | Bertolucci | Jan 1991 | A |
4998532 | Griffith | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5014699 | Pollack et al. | May 1991 | A |
5057318 | Magruder et al. | Oct 1991 | A |
5058584 | Bourgeois | Oct 1991 | A |
5059423 | Magruder et al. | Oct 1991 | A |
5061492 | Okada et al. | Oct 1991 | A |
5094242 | Gleason et al. | Mar 1992 | A |
5111815 | Mower | May 1992 | A |
5112614 | Magruder et al. | May 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5131409 | Lobarev et al. | Jul 1992 | A |
5137727 | Eckenhoff | Aug 1992 | A |
5188837 | Domb | Feb 1993 | A |
5193048 | Kaufman et al. | Mar 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5199428 | Obel et al. | Apr 1993 | A |
5203326 | Collins et al. | Apr 1993 | A |
5213098 | Bennett et al. | May 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5234692 | Magruder et al. | Aug 1993 | A |
5234693 | Magruder et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5251643 | Osypka | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5282468 | Klepinski | Feb 1994 | A |
5282785 | Shapland et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304120 | Crandell et al. | Apr 1994 | A |
5304206 | Baker | Apr 1994 | A |
5317155 | King | May 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5338662 | Sadri | Aug 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5370680 | Proctor | Dec 1994 | A |
5389069 | Weaver | Feb 1995 | A |
5397308 | Ellis et al. | Mar 1995 | A |
5397338 | Grey et al. | Mar 1995 | A |
5400784 | Durand et al. | Mar 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5429634 | Narciso, Jr. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5458626 | Krause | Oct 1995 | A |
5458631 | Xavier | Oct 1995 | A |
5472406 | de la Torre et al. | Dec 1995 | A |
5478303 | Foley-Nolan et al. | Dec 1995 | A |
5494822 | Sadri | Feb 1996 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5499971 | Shapland et al. | Mar 1996 | A |
5507724 | Hofmann et al. | Apr 1996 | A |
5507791 | Sit'ko | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5560360 | Filler et al. | Oct 1996 | A |
5569198 | Racchini | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5573552 | Hansjurgens | Nov 1996 | A |
5584863 | Rauch et al. | Dec 1996 | A |
5589192 | Okabe et al. | Dec 1996 | A |
5618563 | Berde et al. | Apr 1997 | A |
5626576 | Janssen | May 1997 | A |
5626862 | Brem et al. | May 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5634899 | Shapland et al. | Jun 1997 | A |
5689877 | Grill, Jr. et al. | Nov 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5700485 | Berde et al. | Dec 1997 | A |
5704908 | Hofmann et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5711326 | Thies et al. | Jan 1998 | A |
5713847 | Howard, III et al. | Feb 1998 | A |
5723001 | Pilla et al. | Mar 1998 | A |
5725563 | Klotz et al. | Mar 1998 | A |
5728396 | Peery et al. | Mar 1998 | A |
5747060 | Sackler et al. | May 1998 | A |
5755750 | Petruska et al. | May 1998 | A |
5756115 | Moo-Young et al. | May 1998 | A |
5792187 | Adams | Aug 1998 | A |
5800464 | Kieval | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5814079 | Kieval | Sep 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
RE35987 | Harris et al. | Dec 1998 | E |
5843069 | Butler et al. | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5891181 | Zhu | Apr 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5906817 | Moullier et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916154 | Hobbs et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919187 | Guglielmi et al. | Jul 1999 | A |
5924997 | Campbell | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6010613 | Walters et al. | Jan 2000 | A |
6026326 | Bardy | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6058328 | Levine et al. | May 2000 | A |
6058331 | King | May 2000 | A |
6073048 | Kieval et al. | Jun 2000 | A |
6077227 | Miesel et al. | Jun 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6122548 | Starkebaum et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6178349 | Kieval | Jan 2001 | B1 |
6192889 | Morrish | Feb 2001 | B1 |
6205361 | Kuzma et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6214032 | Loeb et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6238702 | Berde et al. | May 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6251130 | Dobak, III et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6259952 | Sluijter et al. | Jul 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6272383 | Grey et al. | Aug 2001 | B1 |
