This application relates to methods and apparatus for conducting diagnostic procedures in a reference lab environment.
Today's healthcare system provides a variety of ways in which individuals can be tested for various medical conditions and disease states. Many diagnostic tests have now been adapted for use at home by patients and individuals, as people are increasingly taking responsibility for their own healthcare. Among the tests now available for home use are pregnancy test and ovulation predictors for women, blood glucose monitors for diabetics, fecal occult blood tests to screen for colorectal cancer, and prothrombin time tests for monitoring the effectiveness of blood thinning medications. Generally for diagnostic tests to be available over-the-counter, the tests have to be simple to administer and interpret and virtually foolproof in their use.
Other tests which may not be available over-the-counter may be performed in a physician's office or clinic. Diagnostic labs in a physician's office are usually small but provide the benefit of quick access and immediate results for the physician and are conducted by trained medical personnel. Generally these tests are relatively uncomplicated and utilize small, less expensive equipment. Among the tests which may be conducted in a physician's office are blood glucose tests, blood gas monitoring, whole blood analysis and blood clotting tests. The range of diagnostic tests that may be performed in a physician's office or clinic is expected to expand as testing procedures improve and the necessary equipment becomes more compact and economical.
Virtually all hospitals have a laboratory which conducts diagnostic tests for the hospital patient population. The scope of the diagnostic tests which may be found in a hospital lab is generally scaled to the size of the hospital, the departments of the hospital, and the frequency with which various tests are needed, all of which help dictate the complexity and expense of the diagnostic equipment the hospital may choose to purchase and staff. Blood tests for emergency situations such as CK, myoglobin, and troponin which are often needed for heart attack patients, will generally be conducted in a hospital lab. Other more complex tests such as electron microscopy and immunohistochemistry testing and studies supporting surgical pathology, cytology and autopsy procedures may also be found in a hospital lab.
There are, however, numerous diagnostic tests which are only needed occasionally or that require specialized equipment which, for various reasons, the labs previously mentioned facilities may not wish to conduct in-house. These tests will be found in reference labs, which are generally large testing facilities that specialize in high volume and specialty testing. Physicians and hospitals use reference labs by sending a lab a patient specimen upon which a diagnostic test is to be performed, generally a tissue sample such as a throat culture or a biopsy, or a bodily fluid such as blood or urine. Since specimens for testing are sent in, a reference lab can serve a large region or even an entire country by the use of air shipments of materials. This ability to provide tests to a larger region enables tests conducted infrequently by one clinic or hospital to be aggregated at one place and conducted economically and efficiently by the reference lab. For instance, a modern automated blood analyzer can test upwards of 120 samples per hour. This aggregation of specialized tests makes the purchase of complex and expensive equipment, as well as the specialized training needed to conduct specialized testing efficiently and precisely, economically justifiable by the reference lab. The concentration of sophisticated equipment and highly trained personnel at the reference lab also facilitates the conduct of tests which can be very significant in the lives of patients, such as tests for hepatitis, cancers, and the human immunodeficiency virus (HIV).
Organization is of considerable importance to the success and effectiveness of a reference lab. When a bodily sample is initially taken from a patient it is put in a vial, tube or jar which is labeled to identify the specimen, the patient, and the patient's physician. The sample is then transported to the reference lab. If the reference lab is far away the sample may be air-shipped to the lab. A reference lab may be within driving or walking distance of the physician's office in a metropolitan area, and it is also possible for the patient to travel to the reference lab and have the sample taken at the reference lab facility. The next step is generally to log the sample into the reference lab's tracking system. The tracking system is a database used to ensure that the proper tests are run on the sample in the desired or proper timeframe, and that the diagnostic results are promptly returned to the referring physician. Depending upon the nature of the test, the biological specimen may be processed prior to testing, as by centrifugal separation of blood components. After the specimen has been properly prepared as required, the test is conducted by the appropriate methods and instrumentation. In the case of many blood tests this may be done by an automated blood analyzer. The test and its processing is tracked through the testing and results of the test are determined. The results of the test are generally compiled in a report and the report is returned to the referring physician.
In some cases the testing performed by the reference lab is a two-step process. The first step is a screening step which analyzes a sample for indication of the presence of a target substance or disease state. If the result of the screening step is positive, indicating the presence of the target or state, a definitive test is conducted to precisely and confidently identify the target or disease markers. Some of the diseases which may be tested in this way are Lyme disease, bovine spongiform encephalopathy or BSE, commonly referred to as “mad cow disease,” and HIV.
A typical two-step process for these diseases will begin with a screening test called an enzyme-linked immunosorbent assay (ELISA) followed by a definitive test called a Western blot. In the ELISA test, proteins indicative of a disease such as HIV are evaluated in a serum mixture. The definitive Western blot test then evaluates the components of the patient's serum in a dissociated state by separation and individual identification. The ELISA test is fairly qualitative and used initially to provide a simple positive or negative indication result for a selected pathogen and acts by detecting the presence of an antibody or antigen in the sample. It is often preferred for its ability to estimate ng/ml to pg/ml ordered material in a sample such as a serum, urine or culture supernatant and can be used to screen for past or present infections. An ELISA assay uses two antibodies, one specific to the antigen targeted and another coupled to an enzyme. This second antibody gives the assay its enzyme-linked name and will cause a chromogenic or fluorogenic substrate to produce a detectable signal. Since the ELISA test can be used for evaluation of either the presence of an antigen or the presence of an antibody in a sample, it is useful for determining serum antibody concentrations indicative of HIV or West Nile virus infection for example, and for detecting the presence of antigens indicative of a disease state.
Several variations of ELISA testing may be employed, including indirect ELISA, sandwich ELISA, and competitive binding. An indirect ELISA used for HIV testing, sometimes called an HIV enzyme immunoassay (EIA), may be conducted as follows. Partially purified, inactivated HIV antigen is applied to the well of a microtiter plate. The standard microtiter plate consists of an 8 by 12 array of 96 wells, each about 1 cm deep by 0.7 cm in diameter. The antigen is immobilized by coating it onto the surface of the well. The well is then exposed to patient serum which may contain antibodies to HIV. The patient serum is usually diluted in non-human serum to prevent non-specific antibodies in the serum from binding to the antigen. The antibodies will bind to HIV antigens in the well. The plate is washed so that non-antigen-binding antibodies are washed free of the plate. After the wash only the antibody-antigen complexes remain attached to the well. The second antibody, a conjugate of anti-human immunoglobulin coupled to a substrate-modifying enzyme, is added to the well, which will bind to the antigen-antibody complexes. The plate is washed again so that excess unbound second antibodies are removed. A chromogenic or fluorogenic substrate is applied to the well, which is converted by the enzyme to produce a chromogenic or fluorescent signal. The enzyme acts as an amplifier in the process. Even if only a few enzyme-linked antibodies are present, the enzyme molecules will produce many signal molecules. The signal is detected by a spectrophotometer or other optical device, recorded and analyzed. If the patient's serum contains no antibodies to HIV, no binding to the HIV antigens will occur and consequently the secondary antibodies will not bind, no enzymes will be present to act on the substrate, and no signal will be produced, a negative indication. However if antibodies to HIV are present, binding will occur in both stages of the process and a coloration or optical signal will be produced. The differentiation between a positive or negative result of a chromogenic assay may be done statistically by a trained expert. Several multiples of the standard deviation is often used to differentiate between positive and negative samples. With a fluorogenic assay the optical density of emitted signals may be evaluated to produce a more quantitative result.
