Methods and apparatus for reducing noise associated with an electrical speech signal

Information

  • Patent Grant
  • 6480821
  • Patent Number
    6,480,821
  • Date Filed
    Wednesday, January 31, 2001
    23 years ago
  • Date Issued
    Tuesday, November 12, 2002
    22 years ago
Abstract
A system for enhancing the signal-to-noise ratio of a speech signal is avoided. A plurality of local energy maximums associated with a speech signal are determined. Presumably, each of these local energy maximums defines a speech pitch period. Typically, human pitch periods are approximately 100-400 Hz depending on the sex and age of the speaker. Because human speech typically includes more energy near the beginning of a pitch period than at the end of the pitch period, and background noise tends to remain relatively constant throughout the pitch period, the speech signal may be enhanced by increasing the energy associated with the beginning of the pitch period and/or by decreasing the energy associated with the end of the pitch period. Preferably, the amount of energy increase in the earlier portion of the pitch period is approximately equal to the amount of energy reduction in the later portion of the pitch period. In this manner, the total energy remains the constant.
Description




TECHNICAL FIELD




The present invention relates in general to processing speech signals and, in particular, to methods and apparatus for reducing noise associated with an electrical speech signal.




BACKGROUND




Speech signals are often degraded by the presence of noise. For example, the difficulty a speech recognition system has in recognizing words in a speech signal is increased by the presence of background noise. Further to this example, an automatic speech recognition system in a cellular telephone must overcome the presence of road noise, factory noise, etc. Currently, many attempts to improve the robustness of the front-end portion of automatic speech recognition systems against additive noise distortion are being made. In general, all of these attempts are based on the ides of estimating and reducing the noise in the frequency domain. For example, spectral subtraction or Wiener filtering made be used to reduce noise in the frequency domain. However, these techniques have reached a performance plateau and additional processing techniques are required.











BRIEF DESCRIPTION OF THE DRAWINGS




Features and advantages of the disclosed system will be apparent to those of ordinary skill in the art in view of the detailed description of exemplary embodiments which is made with reference to the drawings, a brief description of which is provided below.





FIG. 1

is a block diagram illustrating one embodiment of a speech processing apparatus.





FIG. 2

is a block diagram showing another embodiment of a speech processing apparatus.





FIG. 3

is a flowchart of a process for performing speech recognition including a time-domain signal enhancement step.





FIG. 4

is a more detailed flowchart of the time-domain signal enhancement step illustrated in FIG.


3


.





FIG. 5

is a graph of an exemplary speech signal before processing by the signal enhancement step of FIG.


4


.











DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS




In general, the system described herein enhances the signal-to-noise ration of a speech signal. A plurality of local energy maximums associated with a speech signal are determined. Presumably, each of these local energy maximums defines a speech pitch period. Typically, human pitch periods are approximately 100-400 Hz depending on the sex and age of the speaker. Because human speech typically includes more energy near the beginning of a pitch period than at the end of the pitch period, and background noise tends to remain relatively constant throughout the pitch period, the speech signal may be enhanced by increasing the energy associated with the beginning of the pitch period and/or by decreasing the energy associated with the end of the pitch period. Preferably, the amount of energy increase in the earlier portion of the pitch period is approximately equal to the amount of energy reduction in the later portion of the pitch period. In this manner, the total energy remains the constant.




A block diagram of a speech processing apparatus


101


is illustrated in FIG.


1


. The speech processing apparatus


101


is preferably embodied in radio device such as a cellular telephone or two-way radio. However, the speech processing apparatus


101


may be embodied in a personal computer (PC), a personal digital assistant (PDA), an Internet appliance, or any other communication device. The speech processing apparatus


101


preferably includes a controller


102


which preferably includes a central processing unit


104


electrically coupled by an address/data bus


106


to a memory device


108


and an interface circuit


110


. The CPU


104


may be any type of well known CPU. The memory device


108


preferably includes volatile memory and non-volatile memory. Preferably, the memory device


108


stores a software program that performs some or all of the method described below. This program may be executed by the CPU


104


in a well known manner.




