Methods and apparatus for revision of obesity procedures

Abstract
Methods and apparatus for the endoluminal revision of previously performed obesity procedures which have failed are described. One or more endoluminal instruments may be advanced per-orally into the previously formed failed pouch where a number of different procedures can be performed. One or more tissue folds can be formed and secured to reduce the size of the pouch, or the stoma connecting the pouch to the intestinal tract can be reduced in size using endoluminally deployed tissue anchors. These procedures can be performed entirely from within the pouch lumen or upon the exterior surface of the pouch via transgastric entry of the instruments into the peritoneal cavity of a patient. Alternatively, the interior tissue within the pouch can be injured or sclerosed to shrink the pouch lumen. In another alternative, a length of the Roux limb can be shortened endoluminally to create a malabsorptive region.
Description

The present invention relates to methods and apparatus for the revision of obesity-related surgical procedures. More particularly, the present invention relates to the revision and/or correction of surgically altered anatomy within a patient body which has been surgically altered for the treatment of morbid obesity. The methods and apparatus utilize endoluminal procedures and instruments.


BACKGROUND OF THE INVENTION

Generally, three types of bariatric procedures are typically performed on patients for the treatment of morbid obesity. The various surgical procedures include vertical banded gastroplasty (“VBG”), laparoscopic gastric banding (“Lap-Band”), and the Roux-en-Y gastric bypass (“RYGB”).


The RYGB procedure is a complex surgical procedure in which a small upper pouch P is created by stapling the stomach S and separating the pouch P from the remaining stomach S, which is left in place in the patient body. A Y-shaped segment of the intestines I (Roux limb), such as the upper jejunum JE or ilium IL, is rerouted and attached to the newly created pouch P via an anastomosis PA, as shown in FIG. 1A. The remaining portion of the jejunum JE is then reattached to the Roux limb at a lower point via an anastomosis IA. This rerouting causes food to pass through the esophagus E, through the pouch anastomosis PA, and into the Roux limb to bypass the stomach S. The pouch P further restricts the food intake and interferes with absorption to result in consistent weight loss.


In creating a VBG, a surgical stapler is used to form a staple line SL to create a small gastric pouch out of the stomach S just below the esophagus E. A non-adjustable polypropylene mesh band B is placed around the bottom of the pouch and through a circular window W created through the stomach S to restrict the size of its outlet, as shown in FIG. 1B. The small pouch and narrow outlet restricts the amount of food the patient can comfortably consume and delays the emptying of food into the remaining portion of the stomach S and duodenum DU.


However, in these types of surgical procedures, there is typically a failure rate of about 20% which is categorized into two types: acute and chronic failures. Acute failures are generally due to patient intolerance, leaks from either the pouch P or anastomoses PA and/or IA, and other complications. Chronic failures generally occur in about 10-20% of patients who fail to lose any significant amount of weight. The typical two failure modes occur from either (1) dilation of the pouch P, for example, where the pouch P expands from a 20-30 cc pouch to a 100-300 cc pouch; or from (2) dilation of the stoma through the pouch anastomosis PA, for example, where the stoma dilates from a 10-12 mm diameter to a 3-5 cm diameter.


Options for correcting these failures are limited to either simply leaving the dilated tissue or to perform an open surgical revision procedure to alter the length of the Roux limb to decrease absorption. However, such a procedure is typically accompanied by a 2-5% mortality rate and a 50% failure rate and is extremely difficult to perform due to the altered tissue anatomy. Moreover, minimally invasive laparoscopic surgical revision procedures are also extremely difficult because of the altered tissue anatomy and scar tissue.


Accordingly, in view of the foregoing, it would be desirable to provide minimally invasive methods and apparatus for performing endoluminal revision procedures to correct failed surgical procedures for obesity.


BRIEF SUMMARY OF THE INVENTION

Correction of failed obesity procedures in a minimally invasive manner may involve a number of different methods and instruments. The instruments may be introduced transgastrically, percutaneously, etc., into the patient's body and into or around a failed pouch previously created through a surgical procedure such as a RYGB, VBG, etc. Once the instruments are positioned within or adjacent to the pouch, tissue within or from the pouch may be temporarily engaged or grasped and the engaged tissue may be manipulated by a surgeon or practitioner from outside the patient's body.


In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the pouch lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the pouch lumen. A shape-lockable or rigidizable endoscopic assembly having an elongate body, a steerable distal portion, and multiple lumens defined therethrough may be advanced into a pouch per-orally and through the esophagus. A tissue manipulation assembly positioned at the distal end of a tubular body may be passed through the endoscopic assembly for engaging and securing the tissue.


Utilizing one or more of the instruments, the rigidizable endoscopic body may be used to pass the flexible body therethrough and into the pouch where it may be used to approximate folds of tissue which are secured via expandable tissue anchors expelled from the tissue manipulation assembly. Any number of tissue folds, i.e., one or more, may be created in a uniform pattern or randomly throughout the pouch lumen such that the enlarged pouch is reduced in size to a pouch having a smaller volume.


The instruments may be utilized endoluminally entirely within the pouch or transgastrically, where one or more tissue ridges may be formed from an exterior surface of the pouch. In this case, a transgastric opening may be created through the pouch to allow for passage of the instruments into the peritoneal cavity.


Another method may include reducing a diameter of the stoma between the pouch lumen and the intestinal tract through the pouch anastomosis. The tissue manipulation assembly may be directed to the tissue circumferentially around the anastomotic connection where one or several pairs of tissue anchors may be deployed into the tissue randomly or in a uniformly spaced configuration around the pouch anastomosis to reduce the opening to a smaller anastomosis which is more effective in restricting the passage of food received within the pouch lumen.


Another method may utilize an endoluminal tissue ablation instrument, e.g., plasma torch, laser, radio-frequency probe, etc., to ablate one or more regions of tissue within the pouch to shrink the tissue and ultimately shrink the size of the pouch.


To facilitate the grasping and manipulation of the tissue within the pouch, various methods and instruments may be utilized. In one example, a tissue engagement member may be positioned through the elongate body and utilized with the tissue manipulation assembly. In another example, the tissue manipulation assembly may be positioned within the pouch lumen with the lower and upper jaw members positioned in an open configuration for receiving tissue therebetween. The air, along with any other fluids, contained within the pouch lumen may be evacuated out, e.g., through one of the lumens defined through the elongate body or through a catheter advanced through the body. The evacuation of air and fluids from the pouch lumen may collapse the pouch tissue onto the flexible body and between the jaw members.


In yet another example, a Verres needle may be advanced percutaneously and positioned through the abdominal wall of a patient. A gas (e.g., air, carbon dioxide, nitrogen, etc.) may be pumped into the peritoneal cavity of the patient body to collapse the tissue of the pouch onto and over the tissue manipulation assembly, particularly between the jaw members positioned within the pouch lumen. The collapsed pouch tissue positioned between the jaw members may then be easily grasped and secured by deploying one or more tissue anchors through the collapsed pouch tissue.