It is possible in many instances that false positive or negative results may be obtained. The statistical nature of result interpretation can lead to some ambiguity in the analysis. In some cases women who have experienced pregnancies may possess antibodies directed against human leukocyte antigens (HLA) which are present on host cells used to propagate HIV. These antibodies may result in signal causing a false positive outcome. False negatives can arise if testing occurs in the interval between infection and antibody response in the patient's body. For these reasons a more definitive test, a Western blot, is needed following an HIV ELISA.
In the so-called “sandwich” variation of ELISA, the process starts with a known quantity of antibody bound to the microtiter well, to which an antigen-containing sample is applied. The signal at the end of the process then indicates whether the sample contains the target antigen. In the “competitive binding” variation, unlabeled antibody is incubated in the presence of its antigen and the resulting bound antibody/antigen complexes are added to the antigen-containing sample in the well. This produces an inverse result: the greater the original antigen concentration, the weaker the detectable signal.
In the case of Lyme disease the spirochete Borrelia burgdorferi organism which causes the disease is cultured and applied to the microtiter well. The organism is then incubated with the patient's serum that may contain antibodies directed against the disease. A fluorescent-tagged antiglobulin is added to link with the antibodies present, the plate washed and examined in ultraviolet light. Any antibody to Lyme disease will be attached to the fluorescent antiglobulin and be visible in the ultraviolet light, indicating the presence of the disease. A positive outcome to this screening test is then followed by a definitive Western blot.
The definitive test for these and other diseases is the Western blot, which detects proteins in a given sample of tissue homogenate, serum, or other cellular material. This assay uses gel electrophoresis to separate denatured proteins by mass. The separated proteins are then stabilized in position by transfer from the gel to a membrane such as nitrocellulose, PVDF, or nylon where they are probed using antibodies specific to the protein. As a result, the analyst is able to examine the amount of protein in a given sample and compare levels between distinct groups of proteins. In the practice of this technique, a sheet of gel is retained between two plates and usually is mounted vertically with the upper edge of the gel sheet accessible to the sample to be assayed. The sample is applied in wells created along the upper edge of the gel and an electrophoretic potential is applied between the upper and lower edges of the sheet of gel. The electrophoretic potential is applied by a DC power supply and may be in the range of 50 to more than 1000 volts. The electrophoretic potential is applied for a period of time that allows the proteins in the sample to distribute themselves (i.e., separate) vertically through the sheet of gel, typically for 1-4 hours, but in some cases considerably longer. The proteins in the “lane” under each well are thus separated into distinct bands of different molecular weights. The potential must be removed when the proteins are distributed as desired. In addition to the sample, one lane of the gel is usually reserved for a marker or ladder of a commercially available mixture of proteins of known molecular weights against which the unknown proteins may be compared. The sheet of gel is removed from between its two glass retaining plates and is then placed on a sheet of blotting material such as porous nitrocellulose of length and width dimensions approximately matching those of the sheet of gel, the blotting material having already been soaked in a buffer to hydrate it. Care must be taken at this step to avoid the presence of air bubbles between the gel and the blotting material, which would impede the direct transfer of the distributed proteins from the gel to the blotting material. Two electrode plates are then placed either side of the gel and blotting material, thereby sandwiching the sheets of gel and blotting material between the electrode plates. The electrode plates should preferably apply a uniform electrophoretic field across the thicknesses of the sheets of gel and blotting material. This electrophoretic field, typically 100-500 volts, transfers the proteins from the gel to the blotting material in the same distribution in which they were captured in the gel matrix. This transfer process takes approximately 1-2 hours, but can take as much as overnight for some proteins to be transferred. After the proteins adhere to the blotting material, the blotting material is removed from the sandwich and is washed in a buffer containing one or more blocking agents such as skim milk, bovine serum albumin or tween-20 detergent for 1-4 hours and then is immersed in a solution of protein-specific reporter antibodies. During the immersion the blotting paper is typically agitated by a rocking or circular motion in the plane of the blotting paper. The immersion step typically takes 1-4 hours, but can take overnight or longer for some antibody-protein pairs. Reporter antibody detection can be done with a variety of markers such as optical dyes, radioactive or chromogenic markers, fluorescent dyes or reporter enzymes depending upon the analytical method used. Western blots are described in detail by Towbin H., Staehelin T., and Gordon J., Proc. Nat. Acad. Sci. USA, 76: 4350-4354 (1979), Burnette W. N., Anal. Biochem., 112: 195-203 (1981), and Rybicki & von Wechmar in J.
Virol. Methods, vol. 5: 267-278 (1982).
The foregoing describes the use of a Western blot in a mode utilizing detection by a single antibody. More commonly, Western blots are run using both a primary and secondary antibody. In this mode, the primary antibody, usually a mouse or rabbit antibody, binds to the protein of interest on the blotting membrane. The secondary antibody, often a goat antibody, binds to any antibodies produced in the species used to generate the primary antibody.
Typically the secondary antibody will be labeled with a detectable marker, such as fluorescent molecules or horseradish peroxidase. Thus, the primary antibody recognizes the target, the secondary antibody recognizes the primary, and the secondary provides a detectable marker. In all other respects this two-antibody approach is similar to the assay described above utilizing only a primary antibody with a detectable marker attached directly to it.