The interface circuit


210


may be implemented using any type of well known interface standard, such as a serial peripheral interface (SPI), a serial communications interface (SCI), interface-to-interface communications (I2C), or a parallel interface. One or more input devices


112


may be connected to the interface circuit


110


for entering data and commands into the controller


102


. For example, the input device


112


may be a keyboard.




One or more displays, speakers, and/or other output devices


114


may also be connected to the controller


102


via the interface circuit


110


. The display


114


may be a liquid crystal displays (LCDs), a light emitting diode display (LED), or any other type of display. The display


114


generates visual displays of data generated during operation of the controller


102


. The display


114


is typically used to display names, phone numbers, setup options, menus, commands, etc. The visual displays may include prompts for human operator input, run time statistics, calculated values, detected data, etc.




In addition, the speech processing apparatus


101


may include a radio frequency (RF) antenna


116


. In such an instance, the antenna


116


may be coupled to the speech processing apparatus


101


via the interface circuit


110


and/or other RF interface circuitry. Preferably, the antenna facilitates voice and data communications with other devices such as telephones, radios, and base stations.




A block diagram of a speech processor


100


is illustrated in FIG.


2


. In this embodiment, the speech processor


100


includes a plurality of interconnected modules


202


-


212


. Each of the modules may be implemented by a microprocessor or a digital signal processor (DSP) executing software instructions and/or conventional electronic circuitry. In addition, a person of ordinary skill in the art will readily appreciate that certain modules may be combined or divided according to customary design constraints.




For the purpose of receiving speech signals, the speech processor


100


includes a speech signal receiver


202


. The speech signal receiver


202


may receive speech signals from any source. For example, the speech signal receiver


202


may receive speech signals from a microphone (not shown) or the RF antenna


116


. The speech signal receiver


202


may receive analog or digital speech signals. In one embodiment, the speech signal receiver


202


converts a received speech signal from analog to digital. In another embodiment, the speech signal receiver


202


converts the received speech signal from digital to analog. Of course, a person of ordinary skill in the art will readily appreciate that the speech signal receiver


202


may not perform any conversion on the received speech signal.




For the purpose of determining a smoothed energy signal based on a received speech signal, the speech processor


100


includes an energy smoother


204


. The energy smoother


204


is operatively coupled to the speech signal receiver. The energy smoother


204


produces a representation of the amount of energy present in the received speech signal at multiple points in the time domain of the speech signal. Preferably, the energy smoother


204


comprises a Teager operator and/or a moving average calculation. Generally, the Teager operator consists of subtracting the product of a previous sample and a subsequent sample from the current sample squared (e.g., Teager(i)=S2(i)−(S(i−1)*S(i+1)). However, a person of ordinary skill in the art will readily appreciate that any structure which produces a representation of the amount of energy present in the received speech signal at multiple points in the time domain may be used in the scope and spirit of the present invention.




For the purpose of determining times associated with local energy maximums based on the smoothed energy signal, the speech processor


100


includes a peak detector


206


. The peak detector


206


is operatively coupled to the energy smoother


204


. The peak detector


206


locates one or more local energy maximums associated with the smoothed energy signal in the time domain. The peak detector


206


preferably operates on the smoothed energy output instead of the received speech signal to reduce false peaks from low energy spikes.




Presumably, each of these local energy maximums defines a speech pitch period. Typically, human pitch periods are approximately 100-400 Hz depending on the sex and age of the speaker. Because human speech typically includes more energy near the beginning of a pitch period than at the end of the pitch period, and background noise tends to remain relatively constant throughout the pitch period, the speech signal may be enhanced by increasing the energy associated with the beginning of the pitch period and/or by decreasing the energy associated with the end of the pitch period. Preferably, the amount of energy increase in the earlier portion of the pitch period is approximately equal to the amount of energy reduction in the later portion of the pitch period. In this manner, the total energy remains the same, and the speech does not become louder or softer.