6280377 | Talpade | Aug 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6287608 | Levin et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6304777 | Ben-Haim et al. | Oct 2001 | B1 |
6304787 | Kuzma et al. | Oct 2001 | B1 |
6306423 | Donovan et al. | Oct 2001 | B1 |
6326020 | Kohane et al. | Dec 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6334069 | George et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6353763 | George et al. | Mar 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6366808 | Schroeppel et al. | Apr 2002 | B1 |
6366815 | Haugland et al. | Apr 2002 | B1 |
6393324 | Gruzdowich et al. | May 2002 | B2 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6405079 | Ansarinia | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6415183 | Scheiner et al. | Jul 2002 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6442424 | Ben-Haim et al. | Aug 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6450942 | Lapanashvili et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6464687 | Ishikawa et al. | Oct 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6516211 | Acker et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6522932 | Kuzma et al. | Feb 2003 | B1 |
6524607 | Goldenheim et al. | Feb 2003 | B1 |
6534081 | Goldenheim et al. | Mar 2003 | B2 |
6536949 | Heuser | Mar 2003 | B1 |
6564096 | Mest | May 2003 | B2 |
6571127 | Ben-Haim et al. | May 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6601459 | Jenni | Aug 2003 | B1 |
6605084 | Acker et al. | Aug 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6620151 | Blischak et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6666845 | Hooper et al. | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6672312 | Acker | Jan 2004 | B2 |
6676657 | Wood | Jan 2004 | B2 |
6681136 | Schuler et al. | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690971 | Schauerte et al. | Feb 2004 | B2 |
6692738 | MacLaughlin et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6738663 | Schroeppel et al. | May 2004 | B2 |
6749598 | Keren et al. | Jun 2004 | B1 |
6786904 | Doscher et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6916656 | Walters et al. | Jul 2005 | B2 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6939345 | KenKnight et al. | Sep 2005 | B2 |
6958060 | Mathiesen et al. | Oct 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6994700 | Elkins et al. | Feb 2006 | B2 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7081115 | Taimisto | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7191015 | Lamson et al. | Mar 2007 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020026222 | Schauerte et al. | Feb 2002 | A1 |
20020026228 | Schauerte | Feb 2002 | A1 |
20020032468 | Hill et al. | Mar 2002 | A1 |
20020038137 | Stein | Mar 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020045853 | Dev et al. | Apr 2002 | A1 |
20020072782 | Osorio et al. | Jun 2002 | A1 |
20020107553 | Hill et al. | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020120304 | Mest | Aug 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020169413 | Keren et al. | Nov 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020188325 | Hill et al. | Dec 2002 | A1 |
20020198512 | Seward | Dec 2002 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030009145 | Struijker-Boudier et al. | Jan 2003 | A1 |
20030040774 | Terry et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030060848 | Kieval et al. | Mar 2003 | A1 |
20030060857 | Perrson et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030100924 | Foreman et al. | May 2003 | A1 |
20030120270 | Acker | Jun 2003 | A1 |
20030150464 | Casscells | Aug 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20030199767 | Cespedes et al. | Oct 2003 | A1 |
20030199768 | Cespedes et al. | Oct 2003 | A1 |
20030199806 | Kieval | Oct 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030220521 | Reitz et al. | Nov 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040019364 | Kieval et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040065615 | Hooper et al. | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040101523 | Reitz et al. | May 2004 | A1 |
20040106953 | Yomtov et al. | Jun 2004 | A1 |