As is apparent from the foregoing description, the Western blot takes a substantial amount of time to complete and involves a great deal of handling and transfer of materials. This enables variations to creep into the process and its results; the technique is thus dependent to a certain degree upon the skill of the technicians involved. Furthermore, contrary to theoretical prediction, an excessive number of bands may manifest themselves in the result. This can be due to antibodies which are not entirely specific to the protein or proteins of interest, but may also result from other factors. Proteolytic breakdown of the antigen may occur as a result of prolonged storage after homogenization of the starting tissue, resulting in additional bands of lower apparent molecular mass than the full-length proteins. Excessive overloading of protein in a lane may result in “ghost bands” appearing in the blot. High detection sensitivity can give rise to artifacts from nonspecific binding. Inefficient blocking can allow extra bands to develop. A low antigen concentration in the sample can result in poor signal detection requiring signal enhancement, which can introduce its own artifacts. In a reference lab environment, where speed and accuracy are of paramount concern, it is apparent that a more rapid, less technique-dependent definitive test for proteins is desirable.
In accordance with the principles of the present invention a protein assay suitable for use in a reference lab is provided. In an example described below one or more analytes are resolved in a fluid path such as that of a capillary and the analytes are immobilized in the fluid path. A typical analyte is a protein of a biological sample of a subject. A suitable immobilizing technique is photoimmobilization. Detection agents such as antibodies are conveyed through the fluid path which bind to or interact with the analytes forming, for instance, antibody-protein complexes, and permit detection of the immobilized analyte(s) in the fluid path. In an example described below, the assay is used in a reference lab as a definitive test following a screening test such as an ELISA test. The assay may, as described below, be automated for speed, precision and repeatability, highly desirable characteristics of a reference lab diagnostic test. In an example below an automated assay system comprises a processing station and an automated capillary gripper which is operable to load one or more capillaries with one or more reagents or samples and position the loaded capillaries at the processing station. The illustrated automated assay system also includes a detection station and the automated capillary gripper is operable to position the capillaries containing the reagents or samples at a selected location of the detection station.
In the drawings:
a-d illustrate an example of resolving, immobilizing and labeling cellular materials in a capillary.
a-b illustrate an example of immobilizing resolved analytes in a polymeric material in a capillary.
a-h illustrate an example of detecting one or more analytes.
a, 17b, 17c and 17d illustrate capillary holders constructed in accordance with the principles of the present invention.
e illustrates an intermediate holder for use with a reformatting gripper.
a is a view of a reformatting gripper.
b is a view of the reformatting gripper of
a is a view from below of a vacuum manifold.
b is a view from below of the vacuum manifold of
c is a side view of the vacuum manifold of
a-d illustrate examples of resolving, immobilizing and labeling cellular materials in a capillary in a reference lab assay of the present invention.
The methods described herein yield results similar to those obtained by a Western blot but in a fraction of the time, significant in the operation of a reference lab. For example, the separation of cellular materials by IEF can take 5 minutes or less, and subsequent immobilization takes 2 minutes or less. This means that the detection molecules can be linked to the separated cellular materials within 10 minutes or less of the commencement of separation, and that the detection molecules can be analyzed within 30 minutes of the separating step. The entire process is faster, simpler, more sensitive, more accurate and more automatable than the Western blot analytical technique. The immobilization step obviates the need to assess the detection molecules (such as enzyme-labeled antibodies) for homogeneity of molecular form prior to use and obviates the need for excessive purification not typical of these types of reagents. Thus, less costly probing antibodies can be used in this technique.
While the separation technique shown in the previous example is isoelectric focusing, free solution electrophoresis, sieving electrophoresis, or micellar electrokinetic chromatography may also be used to resolve the analytes.
a-b illustrate an example of resolving, immobilizing in a polymeric material, and labeling cellular materials in a capillary in accordance with the present invention.
a-h illustrate exemplary embodiments for detecting one or more analytes in a fluid path.
Variations of the steps of the methods described herein will readily occur to those skilled in the art. For example, the sample can be separated and then the analytes immobilized at their resolved locations in the fluid path, prior to contacting the analytes with the detection agents. In some implementations, detection agents are contacted with the analytes to form a complex and then the complex is resolved in the fluid path. In some implementations, the detection agents is preloaded into the sample thereafter loaded into the system. As another example, the resolving step, such as isoelectric focusing can be applied after the chemiluminescent reagents are supplied.
In some implementations, the analyte and standards are detected by fluorescence. The analyte and standards can each be labeled with fluorescent dyes that are each detectable at discrete emission wavelengths, such that the analyte and standards are independently detectable.
A fused silica capillary 422 is positioned with a micromanipulator (not shown) so that the inlet 426 of capillary 422 is located above the cover slip 436 or slide or microwell plate performed by loading the cell with detection agents prior to lysis or hybridization may be performed in the buffer solution subsequent to lysis. In the latter event, a high concentration of detection agents surrounds or is located adjacent to the cell. One method for achieving the desired high concentration of cell contents in contact with a high concentration of detection agents is to draw the cell contents by hydrodynamic or electrophoretic means into a short length of the capillary adjacent to the capillary end. In this mode this short region of the capillary may be pre-loaded with detection agents from another source such as a tube or well (not shown), or may be drawn into the capillary end along with the cell contents. The distal end 432 (or proximal end 426) of capillary 422 is disposed in a solution 434 of chemiluminescent substrates. In some implementations, resolving and immobilizing the analyte or analytes of interest can occur prior to adding the detection agents. The detection agents are then flowed though the fluid path after the separating the sample and immobilization.
Ampholyte reagent 442 is electrically coupled to a high voltage potential which, when applied to the capillary solution, causes the development of a pH gradient within the capillary 422 by ampholyte migration. A high voltage power supply, such as model CZE 1000R manufactured by Spellman of Plainview, N.Y., which is capable of providing a 20,000 volt potential can be used to maintain the pH gradient in column or capillary 422.
Fused silica capillary 422 may typically exhibit a 100 micron inner diameter and 360 micron outer diameter. The lumen walls can be coated with a neutral coating such as that manufactured by Supelco of Phoenix, Ariz. The coating is used to minimize the electroosmotic flow and thus shorten the migration times for the antibody-target complexes. The total length of the capillary in this example can be as long as 90 to 100 cm, but preferably is considerably shorter, in the range of 10 to 30 cm, or 3 to 6 cm. The cell chamber 436 serves as an inlet reservoir for targeted cell molecules and optionally the ampholyte reagent and chemiluminescent reagent(s) and can be held at ground potential relative to the high voltage potential at the other end of the capillary. In some implementations either end of the capillary may be at high voltage potential and the other ground, or either end may be positive and the other negative. The outlet reservoir 434 may be held at 15 to 20 kV relative to ground at the proximal end of the capillary, for example. The actual potential used is generally chosen by the desired voltage drop per cm of capillary. Distal outlet 432 of capillary 422 is placed about 5 centimeters below inlet 426 in the case of hydrodynamic loading. For the case of electrophoretic loading, which may be equally or more effective, no particular elevation of the distal end of the capillary is required. Inlet 426 of capillary 422 is used as a micropipette for introducing the cellular contents into capillary 422 after cell lysis. Alternatively, the cell may be drawn intact into the capillary and then lysed in the capillary.