For the purpose of determining one or more portions of the received speech signal to be enhanced based on the times associated with certain local energy maximums, the speech processor


100


includes a window determiner


208


. The window determiner


208


is operatively coupled to the peak detector


206


. Preferably, the window determiner


208


selects a first portion of the speech signal including and/or coming after a local energy peak. In addition, the window determiner


208


may select a second portion of the speech signal which comes before the next local energy peak.




For example, the window determiner


208


may define a first time window starting at a particular energy peak and extending 80% of the way to the next energy peak, thereby defining a second time window as the remaining 20% of the pitch period. Preferably, the speech signal energy is increased in the first time window and decreased in the second time window for each pitch period. Of course, a person of ordinary skill in the art will readily appreciate that any percentages may be used and the windows need not occupy 100% of the pitch period.




For the purpose of increasing and/or decreasing energy levels associated with certain portions of the received speech signal to create an enhanced speech signal, the speech processor


100


includes a waveform enhancer


210


. The waveform enhancer


210


is operatively coupled to the speech signal receiver


202


and the window determiner


208


. The waveform enhancer


210


increases speech signal energy in the first time window of each pitch period and/or decreases speech signal energy in the second time window of each pitch period. Preferably, the amount of energy increase in the first portion is approximately equal to the amount of energy decrease in the second portion, so the total energy remains relatively constant. Increasing and/or decreasing energy is performed in a well known manner. For example, the waveform within each frame may be modified by using the windowing function w(n) and a weighting parameter ε like:








SSNR


(


n


)=


f


(ε)·


S


high


SNR


(


n


)+ε·


S


low


SNR


(


n


)=


f


(ε)·


w


(


n


)


s


(


n


)+ε·(1−


w


(


n


))


s


(


n


)






where








f


(


e


)=(sum(


abs


(


s


(


n


)){circumflex over ( )}2)−(ε{circumflex over ( )}2·sum (


abs


((1−


w


(


n


))


s


(


n


)){circumflex over ( )}2)))/(sum((


abs


(


w


(


n


)


s


(


n


)){circumflex over ( )}2)) {circumflex over ( )}(½)






with






0<ε<=1 and


f


(ε)>=1.






The parameter ε determines the degree of attenuation of low signal-to-noise ratio portions with respect to high signal-to-noise ratio portions and f(ε) is a function of ε that ensures the total frame energy after processing is the same as that before processing. Preferably, the parameters are experimentally set to optimize different speech and noise conditions.




For the purpose of determining a human word based on the enhanced speech signal, the speech processor


100


optionally includes a speech recognizer


212


. The speech recognizer


212


is operatively coupled to the waveform enhancer


210


. The speech recognizer


212


receives the enhanced speech signal from the waveform enhancer


210


and perform speech recognition process on the enhanced speech signal in a well known manner. Typically, the speech recognizer


212


includes a standard front end processor and a standard back end automatic speech recognition block.




A flowchart of a process


300


for performing speech recognition including a time-domain signal enhancement step is illustrated in FIG.


3


. Preferably, the process


300


is embodied in a software program which is stored in the memory


108


and executed by the CPU


104


in a well known manner. However, some or all of the steps of the process


300


may be performed manually and/or by another device. Although the process


300


is described with reference to the flowchart illustrated in

FIG. 3

, a person of ordinary skill in the art will readily appreciate that many other methods of performing the acts associated with process


300


may be used. For example, the order of many of the steps may be changed without departing from the scope or spirit of the present invention. In addition, many of the steps described are optional.