In yet another method for facilitating engagement of the interior tissue, an elongate laparoscopic instrument having a blunted atraumatic tip may be advanced through a percutaneous opening and into contact with an outer surface of the pouch. Once the atraumatic tip contacts the outer surface of the pouch, the laparoscopic instrument may be pushed against the outer surface such that a fold of tissue is formed within the pouch lumen in the proximity of the tissue manipulation assembly. With the tissue fold formed within the pouch lumen, the jaw members of the tissue manipulation assembly may be positioned on either side of the tissue fold to grasp and secure the tissue. Once the tissue fold has been secured, the laparoscopic instrument may be repositioned at another location on the outer surface of the pouch.


In endoluminally revising a failed surgical procedure for the treatment of obesity, aside from reducing a volume of the pouch lumen, or reducing a diameter of the stoma through the pouch anastomosis, or even ablating the interior of the pouch lumen tissue surface, a length of the Roux limb may also be altered endoluminally. Altering the length of the Roux limb may create an additional malabsorptive portion of intestinal tissue and further reduce the ability of the patient body to absorb food passing therethrough. A rigidizable endoscopic body having a rounded atraumatic distal end may be advanced per-orally, through the patient's esophagus and pouch lumen, through the patient's pouch anastomosis and into the length of the intestinal tract.


The steerable distal portion of the endoscopic body may be articulated to curve into a retroflexed configuration relative to its proximal length while pulling a distal portion of the intestinal tract along with the endoscopic body into contact against or in proximity to the outer surface of the pouch. With the atraumatic distal end desirably positioned and the endoscopic body optionally rigidized, an endoscopic piercing or ablative instrument, e.g., an energizable needle knife, may be advanced through the distal portion of intestinal tissue and through the portion of pouch tissue to create an opening therebetween.


Once an opening through both tissue portions has been achieved, one or more tissue anchors may be deployed around the circumference of the openings using, e.g., tissue manipulation assembly, to secure the intestinal tissue to the pouch to create a side-to-side anastomotic connection. The anastomotic connection may be further dilated, if desired. Once the anastomotic connection has been formed, the endoscopic body may be transitioned into its flexible state (if initially rigidized) and withdrawn from the patient body. Optionally, the original pouch anastomosis may be closed using tissue anchors, if so desired, to ensure that food received within the pouch is shunted through the newly created anastomosis and bypasses the length of intestinal tissue. As a further option, the shunted portion of intestinal tissue may be endoluminally (or laparoscopically) excised and removed entirely from the patient body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows the resulting anatomy of the stomach and intestinal tract from a Roux-en-Y gastric bypass procedure.



FIG. 1B shows the resulting anatomy of the stomach from a vertical banded gastroplasty procedure.



FIG. 2 illustrates one example in which a rigidizable endoscopic assembly may be advanced into a patient's stomach per-orally and through the esophagus with a tissue manipulation assembly advanced through a first lumen and a helical tissue engagement instrument advanced through a second lumen.



FIGS. 3A to 3C illustrate an example for performing an endoluminal tissue manipulation and securement procedure utilizing a tissue manipulation assembly in combination with a helical tissue engagement instrument within, e.g., a patient's altered stomach in a revision procedure.



FIGS. 4A and 4B show detail views, respectively, of a failed pouch and a repaired pouch having a plurality of tissue folds secured throughout an interior of the pouch to reduce its size.



FIGS. 5A and 5B show detail views, respectively, of a failed pouch and a pouch with its anastomotic opening reduced in diameter to further restrict the passage of food therethrough.



FIGS. 5C and 5D show partial cross-sectional views of reduced stomas where a portion of the anastomosed intestinal tissue is approximated with respect to the pouch and where a portion of the pouch tissue is plicated leaving the anastomosed intestinal tissue untouched, respectively.



FIGS. 5E and 5F show end views from within the pouch of the stoma and pouch anastomosis where the pouch tissue adjacent to the stoma may be approximated in a radial configuration and/or a circumferential or annular configuration, respectively.



FIGS. 6A and 6B show detail views, respectively, of a pouch having a portion of its interior approximated and a cross-sectional top view of the same.



FIGS. 7A and 7B show detail views, respectively, of a failed pouch and a pouch having at least a portion of its interior surface injured and/or ablated to reduce the pouch size.



FIGS. 8A and 8B show detail views, respectively, of a pouch having a portion of its interior approximated and removed to promote healing of the plicated tissue.



FIGS. 9A and 9B illustrate detail views of one method for facilitating the grasping and engagement of the tissue within the interior of the tissue pouch by insufflating a patient's peritoneal cavity to collapse the pouch tissue upon the tissue manipulation assembly.



FIGS. 10A and 10B illustrate another method for facilitating tissue grasping and engagement within the pouch lumen by advancing an elongate laparoscopic instrument through a percutaneous opening and into contact with an outer surface of the pouch.



FIGS. 11A to 11C show examples of various laparoscopic instruments which may be passed through the patient body into contact with the pouch exterior.



FIGS. 12A to 12C illustrate an example for altering a length of the Roux limb by advancing an optionally rigidizable elongate body through the pouch and intestinal tract and retroflexing a distal portion of the intestinal tissue for connection with the pouch.



FIGS. 12D to 12G illustrate an optional procedure for endoluminally excising and removing a portion of the Roux limb proximally through the pouch and esophagus and from the patient's mouth.



FIGS. 13A and 13B show another example for reducing a size of a pouch by creating at least one externally formed tissue ridge along the outer surface of the pouch.



FIGS. 14A to 14D illustrate one method where the pouch stoma may be reduced in size by approximating the edges of a portion of the stoma.



FIGS. 15A to 15C illustrate a combination of various methods where the pouch having a reduced stoma from FIGS. 14A to 14D may be further reduced in pouch size by engaging and securing one or more tissue folds throughout the lumen.



FIGS. 16A to 16C illustrate another method where the pouch stoma may be reduced in size by deploying one or more tissue anchors around a periphery of the stoma.



FIGS. 17A and 17B illustrate another combination of various methods where the pouch having a reduced stoma from FIGS. 16A to 16C may be further reduced in pouch size by engaging and securing one or more tissue folds throughout the lumen.





DETAILED DESCRIPTION OF THE INVENTION

To correct failed obesity procedures in a minimally invasive manner, a tissue manipulation and/or securement instrument may be introduced per-orally through the patient's esophagus and into the created pouch to perform a number of procedures. The pouch may have been previously formed by any number of procedures, e.g., RYGB, VBG, etc., for the treatment of obesity. Alternatively, the instrument may be introduced transgastrically, percutaneously, etc., into the patient's body and into or around the pouch. Once the instrument is positioned within or adjacent to the pouch, tissue within or from the pouch may be temporarily engaged or grasped and the engaged tissue may be manipulated by a surgeon or practitioner from outside the patient's body. Examples of creating and forming tissue plications may be seen in further detail in U.S. patent application Ser. No. 10/955,245 filed Sep. 29, 2004 as well as in U.S. patent application Ser. No. 10/735,030 filed Dec. 12, 2003, each of which is incorporated herein by reference in its entirety.