After removing 5 mm of polyimide coating from capillary 422 above inlet 426, inlet 426 is mounted perpendicular to cover slip 436 by a micromanipulator (not shown). The micromanipulator enables precise positioning of the capillary lumen with respect to the target cell to be loaded or lysed and loaded into capillary 422.
Capillary 422 includes an optical observation window 138 through which chemiluminescent or fluorescence events are observed and detected by a CCD array 440 or similar detector. An extended observation window 438 is desirable as it enables the parallel detection of a greater number of events than can be observed through the limited length of a shorter window. Generally the length of the observation window will be chosen in consideration of the length of the CCD array 440 being used. If a non-clear coated capillary is used the polyimide coating of capillary 422 is removed over at least the length of the capillary which opposes the CCD array 440. The observation window 438 is maintained in a fixed position in relation to the CCD array 440 either by mechanical or adhesive means. Preferably the observation window and CCD array are enclosed in darkness so that the only light detected by the CCD array is that emitted by the chemiluminescent or fluorescent events within the capillary. The signals from the detected chemiluminescent or fluorescent events are coupled to a personal computer 444 where they are recorded. In some embodiments the event data may be recorded along with the position in the CCD array at which the event occurred. The data is plotted and total signal corresponding to each focused band calculated using Origin software available from Microcal of North Hampton, Mass., DAX software available from Van Mierlo, Inc. of Eindhoven, The Netherlands, LabVIEW software available from National Instruments Corp., Austin, Tex., or similar data analysis packages. Data may be presented as a histogram, electropherogram, or other graphical representation, or as a spreadsheet or other numerical format.
In some implementations, a cell or cells which have not been preloaded with detection agents, the inlet 426 of the capillary 422 is positioned directly above the target cell or cells to be lysed. The cell or cells can be in contact with a high concentration of detection agents, or preferably, a high concentration of detection agents has already been loaded into the capillary end at the time of cell lysis. The lysis device 416 is aimed to create a lysing shock wave or other cell lysing disruption adjacent to the cell or cells. When the lysing pulse is applied the cellular contents are released and the force of the lysing event may aid in propelling the cellular contents into the lumen of the capillary by hydrodynamic flow, electrophoresis, or electroendosmotic flow. Hybridization of the analytes of interest and the detection agents takes place rapidly, either outside the capillary prior to loading of the cell contents, or inside the capillary. The degree of hybridization will be linearly related to the concentrations of the detection agent and the sample. For example, tight-binding (high binding avidity) antibodies provide molecules which will retain their linking characteristics during capillary transport and isoelectric focusing. Examples of such antibodies are those typically used in ELISA assays. Preferably the hybridization is done under non-denaturing conditions. By causing the antibodies and their analytes to be in a natural state, recognition between the antibodies and their target complexes and the chemiluminescent reporters is enhanced. The isoelectric focusing field is applied, causing the antibody-target complexes to migrate to pH points of the pH gradient in the capillary at which their net charge is neutral. The complexes will become stationary in the capillary at pH points where the charge of their molecular components (e.g., phospho, carboxyl, amino, and other charged functional groups) nets out to zero. If forces from flow or diffusion should cause the complexes to drift away from their respective isoelectric points, the gradient field will migrate them back into their charge-neutral positions. The antibody-target complexes are thus resolved along the observation window 138 by capillary isoelectric focusing. In some embodiments, resolving and immobilizing the analyte or analytes of interest can occur prior to adding the detection agents. The detection agents are then flowed though the fluid path after the separating the sample and immobilization.
The electrophoretic potential is then used to cause the chemiluminescent substrate solution 434 to flow through the capillary. This may be initiated at the same time as the electric field which is first applied to establish the pH gradient, or after the gradient has already been established and the antibody-target complexes have been focused. The substrate or substrate(s) are chosen such that they exhibit(s) a net charge at all pH conditions encountered within the capillary so that the substrates do not resolve within the capillary but continue to flow in a continuous stream. As the substrates encounter antibody-target complexes along the capillary they are cleaved by the reporter enzyme of the antibody of the complexes, causing release of photons. Thus, as the stream of chemiluminescent substrate continuously flows through the capillary, the resolved antibody-target complexes will continue to emit photons. Alternatively, an excitation source may be used allowing fluorescence detection. In embodiments where chemiluminescence is used, emission is continuous for as long as the flow of chemiluminescent substrates is promoted, and the noise associated with stray excitation light in fluorescence-based systems is avoided.
The photon emission events are detected by the adjacent CCD array 440 and the detected events accumulated by the computer. Detection and accumulation can be continued for a selected period of time, enabling long detection periods to be used for sensitive detection of very small amounts of targeted cellular molecules. When only a single labeled antibody is used, the number of events accumulated will be a measure of the amount of analytes in the cell or cells used to prepare the lysate. To measure the amounts of different cell proteins or molecules, different antibodies which create different antibody-target complexes at different isoelectric points can be employed. By recording the number of photon events and the locations along the CCD array at which the events were detected (corresponding to the focused bands or isoelectric points along the gradient field of the capillary) the photon events emanating from the differently labeled analytes can be segmented. For increased throughput, multiple parallel capillaries or channels can be run past one or more CCD arrays incorporated into a single instrument. In another implementations, multiple antibodies labeled with different fluorescent dyes having spectrally resolvable signals can be used to enable multiplexed analysis of different proteins in a single capillary.
Fluorescent standards can be read separately if desired, using the same detector before or after the chemiluminescence signals have been collected, by exposing the fluors to excitation light. For an all-fluorescence system, the analyte and standards can be discerned by using differentially excitable and detectable dyes.
While the CCD array is preferred for its ability to detect in parallel the photon events occurring along the array, it is understood that more restricted detection techniques may be acceptable in a given embodiment. For instance, a single photon sensor may be swept or moved along the observation window 438 to detect the chemiluminescent or fluorescent photon events. This approach, however, may miss an event at one point of the capillary when the sensor is aimed or located at a different point of the capillary. Furthermore by the use of a single sensor designed for commonly available fixed window location capillary electrophoresis instruments, resolution can be deteriorated by laminar flow within the capillary, and chemiluminescent or fluorescent sensitivity would be reduced due to the limited time that a photon source is in the observation window.