Generally, the process


300


receives a speech signal, enhances the speech signal, and recognizes one or more words in the speech signal. The process


300


begins when the speech signal receiver


202


receives the speech signal in a well known manner (step


302


). The speech signal may then be enhanced in the frequency domain in a well known manner (step


304


). For example, one or more predetermined frequency ranges may be amplified and/or one or more predetermined frequency ranges may be attenuated. Similarly, the speech signal may be enhanced in the frequency domain using a spectral subtraction process and/or a Wiener filtering process. Subsequently, the speech signal is preferably enhanced in the time domain as described in detail with reference to

FIG. 4

below. (step


306


). Finally, the enhanced speech signal may be output to a speaker


114


and/or fed into a speech recognizer


212


to recognize a word sequence (step


308


).




A more detailed flowchart of the time-domain signal enhancement step


306


is illustrated in FIG.


4


. Preferably, the process


306


is embodied in a software program which is stored in the memory


108


and executed by the CPU


104


in a well known manner. However, some or all of the steps of the process


306


may be performed manually and/or by another device. Although the process


306


is described with reference to the flowchart illustrated in

FIG. 4

, a person of ordinary skill in the art will readily appreciate that many other methods of performing the acts associated with process


306


may be used. For example, the order of many of the steps may be changed without departing from the scope or spirit of the present invention. In addition, many of the steps described are optional.




Generally, the process


306


locates local energy peaks in a smoothed energy “graph” and uses the located peaks to increase energy levels in one time window(s) and/or decrease energy levels in other time window(s). The process


306


begins by determining a plurality of energy levels (step


402


). Preferably a Teager operator is used, but a person of ordinary skill in the art will readily appreciate that any method of determining energy levels of a speech signal may be used. In addition, the energy levels may be smoothed using a moving average type operator. Local maximums or peaks are then located in the smooth energy signal in a well known manner (step


406


). Presumably, each of these local energy maximums defines a human speech pitch period.




Subsequently, one or more enhancement timing windows are determined (step


408


). Preferably, the process


306


selects a primary portion of the speech signal including and/or coming after one local energy peak and a secondary portion of the speech signal which comes before the next local energy peak. For example, the process


306


may define a first time window starting at a particular energy peak and extending 80% of the way to the next energy peak, thereby defining a second time window as the remaining 20% of the pitch period.




Once the window(s) are determined, the process


306


increases the energy level in the primary window(s) (step


410


) and decreases the energy level in the secondary window(s) (step


412


) in a well known manner. Because human speech typically includes more energy near the beginning of a pitch period than at the end of the pitch period, and background noise tends to remain relatively constant throughout the pitch period, the speech signal may be enhanced by increasing the energy associated with the beginning of the pitch period and/or by decreasing the energy associated with the end of the pitch period. Preferably, the amount of energy increase in the primary portion of the pitch period is approximately equal to the amount of energy reduction in the secondary portion of the pitch period. In this manner, the total energy remains the same, and the speech does not become louder or softer.




A graph of an exemplary speech signal before enhancement by the system described above is illustrated in FIG.


5


. As described above, the energy associated with the speech signal in the primary window is increased after signal enhancement, and the energy associated with the speech signal in the secondary window is decreased after signal enhancement.




In summary, persons of ordinary skill in the art will readily appreciate that a method and apparatus for reducing noise associated with an electrical speech signal has been provided. Systems implementing the teachings described herein can enjoy cleaner speech signals fro speech recognition and other purposes.




The foregoing description has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the exemplary embodiments disclosed. Many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.