In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the pouch lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the pouch lumen. When manipulating and securing tissue within a patient's body, a separate elongate shaft having a helical tissue engager on or near the distal end of the shaft may be utilized in conjunction with a tissue manipulation assembly. Such an instrument may be generally utilized in endoluminal procedures where the tools are delivered through an endoscopic device.


As illustrated in FIG. 2, one such example is shown in which a shape-lockable or rigidizable endoscopic assembly 10 may be advanced into a patient's stomach S per-orally and through the esophagus E. Such an endoscopic assembly 10 may generally comprise an endoscopic device which may have a distal portion which may be articulated and steered to position its distal end anywhere within the stomach S. Once desirably configured, assembly 10 may then be locked or rigidized to maintain its shape or configuration to allow for procedures to be performed on the tissue utilizing any number of tools delivered through the assembly 10. Shape-lockable or rigidizable assembly 10 and its variations are described in further detail in U.S. patent application Ser. No. 10/734,562 filed Dec. 12, 2003 and in U.S. patent application Ser. No. 10/346,709 filed Jan. 15, 2003, both of which are incorporated herein by reference in its entirety.


Shape-lockable assembly 10 may be generally comprised of shape-lockable endoscopic body 12 having an articulatable distal portion 24. The endoscopic body 12 may define at least first and second lumens 26, 28, respectively, through the endoscopic body 12 through which one or more tools may be deployed into the stomach S. Additional lumens may be provided through shape-lockable endoscopic body 12, such as a visualization lumen 30, through which an endoscope may be positioned to provide visualization of the region of tissue. Alternatively, an imager such as a CCD imager or optical fibers may be provided in lumen 30 to provide visualization. An optional thin wall sheath may be disposed through the patient's mouth, esophagus E, and possibly past the gastroesophageal junction GEJ into the stomach S. Shape-lockable body 12, having a covering 22 thereon, may be advanced through esophagus E and into stomach S while disposed in a flexible state.


Distal steerable portion 24 of endoscopic body 12 may be then articulated to an orientation, e.g., whereby distal portion 24 facilitates engagement of tissue near and/or inferior to the patient's gastroesophageal junction GEJ. Accordingly, distal steerable portion 24 may comprise a number of steering features, as described in further detail in U.S. patent application Ser. Nos. 10/734,562 and 10/346,709, incorporated above. With distal steerable portion 24 disposed in a desired configuration or orientation, endoscopic body 12 may be reversibly shape-locked to a rigid state such that the endoscopic body 12 maintains its position within the stomach S. Various methods and apparatus for rigidizing endoscopic body 12 along its length are also described in further detail in U.S. patent application Ser. Nos. 10/734,562 and 10/346,709, incorporated above.



FIG. 2 further shows tissue manipulation assembly 16 having been advanced through first lumen 26 and a helical tissue engagement member 32 positioned upon flexible shaft 34 advanced through second lumen 28. As the tissue wall of a body lumen, such as the stomach, typically comprises an inner mucosal layer, connective tissue, the muscularis layer and the serosa layer. To obtain a durable purchase, e.g., in performing a stomach reduction procedure, helical tissue engagement member 32 may be advanced into contact with the tissue and preferably engages the tissue F such that when the tissue engagement member 32 is pulled proximally to draw the engaged tissue F between the jaw members 18, 20 of tissue manipulation assembly 16, at least the muscularis tissue layer and the serosa layer is drawn into tissue manipulation assembly 16. As tissue manipulation assembly 16 may be utilized to grasp and secure the engaged tissue, any number of tools may be utilized with tissue manipulation assembly 16, e.g., through shape-lockable endoscopic body 12, to engage and manipulate the tissue of interest relative to tissue manipulation assembly 16.


An illustrative example of a tissue manipulation instrument which may be utilized for endoluminally accessing tissue is described in further detail in U.S. patent application Ser. No. 11/070,863 filed Mar. 1, 2005 (US Pat. Pub. 2005/0251166 A1), which is incorporated herein by reference in its entirety. Such an instrument assembly generally comprises a flexible catheter or tubular body 14 which may be configured to be sufficiently flexible for advancement into a body lumen, e.g., transorally, percutaneously, laparoscopically, etc. Tubular body 14 may be configured to be torqueable through various methods, e.g., utilizing a braided tubular construction, such that when a proximally-located handle is manipulated and/or rotated by a practitioner from outside the patient's body, the longitudinal and/or torquing force is transmitted along body 14 such that the distal end of body 14 is advanced, withdrawn, or rotated in a corresponding manner.


As shown in FIGS. 3A to 3C, tissue manipulation assembly 16 is located at the distal end of tubular body 14 and is generally used to contact and form tissue folds, as mentioned above. The tissue manipulation assembly 16 may be connected to the distal end of tubular body 14 via a pivotable coupling. Lower jaw member 18 extends distally from the pivotable coupling and upper jaw member 20, in this example, may be pivotably coupled to lower jaw member 18 via a jaw pivot. The location of the jaw pivot may be positioned at various locations along lower jaw 18 depending upon a number of factors, e.g., the desired size of the “bite” or opening for accepting tissue between the jaw members, the amount of closing force between the jaw members, etc. One or both jaw members 18, 20 may also have a number of protrusions, projections, grasping teeth, textured surfaces, etc., on the surface or surfaces of the jaw members 18, 20 facing one another to facilitate the adherence of tissue between the jaw members 18, 20.


Launch tube 40 may extend from the handle, through tubular body 14, and distally from the end of tubular body 14 where a distal end of launch tube 40 is pivotally connected to upper jaw member 20 at a launch tube pivot. A distal portion of launch tube 40 may be pivoted into position within a channel or groove defined in upper jaw member 20, to facilitate a low-profile configuration of tissue manipulation assembly 16. When articulated, either via launch tube 40 or other mechanism, as described further below, jaw members 18, 20 may be urged into an open configuration to receive tissue in the jaw opening between the jaw members 18, 20.


Launch tube 40 may be advanced from its proximal end at the handle such that the portion of launch tube 38, which extends distally from body 14, is forced to rotate at a hinge or pivot and reconfigure itself such that the exposed portion forms a curved or arcuate shape that positions the launch tube opening perpendicularly relative to upper jaw member 20. Launch tube 40, or at least the exposed portion of launch tube 38, may be fabricated from a highly flexible material or it may be fabricated, e.g., from Nitinol tubing material which is adapted to flex, e.g., via circumferential slots, to permit bending.



FIGS. 3A to 3C further illustrate one method for articulating a tissue manipulation assembly into an opened and closed configuration. As shown in FIG. 3A, the assembly may be delivered into a patient while in a low-profile configuration 40, e.g., trans-orally, trans-anally, percutaneously, through an endoscope, an endoscopic device, directly, etc., and desirably positioned relative to a tissue region of interest 36. The endoscopic body 12 may be rigidized to maintain its configuration within the patient body. Alternatively, it may be left in a flexible state during the procedure.