Further details of the methods and apparatus of the invention described above can be found in U.S. patent application Ser. No. 11/185,247, filed Jul. 19, 2005, the contents of which are hereby incorporated by reference.
An automated protein assay system suitable for use in a reference lab is shown in
Adjacent to the detection module 116 is a separation and immobilization module 118. This module contains a movable tray 19 with a space 120′a for a capillary holder 120′ and intermediate holder 120″ and the electronics for conducting electrophoresis and isoelectric focusing of substances in the capillaries when the capillaries are located in a capillary holder 120′. As described below, the capillary holder 120′ has two integrated electrodes that are electrically connected to respective fluid reservoirs on opposite sides of the capillary holder. The ends of the capillaries (see
Located on the baseplate 112 in this example are a number of microwell plate stations 22a-22d. In the illustrations of
Capillaries are preferably made from a transparent low fluorescence material such as glass that is also rigid and straight. Various inside diameters (typically 10 μm to 1 mm) and lengths (typically 30 mm to 100 mm) are commonly used. In one example, a capillary is 40 mm in length with an internal diameter of 100 μm, giving the capillary a volume of 314 microliters. Various cross sectional shapes, both inside and outside, are also possible. One could also use different materials such as plastic.
In an alternative implementation a microfabricated device may be used in place of individual capillaries or a combination thereof. These microfabricated devices are fabricated with internal capillary channels whose dimensions would be similar to those described previously for capillaries. A microfabricated device can be fabricated from various materials such as silicon, glass or plastic and may contain integrated electrodes, electronics and valves. They may be disposable or re-usable devices. Microfabricated devices can contain from one to hundreds of channels that can be controllable individually or in parallel or some combination thereof. A typical microfabricated device contains wells for adding samples or other reagents. External electrodes may also be inserted into these wells. As with capillaries, the cross section of a capillary channel is not constrained to any particular shape.
In the illustrated example capillaries are removed from a storage rack 28 of, for example, ninety-six capillaries, by a robotic, computer-controlled capillary manipulator and placed prior to use into a capillary staging rack 30. In this example the staging rack 30 has locations for 24 individual capillaries in a single row. The staging rack positions the lower end of each capillary at a specified height. This insures that each capillary processed through the system will make contact with fluid in a microwell plate filled to a specific level. The staging rack also allows the capillary manipulator, under computer control, to withdraw from 1 to 12 capillaries for processing. When at least 12 capillaries have been withdrawn from the rack, the capillary manipulator then transfers a row of 12 capillaries from the capillary rack 28 and places them immediately adjacent to any remaining capillaries in staging rack 30. The staging rack is movable between two positions fore and aft under computer control so that capillaries are always withdrawn contiguously from one end of staging rack 30. This insures that when 12 or fewer capillaries remain in the staging rack there will be at least 12 contiguous positions into which a row of 12 capillaries can be transferred from capillary rack 28.
Adjacent to the staging rack 30 is an optical capillary detector 32. The optical detector contains a light source and a photocell on opposite sides of a slot in the top of the detector 32. For sufficiently large capillaries, this device may be what is commonly described in the field of electronics as a photointerrupter. Whenever it is desirable to verify that a capillary is being held in a particular position by a capillary manipulator, the capillary manipulator is moved to pass the capillary through the slot of the detector 32. If there is a capillary in the particular position of the manipulator it will interrupt the light beam between the source and the photocell. This interruption is sensed by the computer controlling the capillary manipulator which then is assured that a capillary is in the tested position of the capillary manipulator.
In accordance with the principles of the present invention the micro-volume immunoassay system 110 includes a capillary manipulator comprising a capillary gripper 140 mounted on robotic actuators 142, 144 and 146. In this example the robotic actuators 142, 144, 146 are motorized linear translation stages and are arranged to provide x, y, z motion control although other actuator mechanisms could also be employed as long as they are computer controllable. The gripper 140 can move up and down by operation of the up-down actuator 142. The actuator 142 is moved from front to back by actuator 144. Actuator 144 in turn is moved between the left and right sides of the system 110 by and in relation to actuator 146. In
The robotic actuators 142, 144, 146 in this example manipulate four tools. In addition to the gripper 140 the robotic actuators manipulate a lid remover 154, a pipette 150 connected to a syringe pump 152 and a reformatting gripper 140a, shown in
The capillary reformatting gripper 140a, described more fully in
The gripper 140, which will be more fully described below, is moved under computer-control to the capillaries which are to be picked up and processed (e.g., loaded with sample) or moved to another operation in the system. The gripper 140 can be programmed to pick up one capillary at a time or a number of capillaries simultaneously, such as a row of capillaries, from the capillary staging rack 30. In this example, the gripper can then dip the lower end of the capillaries into a row of corresponding microwells simultaneously or each capillary in succession into a single microwell to completely fill each capillary in the gripper by capillary action or by vacuum applied to the upper end of the capillary. Each capillary has thus functioned as a volumetric pipette where the volume contained corresponds to the volume of the capillary lumen. By filling a number of capillaries from a single microwell maximum utilization can be made of fluid, conserving expensive reagents.
The system 110 includes a wash trough 156 which is filled either by pipette 150 from a bottle 158, or directly from syringe pump 152 and is used to wash the capillaries or the pipette tip. In the illustrated example the lower end of all twelve capillaries held by the gripper can be inserted into the wash trough at the same time. At the far end of the wash trough 156 is a small well which is separate from the main fluid compartment of the trough. This small well can be used for mixing small amounts of fluids to minimize fluid consumption during use of the system. As previously mentioned, capillaries may also be washed while positioned horizontally in a capillary holder 120′ by electrically pumping fluid contained within reservoirs 124 of the holder.
a-17e illustrate various examples of a capillary holder suitable for use in the system of
b shows a capillary holder 120. In this example, instead of a central recessed area, the central area 132 of the holder 120 is open. This opening 132 enables the holder to be placed over a CCD detector to acquire photons emitted from substances inside the capillaries. With the example 120′ of
c shows the capillary holder 120′ with eight capillaries 160 located in the V-grooves. The number of V-grooves, and hence the number of capillaries that can be held in a holder, is a matter of design choice.