Claims
  • 1. A method of processing an electrical speech signal to reduce a noise portion of the electrical speech signal, the method comprising the steps of:determining a plurality of energy levels associated with the electrical speech signal; selecting a first local maximum energy level and a second local maximum energy level from the plurality of energy levels, the first local maximum energy level and the second local maximum energy level being separated by a time period; determining a primary time window based on the first local maximum energy level, the primary time window excluding the second local maximum energy level, the primary time window being smaller than the time period; determining a primary energy level associated with the electrical speech signal by summing a first subset of the plurality of energy levels, the first subset being defined by the primary time window; determining a secondary time window based on the second local maximum energy level, the secondary time window excluding the first local maximum energy level, the secondary time window being smaller than the time period; determining a secondary energy level associated with the electrical speech signal by summing a second subset of the plurality of energy levels, the second subset being defined by the secondary time window; modifying the electrical speech signal such that the primary energy level is increased by a predefined amount; and modifying the electrical speech signal such that the secondary energy level is decreased by the predefined amount.
  • 2. A method as defined in claim 1, further comprising the step of processing the electrical speech signal using a speech recognition process, the step of processing the electrical speech signal using the speech recognition process being performed after the step of modifying the electrical speech signal such that the primary energy level is increased by a predefined amount.
  • 3. A method as defined in claim 2, wherein the step of processing the electrical speech signal using the speech recognition process is performed after the step of modifying the electrical speech signal such that the secondary energy level is decreased by the predefined amount.
  • 4. A method as defined in claim 1, further comprising the steps of:transforming the electrical speech signal from a time domain to a frequency domain; modifying the electrical speech signal in the frequency domain to improve a signal-to-noise ratio associated with the electrical speech signal; and transforming the electrical speech signal from the frequency domain to the time domain.
  • 5. A method as defined in claim 4, wherein the step of modifying the electrical speech signal in the frequency domain to improve a signal-to-noise ratio associated with the electrical speech signal comprises the step of modifying the electrical speech signal using a spectral subtraction process.
  • 6. A method as defined in claim 4, wherein the step of modifying the electrical speech signal in the frequency domain to improve a signal-to-noise ratio associated with the electrical speech signal comprises the step of modifying the electrical speech signal using a Wiener filtering process.
  • 7. A method as defined in claim 1, wherein the step of determining a plurality of energy values associated with the electrical speech signal comprises the step of determining a plurality of smoothed energy values associated with the electrical speech signal.
  • 8. A method as defined in claim 7, wherein the step of determining a plurality of smoothed energy values associated with the electrical speech signal comprises the step of calculating a Teager operator.
  • 9. A method as defined in claim 1, wherein the step of selecting a first local maximum energy level and a second local maximum energy level from the plurality of energy levels comprises the steps of selecting the first local maximum energy level from a first pitch period and selecting the second local maximum energy level from a second different pitch period.
  • 10. A method as defined in claim 1, wherein the step of determining a primary time window based on the first local maximum energy level comprises the step of identifying a contiguous time region extending from the first local maximum energy level toward the second local maximum energy level.
  • 11. A method as defined in claim 10, wherein the step of identifying a contiguous time region extending from the first local maximum energy level toward the second local maximum energy level comprises the step of calculating a predetermined percentage of the time period.
  • 12. A method of processing an electrical speech signal, the method comprising the steps of:determining a plurality of energy levels associated with the electrical speech signal; selecting a first local maximum energy level and a second local maximum energy level from the plurality of energy levels, the first local maximum energy level and the second local maximum energy level being separated by a time period; determining a primary time window, the primary time window representing a contiguous time region including times after the first local maximum energy level and times before the second local maximum energy level, the primary time window encompassing a predetermined percentage of the time period, the predetermined percentage being less than one hundred percent; and increasing an energy level of the electrical speech signal in the primary time window.
  • 13. A method as defined in claim 12, further comprising the step of decreasing an energy level of the electrical speech signal outside the primary time window.