The tissue region of interest 36 as well as the procedure may be visualized through visualization lumen 30 or a separate imager. In either case, tissue manipulation assembly 16 and helical tissue engagement member 32 may be advanced distally out from endoscopic body 12 through their respective lumens 26, 28. Tissue engagement member 32 may be advanced into contact against the tissue surface, as shown in FIG. 3A, and then rotated via its proximal handle until the tissue is engaged. The engaged tissue F may be pulled proximally relative to endoscopic body 12 and tissue manipulation assembly 16 may be actuated via its proximally located handle into an open expanded jaw configuration for receiving the engaged tissue F, as shown in FIG. 3B.


Once desirably positioned, launch tube 40 may be urged proximally via its proximal end at the handle. Because of the jaw assembly pivot and the relative positioning of the upper jaw 20 along lower jaw member 18 and the launch tube pivot along upper jaw member 20, the proximal movement of launch tube 40 may effectively articulate upper jaw 20 into an expanded jaw configuration, as shown in FIG. 3B. Proximally urging launch tube 40 may also urge lower jaw member 18 to pivot and form an angle relative to a longitudinal axis of tubular body 14. The opening of upper jaw 20 relative to lower jaw 18 creates a jaw opening for grasping, receiving, and/or manipulating tissue. Moreover, the tissue manipulation assembly may also include a stop located adjacent to the jaw assembly pivot or within the pivot itself.


Once launch tube 40 has been urged proximally, it may be locked into place thus locking the jaw configuration as well. Moreover, having the launch tube 40 articulate the jaw members 18, 20 in this variation eliminates the need for a separate jaw articulation and/or locking mechanism. Once the tissue has been pulled or manipulated between jaw members 18, 20, launch tube 40 may be pushed distally to actuate the jaw members 18, 20 into a closed, grasping configuration, as shown in FIG. 3C, for engagement with the tissue. As launch tube 40 is urged distally through elongate body 12, lower jaw member 18 may be maintained at an angle relative to the tissue to further facilitate manipulation of the grasped tissue.


Although launch tube 40 may be fabricated from different materials having differing flexibilities, it may also be fabricated from a single material, as mentioned above, where the flexible portion 38 may be configured, e.g., by slotting, to allow for bending of the launch tube 40 in a plane to form a single curved or arcuate section while the proximal rigid section may extend at least partially into tubular body 14 to provide column strength to launch tube 40 while it is urged distally upon upper jaw member 20 and upon any tissue engaged thereby, as seen in the FIG. 3C.


Once the tissue has been engaged between jaw members 18, 20, a needle assembly may be urged through the handle and out through launch tube 40. The needle assembly may pass through lower jaw member 18 via a needle assembly opening defined in lower jaw member 18 to pierce through the grasped tissue. Once the needle assembly has been passed through the engaged tissue, one or more tissue anchors may be deployed for securing the tissue, as described in further detail in U.S. patent application Ser. No. 10/955,245, which has been incorporated by reference above.


Helical tissue engagement member 32 may be retracted from the tissue F or it may be left within the tissue while the tissue manipulation assembly engages and secures the tissue F. The helical tissue engagement member 32 is shown as a tissue piercing helix or corkscrew structure upon flexible shaft 34. Tissue engagement member 32 may be rotated about its longitudinal axis to engage the tissue of interest by rotating its handle located on the proximal end of flexible shaft 34.


A distal portion of shaft 34 proximal to engagement member 32 (or the entire length or a majority of the length of shaft 34 in other variations) may include a marked section 42, as shown in FIGS. 3A to 3C. Helical tissue engagement member 32 and flexible shaft 34 are rotated about its longitudinal axis to advance engagement member 32 into the tissue region of interest 36. Accordingly, marked section 42 may comprise any number of markings, designs, patterns, projections, textures, etc., which acts to provide a visual indication to the user as to the translational movement, rotation, direction of rotation, etc., of engagement member 32 and shaft 34 relative to tissue region 36 when viewed from outside the patient body laparoscopically or endoluminally, for instance, through visual lumen 30.


Utilizing the instruments described above, various endoluminal procedures may be performed to correct failures in obesity-related procedures. For example, FIG. 4A shows a detail view of a pouch P which may have failed, e.g., through a stretched and enlarged pouch lumen PL. The remaining anatomy, such as the remainder of the stomach S, has been omitted only for clarity. The flexible body 14 and tissue manipulation assembly 16, described above, may be advanced per-orally, through the esophagus E, and into the enlarged pouch lumen PL. The rigidizable endoscopic body 12 may be used to pass the flexible body 14 therethrough and into pouch P, as shown in the figure. In an alternative method (and for methods described below), the endoscopic body 12 may be omitted entirely and flexible body 14 and tissue manipulation assembly 16 may be passed directly into the pouch P.


Once within the pouch lumen PL, the tissue manipulation assembly 16 may be used to create within the pouch P approximated folds of tissue 50 which are secured via expandable tissue anchors 52 expelled from the tissue manipulation assembly 16, as described above. Any number of tissue folds 50, i.e., one or more, may be created in a uniform pattern or randomly throughout the pouch lumen PL, as shown in FIG. 4B, such that the enlarged pouch P is reduced in size to a pouch P′ having a smaller volume.


Another method may involve endoluminally reducing a diameter or size of the stoma created between the pouch lumen PL and the intestinal tract I through the pouch anastomosis PA. As shown in FIG. 5A, flexible body 14 and tissue manipulation assembly 16 may be advanced through the patient's esophagus E and into the pouch lumen PL either alone or optionally through endoscopic body 12, as illustrated. Once within the pouch P, tissue manipulation assembly 16 may be directed to the tissue circumferentially around the anastomotic connection PA, where the tissue from pouch P and a portion of the tissue from the intestinal tract I around the pouch anastomosis PA may be approximated by tissue manipulation assembly 16 and secured by one or more pairs of tissue anchors 52, as shown in FIG. 5B. One pair or several pairs of tissue anchors 52 may be deployed into the tissue randomly or in a uniformly spaced configuration around the pouch anastomosis PA provided that the enlarged opening through pouch anastomosis PA is reduced in size to a smaller pouch anastomosis PA′ opening which is more effective in restricting the passage of food received within pouch lumen PL.


There are a number of methods for reducing the stoma size by varying the configuration of the tissue anchors deployed around the stoma. For instance, the example illustrated in FIG. 5C shows a partial cross-sectional side view of a reduced stoma through a pouch anastomosis PA where a portion of the anastomosed intestinal tissue I and a portion of the pouch tissue may be approximated around the stoma via one or more anchor pairs 52 deployed and secured against the tissue. In another variation, rather than approximating the intestinal tissue I, the portion of pouch tissue adjacent to or in proximity to the pouch anastomosis PA may be plicated such that the intestinal tissue I remains untouched, as shown in FIG. 5D.


In yet other examples, the tissue from the pouch adjacent to the pouch anastomosis PA may be approximated and secured to reduce the stoma size. As shown in the end view from within the pouch of the stoma and pouch anastomosis PA in FIG. 5E, one or more anchor pairs 52 may be deployed into the pouch tissue to form one or more folds of tissue F which are formed radially with respect to the pouch anastomosis PA. In another example shown in FIG. 5F, one or more tissue folds F may be formed and secured such that the tissue folds F are circumferentially or more annularly aligned with respect to the stoma and pouch anastomosis PA.