d is a view of a cross section of a capillary holder of the preceding examples. In this example the electrodes 136 extend to and through the lateral sidewalls of the reservoirs 124. The reservoirs 124 are shown filled with a fluid 130. The fluid 130 in each reservoir is seen to be higher than the lowest point in the V-grooves 126 where the capillary 160 is supported. When the capillary is placed in the V-groove 126 it breaks through the surface tension of the fluid 130 in each reservoir, which completely immerses the aperture at each end of the capillary 160 in fluid. However, because of the non-wetting material of the holder and capillary 160, the surface tension of the fluid 130 is not disturbed to a degree that would cause the fluid to leak into the central area 122 of the capillary holder. The fluid path of the capillary 160 remains in fluidic contact with the fluid 130 in each reservoir (and therefore with the electrodes 136) without any need for a physical seal by virtue of the surface tension of the fluid 130. This is particularly advantageous since there are no moving parts to wear out and making temporary seals to multiple small capillaries can be complicated and expensive to implement. In addition, this approach is significantly more scalable. For continuous chemiluminescent detection as described above, the height of the luminol fluid in one reservoir is higher than the fluid level in the other reservoir, enabling the luminol to flow through the capillary 160 from one reservoir to the other by hydrodynamic flow.
e shows intermediate capillary holder 120″ with a capacity of twelve capillaries 160, along with a capillary holder 120′. The nine capillaries located in the intermediate holder 120″ may be repositioned by reformatting gripper 140a into capillary holder 120′ as previously described by picking up three capillaries at a time from holder 120″ and placing them in an interlaced sequence in the holder 120′ until the holder 120′ is filled.
In the examples described above, capillaries are held in the capillary holder V-grooves by gravity. In another implementation, capillaries may be secured in the capillary holder (e.g., mechanically or by vacuum). This may be desirable as a means to prevent static charge on the capillaries or any other surface, causing the capillaries to not rest properly in the capillary holder V-grooves. Alternatively, the capillaries may be coated with an antistatic material, or an ionizing source may be incorporated into the system to prevent static charge.
An example of a capillary gripper 140 is shown in
As an alternative to the air cylinder an electromagnetic solenoid can be used to move the clamp actuator 190. A single solenoid can be used to move a unitary clamp actuator connected to all of the pins 192 of the gripper, or individual solenoids can be used for each pin to permit separate operation and control of each capillary gripper finger.
a and 22b illustrate a reformatting gripper 140a that is comprised of a body 1102 from which three thin fingers 1104 extend. At the distal end of each finger is a groove 1106 in which a capillary can be captured. At the bottom of each groove is a small hole 1108 that is connected through a valve to a vacuum source. When the gripper 140a is positioned such that a capillary is engaged in the groove 1106 at the end of a finger 1104 and vacuum is applied, the capillary will be captured in the groove as shown in
a, 24b and 24c show a vacuum manifold 1110 that may be used in conjunction with gripper 140. The manifold engages the upper end of each capillary through ports 1112 such that vacuum may be applied to the upper end of each capillary and cause fluid flow up through each capillary. The manifold 1110 may contain a vacuum chamber 1114 common to all ports or isolated vacuum ports for individual capillaries, depending on the degree of control required. The capillaries engage the vacuum ports loosely such that when vacuum is applied, some air may flow around the outside of the capillaries and into the ports at a velocity great enough to sweep away any fluid droplets formed at the capillary ends. The total flow capacity of the vacuum source is selected so that the flow around the capillaries does not adversely affect the vacuum level at the ends of the capillaries. The rate of flow may be varied by adjusting the level of vacuum. With the lowest level of vacuum, there is only enough pressure to assist filling the capillaries without causing continuous flow. At higher levels of vacuum, which may cause droplets to be formed and swept away, the applied vacuum may be adjusted to vary the rate of flow. The vacuum may also be pulsed to cause intermittent flow conditions, such as on and off or high and low, which can be important for specific processes or reduced fluid consumption.
In an alternate implementation, where electrical pumping of fluid (e.g., electrophoresis) is employed, the capillary may physically engage the manifold port (e.g., by a light friction fit through a hole in a membrane) to achieve a low pressure fluidic seal. Buffer is added to the region above the capillary such that an electrical connection is made from the capillary to an electrode integrated into the manifold. An array of electrodes in microwells or other fluid containers adjacent to the far ends of the capillaries completes the electrical path for pumping fluids from the wells of a microwell plate 28 or trough 156 through the capillaries. A computer controlled power supply provides the necessary control.
In another implementation, fluid may be pumped through the capillaries by pressure.
In yet another implementation, flow can be caused by wicking, blotting or evaporating fluid from one end of a capillary while the other end is in contact with liquid or air.
In still another implementation, fluid can be pumped through the capillaries from a reservoir 124 while they are positioned in a capillary holder 120′ (described below) by application of voltage across electrodes 136.
The system 110 is completely computer controlled and operated by a separate computer with programs and interfaces to control and operate the mechanisms of the system 110, in particular the robotic actuators 142, 144, 146, the capillary gripper 140, capillary reformattor 140a, the pipette 150, the lid remover 154, the computer-controlled power supply and UV light inside the separation and immobilization module 118, and the CCD array detector and light emitting diode array inside the detection module. In addition, the movable trays for the capillary holders 120′, 120″ and capillary staging rack 30 may also be moved under computer control.
In use, the system operator will begin by placing all reagents and capillaries into the instrument, then selects an operating protocol containing the processing steps to be carried out. The protocol is preferably selected from a protocol list stored in the computer which operates the system and displayed on the graphic user interface of the system. The operator will also enter parameters which define particular features such as the locations of fluids which are to be accessed, where the fluids are to be mixed, voltages for electrophoresis and isoelectric focusing and the like. The steps of the operating protocol can be precisely defined because a capillary precisely defines the amount of fluid and substances needed for a process by the internal volume of the capillary. A typical protocol may begin by pumping wash fluid from bulk bottle 114 into the trough 156. The robotic actuators 142, 144, 146 move the pipette 150 to a position above solution bottle 158, lower the pipette to immerse the tip into the solution, and the syringe pump is computer actuated to withdraw a predetermined amount of solution from the bottle. The pipette is then lifted by the robotic actuators, moved above capillary holder 120′ of the separation and immobilization module, then lowered at which point the solution is dispensed into one of the capillary holder reservoirs 124 to fill the reservoir above the bottom level of the V-grooves 126. The pipette is then moved to another bottle 158 where a predetermined amount of solution is withdrawn by the syringe pump and dispensed into the other reservoir 124 in capillary holder 120′. A typical processing solution may be an electrophoretic buffer. The pipette is then moved to the wash trough and the tip is washed.
Capillaries are taken from the storage rack 28 by the capillary gripper 140 and placed in the capillary staging rack 30. The capillaries are now at a known, uniform height for further handling by the gripper.