  • 14. A method as defined in claim 13, wherein the step of increasing an energy level of the electrical speech signal in the primary time window comprises the step of increasing the energy level of the electrical speech signal in the primary time window by a predetermined amount and the step of decreasing an energy level of the electrical speech signal outside the primary time window comprises the step of decreasing the energy level of the electrical speech signal outside the primary time window by a proportional amount, the proportional amount being within ten percent of the predetermined amount.
  • 15. A method as defined in claim 12, wherein the predetermined percentage is less than eighty percent.
  • 16. A method as defined in claim 12, further comprising the step of processing the electrical speech signal using a speech recognition process after the step of increasing an energy level of the electrical speech signal in the primary time window.
  • 17. A method as defined in claim 12, further comprising the step of calculating a Teager operator associated with the electrical speech signal.
  • 18. A method of processing an electrical speech signal, the method comprising the steps of:determining a plurality of energy levels associated with the electrical speech signal; selecting a first local maximum energy level and a second local maximum energy level from the plurality of energy levels, the first local maximum energy level and the second local maximum energy level being separated by a time period; determining a primary time window, the primary time window representing a contiguous time region including times after the first local maximum energy level and times before the second local maximum energy level, the primary time window encompassing a predetermined percentage of the time period, the predetermined percentage being less than one hundred percent; and decreasing an energy level of the electrical speech signal outside the primary time window.
  • 19. A method as defined in claim 18, further comprising the step of processing the electrical speech signal using a speech recognition process after the step of decreasing an energy level of the electrical speech signal outside the primary time window.
  • 20. A method as defined in claim 18, further comprising the step of calculating a Teager operator associated with the electrical speech signal.
  • 21. An apparatus for processing an electrical speech signal, the apparatus comprising:a speech signal receiver structured to receive a speech signal; an energy smoother operatively coupled to the speech signal receiver, the energy smoother structured to determine a smoothed energy signal based on the received speech signal; a peak detector operatively coupled to the energy smoother, the peak detector being structured to determine a first time associated with a first local energy maximum based on the smoothed energy signal, the peak detector being structured to determine a second time associated with a second local energy maximum based on the smoothed energy signal; a waveform enhancer operatively coupled to the speech signal receiver and the peak detector, the waveform enhancer being structured to increase a first energy level associated with a first portion of the received speech signal to create an enhanced speech signal, the first portion of the received speech signal having a first midpoint in time, the first midpoint of the received speech signal being located in time closer to the first time than the second time.
  • 22. An apparatus as defined in claim 21, further comprising a speech recognition module operatively coupled to the waveform enhancer, the speech recognition module being structured to determine a human word based on the enhanced speech signal.
  • 23. An apparatus as defined in claim 21, wherein the waveform enhancer is further structured to decrease a second energy level associated with a second portion of the received speech signal, the second portion of the received speech signal having a second midpoint in time, the second midpoint of the received speech signal being located in time closer to the second time than the first time.
  • 24. An apparatus as defined in claim 23, wherein the waveform enhancer is structured to increase the first energy level and decrease the second energy by the same amount.
  • 25. An apparatus as defined in claim 21, wherein the energy smoother comprises a Teager module.
  • 26. An apparatus as defined in claim 21, wherein the energy smoother, the peak detector, and the waveform enhancer comprises software instructions structured for execution by a digital processor.
  • 27. An apparatus for processing an electrical speech signal, the apparatus comprising:a speech signal receiver structured to receive a speech signal; an energy smoother operatively coupled to the speech signal receiver, the energy smoother structured to determine a smoothed energy signal based on the received speech signal; a peak detector operatively coupled to the energy smoother, the peak detector being structured to determine a first time associated with a first local energy maximum based on the smoothed energy signal, the peak detector being structured to determine a second time associated with a second local energy maximum based on the smoothed energy signal; a waveform enhancer operatively coupled to the speech signal receiver and the peak detector, the waveform enhancer being structured to decrease an energy level associated with a portion of the received speech signal to create an enhanced speech signal, the portion of the received speech signal having a midpoint in time, the midpoint of the received speech signal being located in time closer to the second time than the first time.
US Referenced Citations (4)
Number Name Date Kind
4630304 Borth et al. Dec 1986 A
5706395 Arslan et al. Jan 1998 A
5999897 Yeldener Dec 1999 A
6263307 Arslan et al. Jul 2001 B1