FIGS. 6A and 6B show detail perspective and cross-sectional top views of a reduced pouch lumen PL by approximating multiple folds of tissue within the pouch P. The tissue manipulation assembly 16 may be advanced into the pouch P and at least a first fold of tissue F may be approximated to at least a second fold of tissue F′ and secured via one or more pairs of tissue anchors 52. FIG. 6B shows a cross-sectional view of the reduced pouch P′ where the first fold of tissue F and the second fold of tissue F′ are secured to one another by the tissue anchors 52 one either side of the respective tissue folds F, F′ via a length of suture 54 passing through and securing each fold F, F′. Although a single tissue apposition is shown in this example, multiple folds of tissue may be approximated towards one another around the pouch lumen PL until the desired reduction in the pouch lumen volume has been achieved.



FIG. 7A shows an example of a method where an endoluminal tissue ablation instrument 60, e.g., plasma torch, laser, radio-frequency probe, etc., may be advanced through the endoscopic body 12 and into the pouch P. This ablation instrument 60 may be activated to ablate one or more regions of tissue 62 within pouch P, particularly the mucosal tissue, such that the shrinkage of the ablated tissue within pouch lumen PL shrinks the size of the pouch P to a reduced pouch P′, as shown in FIG. 7B. Examples of other tools and instruments for injuring regions of tissue and mucosa are shown and described in further detail in U.S. patent application Ser. No. 10/898,683 filed Jul. 23, 2004, which is incorporated herein by reference in its entirety.



FIG. 8A shows an example of another method where one or more ridges of tissue may be plicated to form at least one tissue fold which is secured by one or more tissue anchors 52 to reduce the side of a pouch P′. To enhance the healing of the tissue fold, a portion of the tissue 72 may be optionally resected or otherwise injured to leave a region of injured or sclerosed tissue 70 along the tissue fold, as shown in FIG. 8B. Injuring or removing tissue 72 is optional and may be performed on any of the tissue folds created within pouch lumen PL if additional healing of the tissue is desired. Examples of methods and instruments which may be utilized to resect and/or remove tissue from within a lumen, such as pouch lumen PL, may be seen in U.S. patent application Ser. No. 11/069,890 filed Feb. 28, 2005, which is incorporated herein by reference in its entirety.


To facilitate the grasping and manipulation of the tissue within the pouch P, various methods and instruments may be utilized. In one example, a tissue engagement member, such as member 32, may be positioned through elongate body 12 and utilized with tissue manipulation assembly 16, as described above. In another example, the tissue manipulation assembly 16 may be positioned within pouch lumen PL with lower and upper jaw members 18, 20 positioned in an open configuration for receiving tissue therebetween. The air, along with any other fluids, contained within pouch lumen PL may be evacuated out, e.g., through one of the lumens defined through elongate body 12 or through a catheter advanced through body 12. The evacuation of air and fluids from pouch lumen PL may collapse the pouch tissue onto the flexible body 14 and between the jaw members 18, 20.


In yet another example shown in FIG. 9A, a hollow instrument, such as Verres needle 80, may be advanced percutaneously and positioned through an opening 86 defined through the abdominal wall AW of a patient. Verres needle 80 may be fluidly connected via tubing 82 to a pump (not shown) such that a gas (e.g., air, carbon dioxide, nitrogen, etc.) may be pumped into the peritoneal cavity PC of the patient body. As more gas is introduced into the peritoneal cavity PC, the tissue of pouch P may become collapsed due to a pressure differential onto and over the tissue manipulation assembly 16, particularly between jaw members 18, 20 which may be positioned within pouch lumen PL prior to insufflating the peritoneal cavity PC with a gas, as shown in FIG. 9B. The collapsed pouch tissue 84 positioned between jaw members 18, 20 may then be easily grasped and secured by deploying one or more tissue anchors through the collapsed pouch tissue 84. The gas within the peritoneal cavity PC may be evacuated to allow for the tissue manipulation assembly 16 to be repositioned within the pouch and the process of re-filling the peritoneal cavity PC with gas may be repeated. This method of insufflating the peritoneal cavity PC may be utilized either alone or in conjunction with insufflating and exsufflating the gas and fluids within the pouch lumen PL itself through the elongate body 12, as described above.


In yet another method for facilitating engagement of the interior tissue, an elongate laparoscopic instrument 90 having a blunted atraumatic tip 92 may be advanced through a percutaneous opening 86 and into contact with an outer surface of the pouch P. As shown in FIG. 10A, laparoscopic instrument 90 may be advanced distally through the peritoneal cavity via handle 94 with tissue manipulation assembly 16 positioned within the pouch lumen PL. Once the atraumatic tip 92 contacts the outer surface of the pouch P, laparoscopic instrument 90 may be pushed against the outer surface of pouch P such that a fold of tissue is formed within the pouch lumen PL in the proximity of the tissue manipulation assembly 16, as shown in FIG. 10B. To further facilitate the formation of the tissue fold, the interior of the pouch lumen PL may be insufflated with a gas to present a taut surface of the pouch tissue around the tissue fold.


With the tissue fold formed within the pouch lumen PL around the atraumatic tip 92, the jaw members 18, 20 of tissue manipulation assembly 16 may be positioned on either side of the tissue fold to grasp and secure the tissue, as further shown in FIG. 10B. Once the tissue fold has been secured, laparoscopic instrument 90 may be repositioned at another location on the outer surface of the pouch P. This process may be repeated as many times as necessary until a desired reduction in the pouch size has been attained. Moreover, the tissue folds may be formed in a uniform manner around the pouch lumen PL or in a random manner, as desired and as described above.


Various laparoscopic instruments may be utilized for forming the tissue bulges within the pouch lumen PL. An elongate shaft 90 having a simple blunted or rounded atraumatic tip 92, as described above and as shown in FIG. 11A, may be utilized. Alternatively, an elongate laparoscopic instrument having a variable geometry on its distal end may be utilized. Having such a variable geometry may be useful when advancing the instrument in the patient body in a low profile and expanded prior to contacting the pouch outer surface to form tissue folds having various geometries within the pouch. One example is shown in FIG. 11B where an elongate shaft 90 may have one or more retractable arms 96 which can pivot into a deployed configuration for contacting against the pouch outer surface and retracted 96′ during delivery and withdrawal of the instrument 90 within the patient body. In another alternative, any laparoscopic instrument having a blunted distal shape may be utilized in forming the tissue folds. For example, FIG. 11C shows an elongate shaft 90 having a conventional laparoscopic grasper 98 attached thereto. The grasper 98 may be utilized in its closed configuration to press against the pouch outer surface, as described above.


In yet another alternative, rather than using a laparoscopic instrument, the finger or fingers of the surgeon or practitioner may simply be used to press against the outer surface of the patient body and against the pouch tissue surface to form the tissue folds within the pouch for securement by the tissue manipulation assembly 16. In any of the above described examples, the interior of the pouch lumen PL may be optionally insufflated by a gas during the tissue forming procedure.