The system then acquires samples for analysis which the reference lab has received from a patient or referring physician. This process may begin with the robotic actuators 142, 144, 146 moving the lid remover 154 over a covered microwell plate and removing the cover. The robotic actuators then move the capillary gripper 140 to the staging rack 30 where the gripper picks up a number of capillaries 160. The capillaries are moved to a position above the uncovered microwell plate 24 and the robotic actuators lower the gripper so that the ends of the capillaries are dipped into the fluids in a number of microwells. Each microwell may contain a sample to be analyzed. The samples are typically cell lysates containing proteins. When the end of a capillary touches a sample solution the fluid wicks up into and fills the lumen of the capillary with the sample solution. The capillaries are then lifted and the lid is replaced on the microwell plate. Next, the gripper with the filled capillaries is moved up and over the capillary holders 120′ and 120″ and then pivoted so that the capillaries 160 are positioned horizontally. The gripper then is lowered to place the capillaries into the V-grooves of the capillary holders. Finally, the capillaries are re-formatted to a 2.25 mm center-to-center spacing, by the gripper 140a, into the capillary holder 120′ which is then retracted into the separation and immobilization module 118 by the movable tray 19 of the module.
When the capillary holder is moved into the separation and immobilization module 118, a computer-selected voltage is applied across the fluid path of the capillary, establishing a pH gradient in the capillary which separates and distributes the target molecules inside the capillary by isoelectric focusing. Once the target molecules have been separated they are bound at their locations in the capillary by photoactivation with UV light. Visible light, thermal, chemical activation or other means of immobilizing proteins (or other molecules, substances, etc.) may also be employed in which case an activating mechanism other than the UV light may be utilized in the separation and immobilization module. The binding may be covalent or non-covalent such as by hydrophobic or ionic interaction. After the target molecules have been bound in place in the capillary the movable tray moves the capillary holder out of the separation and immobilization module and the re-formatting gripper 140a positions the capillaries on 9 mm centers in capillary holders 120′ and 120″ for pickup by gripper 140.
The capillary gripper 140 then removes the capillaries from the capillary holders and unbound material is washed away by first dipping the lower end of the capillaries into the wash trough 156 and then applying vacuum to the manifold at the upper end to effect fluid flow. As described previously, fluids can also be moved by electrical pumping or other means. Next, the lid is removed from a microwell plate 24 containing a blocking solution, the capillary ends are dipped into the liquid in the wells and blocking solution is flowed through the capillaries. Following blocking, the capillary ends are dipped into wells containing primary antibody solution and, upon flow, binding occurs. Primary antibody may be in the same microwell plate as the blocking solution or in another microwell plate. The wash process is repeated to remove unbound antibody. As a result of dipping the capillary into the wash solution, antibody is also removed from the outside. A secondary antibody is pumped through the capillaries from yet another set of wells, binding occurs and then the capillaries are washed to remove unbound material.
Following the wash, block and binding steps described above, a luminol solution is mixed in either a microwell or in the separate well of the wash trough 56. Luminol and activator are contained in bottles 158. Pipette 150 is used to transfer the solutions from bottles 58 into the mixing well. The solutions are mixed by repeatedly aspirating and dispensing the fluid in the mixing well. To minimize the amount of luminol used, only a small amount is prepared in the selected well by carefully metering the fluid with the pipette 150. Each of the capillaries are dipped into and therefore filled with the luminol solution. The remaining prepared luminol is then transferred to one of the two reservoirs 124 of a capillary holder 120′ and water is dispensed into the other reservoir 124. Since the luminol is intended to flow hydrodynamically through the capillary in order to continuously stimulate chemiluminescence from the bound antibody-target complexes, slightly more volume of luminol is injected into one reservoir than water into the other to promote the desired flow. The capillaries are then placed in the capillary holder 120′ containing the luminol by the capillary gripper 140 and re-formatting gripper 140a. The capillary holder 120′ is moved into the detection module 116. Inside the detection module the capillary holder is positioned with the capillaries in opposition to the CCD array detector, which in this example is above the capillaries. As luminol flows through the capillaries chemiluminescence is induced and the photons produced are detected by the CCD array detector in relation to the locations from which the photons are emitted. The detected data is received by the computer and processed into a desired display on the system display which may be, for example, a graph of light intensity versus location within the capillary or bars sized and located in a row as a function of location within the capillary, much in the manner of the familiar Western blot pattern. To detect fluorescently labeled molecules within the capillaries, the capillaries are irradiated by a light source and the resulting fluorescence is detected by the same CCD array. In this way the fluorescence data may be accurately overlaid spatially with the chemiluminescence data. As an alternative to a CCD array, in such an implementation a fluorescent scanner may be used.
Upon completion of detection, the capillaries are removed from the capillary holder of the detection module 116 and discarded into a capillary waste container (not shown) on baseplate 112.
One skilled in the art will appreciate that the above procedure is merely representative of one experimental protocol which may be performed by an assay system of the present invention. By editing the protocol provided by the system or entering a new protocol, the system operator has the ability to add, omit, and vary the processing steps used in a given experiment.
As previously mentioned, the computer system which controls the actuators, tools, power supply, UV light source, and CCD array of an immunoassay system of the present invention also preferably has a graphical user interface by which the system operator can select an operating run protocol, initialize the system, execute the protocol run, and store and analyze the results in a reliable, convenient and easy to operate manner. The graphical user interface has a means such as a menu, directory or listing by which the system operator can select default run protocols, protocols stored from previously executed runs or can prepare a custom protocol. The protocol provides a sequence of instructions to the computerized system as to how to manipulate the reagents in order to produce the desired results. The selected run protocol may be presented on the graphical user interface as a sequence of steps, as a flowchart or other presentation of the protocol sequence. During execution of the protocol by the automated system the graphical user interface may display the status of the current assay and, at the conclusion, display the results. Further details of this automated assay system may be found in U.S. patent application Ser. No. 11/401,699, filed Apr. 10, 2006, the contents of which are incorporated herein by reference.
If the results of the screening test are positive a definitive assay is performed. The biological sample to be analyzed is loaded into an assay system in step 210, which is preferably an automated assay system as described above, in which the sample is analyzed by a well-controlled protocol. The sample may be preprocessed prior to introduction into the assay system as by lysing cells or preloading cells with antibodies or other markers. The sample is introduced into a medium in which it can be separated such as the fluid path of a capillary, and the analytes of the sample are resolved by isoelectric focusing in step 212. In step 214 the resolved analytes are immobilized by photoimmobilization or another method such as those described above. In step 216 the immobilized analytes are brought into contact with antibodies as by flowing the antibodies through the capillary. Secondary antibodies may also be introduced after washing and a second washing performed. A chemiluminescent substrate is flowed through the capillary such as luminal or other material in step 218. The photons produced by the interaction are detected in step 220 and the results of the detection recorded in step 222. The results may then be reformatted in a form which is suitable for the referring physician and the results sent in step 224 to the referring physician, lab or clinic.