20040111080 | Harper et al. | Jun 2004 | A1 |
20040163655 | Gelfand et al. | Aug 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040176699 | Walker et al. | Sep 2004 | A1 |
20040176757 | Sinelnikov et al. | Sep 2004 | A1 |
20040193228 | Gerber | Sep 2004 | A1 |
20040220511 | Scott et al. | Nov 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040254616 | Rossing et al. | Dec 2004 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050038409 | Segal et al. | Feb 2005 | A1 |
20050049542 | Sigg et al. | Mar 2005 | A1 |
20050065562 | Rezai | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065574 | Rezai | Mar 2005 | A1 |
20050075681 | Rezai et al. | Apr 2005 | A1 |
20050080459 | Jacobson et al. | Apr 2005 | A1 |
20050096710 | Kieval | May 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154418 | Kieval et al. | Jul 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050171575 | Dev et al. | Aug 2005 | A1 |
20050197624 | Goodson et al. | Sep 2005 | A1 |
20050209548 | Dev et al. | Sep 2005 | A1 |
20050209642 | Palti | Sep 2005 | A1 |
20050228459 | Levin et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050240126 | Foley et al. | Oct 2005 | A1 |
20050240173 | Palti | Oct 2005 | A1 |
20050240228 | Palti | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050245882 | Elkins et al. | Nov 2005 | A1 |
20050251212 | Kieval et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050267010 | Goodson et al. | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060004417 | Rossing et al. | Jan 2006 | A1 |
20060004430 | Rossing et al. | Jan 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060030814 | Valencia et al. | Feb 2006 | A1 |
20060036218 | Goodson et al. | Feb 2006 | A1 |
20060041277 | Deem et al. | Feb 2006 | A1 |
20060041283 | Gelfand et al. | Feb 2006 | A1 |
20060067972 | Kesten et al. | Mar 2006 | A1 |
20060069323 | Elkins et al. | Mar 2006 | A1 |
20060074453 | Kieval et al. | Apr 2006 | A1 |
20060079859 | Elkins et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060089674 | Walters et al. | Apr 2006 | A1 |
20060100667 | Machado et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060116720 | Knoblich | Jun 2006 | A1 |
20060121016 | Lee | Jun 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060155344 | Rezai et al. | Jul 2006 | A1 |
20060167437 | Valencia | Jul 2006 | A1 |
20060167499 | Palti | Jul 2006 | A1 |
20060189941 | Seward et al. | Aug 2006 | A1 |
20060189960 | Kesten et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060206149 | Yun | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060265015 | Demarais et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
3151180 | Aug 1982 | DE |
0811395 | Jun 1997 | EP |
WO-8501213 | Mar 1985 | WO |
WO-9104725 | Apr 1991 | WO |
WO-9302740 | Feb 1993 | WO |
WO-9307803 | Apr 1993 | WO |
WO-9400188 | Jan 1994 | WO |
WO-9604957 | Jan 1995 | WO |
WO-9533514 | Dec 1995 | WO |
WO-9611723 | Apr 1996 | WO |
WO-9713550 | Apr 1997 | WO |
WO-9749453 | Dec 1997 | WO |
WO-9837926 | Sep 1998 | WO |
WO-9843700 | Oct 1998 | WO |
WO-9843701 | Oct 1998 | WO |
WO-9848888 | Nov 1998 | WO |
WO-9933407 | Jul 1999 | WO |
WO-9951286 | Oct 1999 | WO |
WO-9952424 | Oct 1999 | WO |
WO-0126729 | Apr 2001 | WO |
WO-0209808 | Feb 2002 | WO |
WO-0226314 | Apr 2002 | WO |
WO-02053207 | Jul 2002 | WO |
WO-02070039 | Sep 2002 | WO |
WO-02070047 | Sep 2002 | WO |
WO-02085448 | Oct 2002 | WO |
WO-03018108 | Mar 2003 | WO |
WO-03028802 | Apr 2003 | WO |
WO-03063692 | Aug 2003 | WO |
WO-03071140 | Aug 2003 | WO |
WO-03076008 | Sep 2003 | WO |
WO-03082080 | Oct 2003 | WO |
WO-03082403 | Oct 2003 | WO |
WO-2004026370 | Apr 2004 | WO |
WO-2004026371 | Apr 2004 | WO |
WO-2004026374 | Apr 2004 | WO |
WO-2004030718 | Apr 2004 | WO |
WO-2004032791 | Apr 2004 | WO |
WO-2004107965 | Dec 2004 | WO |
WO-2005014100 | Feb 2005 | WO |
WO-2005016165 | Feb 2005 | WO |
WO-2005032646 | Apr 2005 | WO |
WO-2005065284 | Jul 2005 | WO |
WO-2005084389 | Sep 2005 | WO |
WO-2005097256 | Oct 2005 | WO |
WO-2005123183 | Dec 2005 | WO |
WO-2006007048 | Jan 2006 | WO |
WO-2006018528 | Feb 2006 | WO |
WO-2006031899 | Mar 2006 | WO |
WO-2006041881 | Apr 2006 | WO |
WO-2007078997 | Jul 2007 | WO |
WO-2007146834 | Dec 2007 | WO |
WO-2008061150 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070203549 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60813589 | Dec 2005 | US |