In endoluminally revising a failed surgical procedure for the treatment of obesity, aside from reducing a volume of the pouch lumen, or reducing a diameter of the stoma through the pouch anastomosis PA, or even ablating the interior of the pouch lumen PL tissue surface, a length of the Roux limb may also be altered endoluminally. Altering the length of the Roux limb may create an additional malabsorptive portion of intestinal tissue and further reduce the ability of the patient body to absorb food passing therethrough.


As shown in FIG. 12A, a failed RYGB procedure with a pouch P and its anastomosed intestinal tract I is illustrated. A rigidizable endoscopic body 12 having a rounded atraumatic distal end 100 may be advanced per-orally, through the patient's esophagus E and pouch lumen PL, through the patient's pouch anastomosis PA and into the length of the intestinal tract I.


As described above, at least a portion of a length of endoscopic body 12 is transitionable between a flexible state and a rigid state and may have an articulatable or steerable distal portion 24. As the endoscopic body 12 in its flexible state is advanced a distance through the intestinal tract I, its steerable distal portion may be articulated to curve into a retroflexed configuration relative to its proximal length. As the endoscopic body 12 is retroflexed, a distal portion 104 of the intestinal tract I along the jejunum JE or ilium IL may be pulled along by the endoscopic body 12 into contact against or in proximity to the outer surface of the pouch P, as shown in FIG. 12B.


Once the endoscopic body 12 and distal portion 104 of the intestinal tract has been desirably positioned relative to the pouch P, endoscopic body 12 may be optionally transitioned into its rigid state to provide a stable platform for cutting or piercing through the distal portion 104 and pouch P for creating an anastomotic connection therebetween. With the atraumatic distal end 100 desirably positioned and endoscopic body 12 optionally rigidized, an endoscopic piercing or ablative instrument 102, e.g., an energizable needle knife, may be advanced through the distal portion 104 of intestinal tissue and through the portion of pouch tissue 106. Once an opening through both tissue portions has been achieved, one or more tissue anchors 52 may be deployed around the circumference of the openings using, e.g., tissue manipulation assembly 16, to secure the intestinal tissue I to the pouch P to create a side-to-side anastomotic connection 108, as shown in FIG. 12C. The anastomotic connection 108 may be further dilated, if desired, by utilizing additional instruments such as balloons, sphincterotomes, etc. Once the anastomotic connection 108 has been formed, the endoscopic body 12 may be transitioned into its flexible state (if initially rigidized) and withdrawn from the patient body.


Optionally, the original pouch anastomosis PA may be closed using tissue anchors 52, if so desired, to ensure that food received within the pouch P is shunted through the newly created anastomosis 108 and bypasses the length of intestinal tissue I.


Additionally and/or optionally, one or more portions of the intestinal tissue may be excised and removed entirely from the patient body by withdrawing the excised tissue proximally through a natural orifice of the patient body, for instance, from and/or through the pouch, esophagus, and out of the patient's mouth. One example is shown in FIGS. 12D to 12G where after the pouch P has been shunted through the newly created anastomosis 108, the rigidizable endoscopic body 12 may be directed towards the pouch anastomosis PA where a cutting or piercing instrument, such as instrument 102, may be used to cut away the anastomosed intestinal portion I from the pouch P to leave a pouch opening 109, as shown in FIG. 12D.


With the previously anastomosed intestinal tissue I cut from pouch P, the pouch opening 109 may be closed via one or more tissue anchors 52, as shown in FIG. 12E, using the tissue manipulation assembly 16. The endoscopic body 12 may be redirected through the anastomosis 108 where instrument 102 may be advanced at least partially into the intestinal tissue I to completely excise the portion of intestinal tissue 111. As shown in FIG. 12F, the excised intestinal tissue 111 may be grasped or otherwise secured via the tissue manipulation assembly 16 (or endoscopic graspers or other engaging instrument) and withdrawn proximally through the intestinal opening 113, anastomosis 108, pouch P, and through the patient esophagus and out of the patient's mouth. After the excised intestinal tissue 111 has been removed from the patient body, the endoscopic body 12 (or just the tissue manipulation assembly 16) may be advanced back into pouch P and through the anastomosis 108 to deploy one or more additional tissue anchors 52 to close the intestinal tissue opening 113, as shown in FIG. 12G. The instruments may then be withdrawn proximally and removed from the patient body entirely.


In yet another method for reducing a size of the pouch lumen PL, endoscopic body 12 may be advanced through a transgastric opening 110 created along the pouch wall. The transgastric opening 110 may be formed by utilizing endoluminal cutting and/or piercing instruments or by utilizing laparoscopic instruments passed through the patient's abdominal wall. In either case, the endoscopic body 12 may be passed through the transgastric opening 110 and into the peritoneal cavity of the patient body.


Once within the peritoneal cavity, the endoscopic body 12 may be steered and/or retroflexed to direct the tissue manipulation assembly 16 adjacent to the outer surface of the pouch P, as shown in FIG. 13A. From there, tissue manipulation assembly 16 may be utilized to create at least one (or more) externally formed tissue ridge 114 by deploying one or more tissue anchors 52 along the outer surface of the pouch P. As the tissue is plicated and secured, the interior of the pouch lumen PL may be reduced in size to form a smaller pouch P′, as shown in FIG. 13B. Once the pouch P′ has been desirably reduced in size, the endoscopic body 12 may be withdrawn proximally through the transgastric opening 110, which may then be closed by deploying one or more tissue anchors 52 to close the opening 112.


Examples for creating and/or closing transgastric openings as well as passing endoluminal instruments through the transgastric openings may be seen in further detail in U.S. patent application Ser. No. 11/238,279 filed Sep. 28, 2005 and U.S. Prov. Pat. App. Ser. No. 60/728,382 filed Oct. 18, 2005, each of which is incorporated herein by reference in its entirety.


As mentioned above, various combinations of different methods and procedures described herein may be combined with one another as practicable. For example, as shown in FIGS. 14A and 14B, an elongate rigidizable endoscopic body 12 may be advanced per-orally and trans-esophageally into the pouch lumen PL. The distal end of endoscopic body 12 may be directed towards the stoma defined by the pouch anastomosis PA, where flexible body 14 and tissue manipulation assembly 16 may be manipulated to grasp, e.g., the edges 122 of the pouch anastomosis PA, to approximate and secure the tissue, as shown in FIG. 14B. The procedure may be viewed via an imaging assembly, such as fiber optic or CCD or CMOS electronic imager, or endoscope 120.


As further shown in FIGS. 14C and 14D, one pair or several pairs of anchors 52 may be deployed into the pouch and/or intestinal tissue to approximate the edges 122 of the pouch anastomosis PA to create a smaller opening through a reduced pouch anastomosis PA′. Once the stoma size has been reduced, the tissue may be viewed via the endoscope 120 and the elongate rigidizable body 12 may be withdrawn from the pouch P. Alternatively and/or optionally, the pouch interior may be further reduced in size by re-directing the elongate body 12 and tissue manipulation assembly 16 to regions around the pouch lumen PL to create and secure with anchors 52 one or more tissue folds F, as shown in FIG. 15A.