It will be appreciated that the foregoing sequence is only an example and that the illustrated sequence may be modified without departing from the scope of the present invention. For instance, the referring physician may request that the definitive assay be performed regardless of the outcome of the screening test. As another example, the screening test may have been performed previously or in another location and the sequence may begin immediately with the definitive assay.
An implementation of the present invention may be used by the reference lab to measure a patient's serum antibodies directed against disease proteins such as those of HIV, BSE, Lyme disease, and other conditions. An implementation of the present invention may also be used to measure pathogen-derived proteins, peptides, or other detectable molecules, as shown by the following examples.
Measuring Antibodies Directed Against HIV Disease Proteins:
A standard mixture of known proteins or peptides associated with the pathology, such as peptide products of HIV proteins, are loaded by the reference lab into capillaries, focused and immobilized. This can be done prior to performance of the actual assay using patient samples, and the capillaries stored until use. In this case, this step may be performed by the manufacturer of the capillaries prior to delivery of the capillaries to the reference lab. Alternatively, the capillaries can be prepared immediately prior to performance of the assay. At the time of the assay, patient-derived serum is run through the capillary, and any antibodies specific for the pathogen-related peptides or proteins bind to the peptides or proteins. After washing, a secondary antibody such as goat anti-human, to which a detectable marker has been attached, is run through the capillary to bind patient-derived antibodies bound to the capillary. Detection by chemiluminescence or fluorescence reveals the presence of pathogen-specific antibodies in the patient sample. A positive result signature would exist where multiple serum antibodies bind multiple protein or peptide targets arrayed within the capillary by earlier isoelectric focusing.
Measuring Antibodies Directed Against BSE Disease Proteins:
In the case of an assay for BSE, a brain tissue sample is collected from the brain stem of the animal suspected of being infected with BSE prion protein. This sample is homogenized in an appropriate buffer. The homogenate is then treated with proteinase K digestion enzyme. The resistance to proteinase K of the prion form of the protein allows the prion protein to persist, whereas the non-prion form of the protein is cleaved by proteinase K. The products of this treatment are then mixed with an appropriate separation buffer, introduced to a capillary, and resolved by isoelectric focusing. After focusing, an ultraviolet light activates photochemistry, binding resolved proteins and peptides to the capillary. After immobilization, the capillary is washed by flowing buffer through it. BSE-prion-specific primary antibody is then flowed into the capillary allowing it to bind to the BSE-prion-specific protein. A second washing step removes unbound antibody. A secondary antibody coupled to a reporter enzyme is then flowed into the capillary allowing it to bind to the primary antibody. Finally, chemiluminescent substrate is flowed through the capillary causing the generation of light in the regions of the capillary where the prion specific protein was immobilized and primary and secondary antibodies attached to it. The emitted light is detected by a CCD camera. Following this procedure the BSE-prion protein gives a characteristic banding pattern that identifies an infected animal. This method may also be used for other prior-type diseases including scrapie and Creutzfeldt-Jakob disease.
Measuring Antibodies Directed Against Lyme Disease Proteins:
In the case of an assay for Lyme disease, cells of Borrelia burgdorferi, the causative agent of Lyme disease, are used to prepare a cell lysate in a lysis buffer. This lysate is then mixed with an appropriate buffer system for carrying out isoelectric focusing (IEF). Capillaries are filled with this lysate/IEF buffer mixture, and placed between catholyte and anolyte buffer chambers. An electrical potential is then supplied causing proteins in the capillary to be resolved by IEF. After focusing, an ultraviolet light source is applied, exposing the capillaries to U.V. light, thereby activating photochemistry that causes resolved proteins to bind to the wall of the capillaries. Once bound within the capillaries, unbound materials are washed from these by flowing an appropriate buffer solution through the capillaries. This is followed by filling the capillaries with blood serum of patients suspected of having Lyme disease. If Lyme disease is present, the patient's antibodies against Borrelia burgdorferi proteins will bind to the Borrelia burgdorferi proteins that have been focused into bands and immobilized within the capillaries. After allowing patient antibodies to bind their targets, a second wash step removes unbound patient antibodies. A secondary antibody containing a detectable marker and that binds to human antibodies is then flowed into the capillary. This secondary antibody binds to patient-derived antibodies that in turn are bound to target Borrelia burgdorferi proteins bound to the capillaries. Finally, chemiluminescent substrate is flowed through the capillaries causing the generation of light in the regions of the capillaries where the Borrelia burgdorferi proteins were immobilized and patient primary antibody and labeled secondary antibodies were attached to them. The emitted light is detected by a CCD camera. Following this procedure the Borrelia burgdorferi proteins give a characteristic banding pattern that identifies a patient sample as coming from an infected patient with antibodies against these proteins.
Measuring Pathogen-Derived Proteins, Peptides, or other Detectable Molecules:
Patient-derived material such as plasma or tissue samples are analyzed in this application. If cellular tissue is used, this assay typically begins with a cell lysis step. Isoelectric focusing and photochemical capture are used to resolve sample content and immobilize them within the capillary, as described above. Pathology-specific antibodies are then applied to the capillary and allowed to bind to their targets. After washing, application of secondary antibodies, and detection substrate, a pattern of detected pathogen-specific analytes within the capillary is detected. In some specific cases, such as prion protein detection, a proteolytic digestion step may precede analysis, analogous to the assay now performed commercially for detection of prion disease using Western blotting.
From the foregoing, it is apparent that use of the methods and apparatus described above by a reference lab for analysis of proteins and other molecules has advantages of time, efficiency, training and precision, particularly compared to the current Western blotting technique. The following comparison illustrates some of these advantages:
This application is a continuation-in-part of U.S. patent application Ser. No. 11/185,247, filed Jul. 19, 2005 and entitled “METHODS AND DEVICES FOR ANALYTE DETECTION”, which claims benefit under 35 U.S.C. §119(e) to application Ser. No. 60/589,139, entitled “Continuous Determination of Cellular Contents by Chemiluminescence,” filed Jul. 19, 2004 and application Ser. No. 60/617,362, entitled “Determination of Captured Cellular Contents,” filed Oct. 8, 2004, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60589139 | Jul 2004 | US | |
60617362 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11185247 | Jul 2005 | US |
Child | 11431343 | May 2006 | US |