Although at least one tissue fold F may be formed and secured, multiple tissue folds F may be formed and secured around a periphery of the pouch lumen by manipulating the elongate body 12 and tissue manipulation assembly 16, as shown in FIGS. 15B and 15C, to result in a revised pouch P′ which not only has a reduced anastomotic opening PA′ but also a reduced pouch P′ size. The tissue anchors 52 may be deployed in tissue folds F formed randomly throughout the pouch lumen PL or in a circumferential or uniform manner. Furthermore, one or more of the tissue folds and anchors 52 may optionally be interconnected with one another via a drawstring-type mechanism, e.g., a loop suture, made from a suture or biocompatible wire to optionally tighten the tissue folds relative to one another in a purse-string manner. This type of looped suture and anchor assembly allows for the surgeon to manually adjust the size of the restriction opening.


In yet another example for creating a combination of various methods, FIGS. 16A to 16C illustrate the deployment of tissue anchors 52 around a periphery of the pouch anastomosis PA to result in a reduced anastomotic connection PA′, as described above. The rigidizable elongate body 12 may be advanced adjacent to the pouch anastomosis PA, as shown in FIG. 16A, where the tissue manipulation assembly 16 may be used to deploy one or more tissue anchor pairs 52 around the pouch anastomosis PA, as shown in FIGS. 16B and 16C. The tissue anchors 52 may be deployed in a radial or circumferential configuration, as described above.


Once the stoma has been reduced in size, the elongate body 12 may optionally be redirected to regions of tissue around the pouch lumen PL to create and secure one or more tissue folds F to result in a reduced pouch P′ also having a reduced pouch anastomosis PA′. As described above, the tissue folds F may be formed uniformly or randomly through the pouch lumen PL and may be further interconnected, as desired.


These examples are intended to illustrate the various types of procedures and methods which may be combined as practicable and are not intended to be limiting in any way. Moreover, the elongate body 12 may be transitioned between a rigid state and a flexible state at any time during a procedure depending upon the desired degree of platform stability during tissue manipulation and securement within the pouch lumen PL.


Although various illustrative embodiments are described above, it will be evident to one skilled in the art that a variety of combinations of aspects of different variations, changes, and modifications are within the scope of the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A method for correcting a failed surgically-created pouch within a patient body, comprising: advancing a tissue manipulation assembly endoluminally into the failed surgically-created pouch;evacuating fluid from the pouch to facilitate acquisition of tissue by the tissue manipulation assembly;deploying at least one tissue anchor into a region of tissue around an opening between the pouch and a length of anastomosed intestinal tissue via the tissue manipulation assembly; andapproximating the at least one tissue anchor such that the opening between the pouch and the intestinal tissue is reduced in size.
  • 2. The method of claim 1 wherein advancing a tissue manipulation assembly endoluminally comprises advancing the assembly per-orally and trans-esophageally into the pouch.
  • 3. The method of claim 1 wherein advancing a tissue manipulation assembly endoluminally comprises advancing a rigidizable elongate body endoluminally into the pouch and advancing the tissue manipulation assembly through at least one lumen defined through the elongate body.
  • 4. The method of claim 3 further comprising rigidizing the elongate body to maintain a configuration after advancing the rigidizable elongate body endoluminally into the pouch.
  • 5. The method of claim 1 wherein deploying at least one tissue anchor comprises passing the at least one tissue anchor between the pouch and the intestinal tissue around the opening via a needle assembly delivered by the tissue manipulation assembly.
  • 6. The method of claim 1 further comprising deploying a plurality of additional tissue anchors into the region of tissue around the opening.
  • 7. The method of claim 1 wherein the at least one tissue anchor is deployed into at least a portion of pouch tissue and at least a portion of intestinal tissue.
  • 8. The method of claim 1 wherein the at least one tissue anchor is deployed into a portion of pouch tissue surrounding the opening.
  • 9. The method of claim 8 wherein the at least one tissue anchor is deployed in a radial configuration with respect to the opening.
  • 10. The method of claim 8 wherein the at least one tissue anchor is deployed in a circumferential or annular pattern with respect to the opening.
  • 11. The method of claim 1 further comprising forming at least one tissue fold within the pouch via the tissue manipulation assembly.
  • 12. The method of claim 11 further comprising forming a plurality of additional tissue folds within the pouch.
  • 13. The method of claim 11 further comprising securing the at least one tissue fold formed by the tissue manipulation assembly via at least one additional tissue anchor such that a volume of the pouch is reduced.
  • 14. The method of claim 13 further comprising purse-stringing the tissue anchor and the at least one additional tissue anchor together.
  • 15. The method of claim 1 wherein approximating the at least one tissue anchor comprises drawing tissue anchors towards one another such that the opening between the pouch and the intestinal tissue is reduced in size.
  • 16. The method of claim 1 wherein advancing a tissue manipulation assembly endoluminally comprises advancing an elongate body endoluminally into the pouch and advancing the tissue manipulation assembly through at least one lumen defined through the elongate body.
  • 17. The method of claim 16 wherein evacuating fluid from the pouch comprises evacuating the fluid through a lumen defined through the elongate body.
  • 18. The method of claim 16 wherein evacuating fluid from the pouch comprises evacuating the fluid through a catheter advanced through the elongate body.
US Referenced Citations (751)
Number Name Date Kind
437746 Barber et al. Oct 1890 A
616672 Kelling Dec 1898 A
1814791 Endo et al. May 1928 A
2201610 Dawson, Jr. May 1940 A
2413142 Jones et al. Dec 1945 A
2510198 Tesmer Jun 1950 A
2533494 Mitchell, Jr. Dec 1950 A
3060972 Sheldon Oct 1962 A
3096962 Meijs Jul 1963 A
3150379 Brown Sep 1964 A
3162214 Bazinet, Jr. Dec 1964 A
3166072 Sullivan, Jr. Jan 1965 A
3168274 Street Feb 1965 A
3430662 Guarnaschelli Mar 1969 A
3485237 Bedford Dec 1969 A
3494006 Brumlik Feb 1970 A
3506007 Henkin Apr 1970 A
3546961 Marton Dec 1970 A
3551987 Wilkinson Jan 1971 A
3620241 Brown Nov 1971 A
3646615 Ness Mar 1972 A
3664345 Dabbs et al. May 1972 A
3665928 Del Guercio May 1972 A
3669098 Takahashi Jun 1972 A
3753438 Wood et al. Aug 1973 A
3780740 Rhea Dec 1973 A
3782455 Wolowodiuk et al. Jan 1974 A
3798955 Wimmer et al. Mar 1974 A
3805770 Okada Apr 1974 A
3805889 Coolidge Apr 1974 A
3830236 Hanke Aug 1974 A
3858578 Milo Jan 1975 A
3867944 Samuels Feb 1975 A
3874388 King et al. Apr 1975 A
3910281 Kletschka et al. Oct 1975 A
3910316 Reifenhauser Oct 1975 A
3913565 Kawahara Oct 1975 A
3915157 Mitsui Oct 1975 A
3974834 Kane Aug 1976 A
3976079 Samuels et al. Aug 1976 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4054128 Seufert et al. Oct 1977 A
4060089 Noiles Nov 1977 A
4069825 Akiyama Jan 1978 A
4078555 Takahashi Mar 1978 A
4134405 Smit Jan 1979 A
4176662 Frazer Dec 1979 A
4198959 Otani Apr 1980 A
4203430 Takahashi May 1980 A
4207872 Meiri et al. Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4245624 Komiya Jan 1981 A
4315509 Smit Feb 1982 A
4320787 McMorrow Mar 1982 A
4366810 Slanetz, Jr. Jan 1983 A
4367746 Derechinsky Jan 1983 A
4368786 Cousins Jan 1983 A
4411167 Mohr Oct 1983 A
4414720 Crooms Nov 1983 A
4416267 Garren et al. Nov 1983 A
4462402 Burgio et al. Jul 1984 A
4483326 Yamaka et al. Nov 1984 A
4485805 Foster, Jr. Dec 1984 A
4494531 Gianturco Jan 1985 A
4532926 O'Holla Aug 1985 A
4534650 Clerget et al. Aug 1985 A
4548202 Duncan Oct 1985 A
4567880 Goodman Feb 1986 A
4577621 Patel Mar 1986 A
4586503 Kirsch et al. May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592356 Gutierrez Jun 1986 A
4595007 Mericle Jun 1986 A
4600054 Miller et al. Jul 1986 A
4601283 Chikama Jul 1986 A
4610250 Green Sep 1986 A
4624254 McGarry et al. Nov 1986 A
4648733 Merkt Mar 1987 A
4651718 Collins et al. Mar 1987 A
4655257 Iwashita Apr 1987 A
4669473 Richards et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4686963 Cohen et al. Aug 1987 A
4705040 Mueller et al. Nov 1987 A
4711002 Kreeger Dec 1987 A
4718407 Chikama Jan 1988 A
4724840 McVay et al. Feb 1988 A
4726355 Okada Feb 1988 A
4750492 Jacobs Jun 1988 A
4753223 Bremer Jun 1988 A
4754909 Barker et al. Jul 1988 A
4756303 Kawashima et al. Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4776845 Davis Oct 1988 A
4779612 Kishi Oct 1988 A
4790294 Allred, III et al. Dec 1988 A
4796607 Allred, III et al. Jan 1989 A
4807593 Ito Feb 1989 A
4810040 Chi Mar 1989 A
4811375 Klostermann Mar 1989 A
4815450 Patel Mar 1989 A
4819620 Okutsu Apr 1989 A
4832055 Palestrant May 1989 A
4841888 Mills et al. Jun 1989 A
4854318 Solem et al. Aug 1989 A
4873976 Schreiber Oct 1989 A
4890615 Caspari et al. Jan 1990 A
4917087 Walsh et al. Apr 1990 A
4923461 Caspari et al. May 1990 A
4929240 Kirsch et al. May 1990 A
4932672 Tippmann Jun 1990 A
4949927 Madocks et al. Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4976688 Rosenblum Dec 1990 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5037021 Mills et al. Aug 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5054501 Chuttani et al. Oct 1991 A
5059201 Asnis Oct 1991 A
5073166 Parks et al. Dec 1991 A
5088979 Filipi et al. Feb 1992 A
5100418 Yoon et al. Mar 1992 A
5108420 Marks Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123914 Cope Jun 1992 A
RE34021 Mueller Aug 1992 E
5174276 Crockard Dec 1992 A
5174284 Jackson Dec 1992 A
5176691 Pierce Jan 1993 A
5201746 Shichman Apr 1993 A
5203864 Phillips Apr 1993 A
5217471 Burkhart Jun 1993 A
5217473 Yoon Jun 1993 A
5222508 Contarini Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5234430 Huebner Aug 1993 A
5234445 Walker et al. Aug 1993 A
5250053 Snyder Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5258000 Gianturco Nov 1993 A
5261916 Engelson Nov 1993 A
5268001 Nicholson et al. Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5279553 Winkler et al. Jan 1994 A
5279610 Park et al. Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5284130 Ratliff Feb 1994 A
5284488 Sideris Feb 1994 A
5289817 Williams et al. Mar 1994 A
5300065 Anderson Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5304204 Bregen Apr 1994 A
5306300 Berry Apr 1994 A
5316543 Eberbach May 1994 A
5327914 Shlain Jul 1994 A
5330503 Yoon Jul 1994 A
5334217 Das Aug 1994 A
5336222 Durgin, Jr. et al. Aug 1994 A
5336227 Nakao et al. Aug 1994 A
5337732 Grundfest et al. Aug 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5342376 Ruff Aug 1994 A
5345949 Shlain Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5354298 Lee et al. Oct 1994 A
5366459 Yoon Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5372146 Branch Dec 1994 A
5372604 Trott Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5382231 Shlain Jan 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5403329 Hinchcliffe Apr 1995 A
5417691 Hayhurst May 1995 A
5417699 Klein et al. May 1995 A
5423854 Martin et al. Jun 1995 A
5425744 Fagan et al. Jun 1995 A
5429583 Paulus et al. Jul 1995 A
5429598 Waxman et al. Jul 1995 A
5431666 Sauer et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5433727 Sideris Jul 1995 A
5437266 McPherson et al. Aug 1995 A
5437680 Yoon Aug 1995 A
5437681 Meade et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5458609 Gordon et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5465894 Clark et al. Nov 1995 A
5470337 Moss Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480405 Yoon Jan 1996 A
5483951 Frassica et al. Jan 1996 A
5496332 Sierra et al. Mar 1996 A
5496334 Klundt et al. Mar 1996 A
5499991 Garman et al. Mar 1996 A
5501691 Goldrath Mar 1996 A
5507811 Koike et al. Apr 1996 A
5520607 Frassica et al. May 1996 A
5520691 Branch May 1996 A
5520701 Lerch May 1996 A
5522843 Zang Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5531759 Kensey et al. Jul 1996 A
5531788 Dibie et al. Jul 1996 A
5535759 Wilk Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5549618 Fleenor et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5558665 Kieturakis Sep 1996 A
5562684 Kammerer Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569306 Thal Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571119 Atala Nov 1996 A
5573493 Sauer et al. Nov 1996 A
5573496 McPherson et al. Nov 1996 A
5573540 Yoon Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5578045 Das Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584793 Sauer et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5584859 Brotz Dec 1996 A
5601557 Hayhurst Feb 1997 A
5603718 Xu Feb 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5624381 Kieturakis Apr 1997 A
5626588 Sauer et al. May 1997 A
5626614 Hart May 1997 A
5630540 Blewett May 1997 A
5632752 Buelna May 1997 A
5643274 Sander et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643317 Pavcnik et al. Jul 1997 A
5643320 Lower et al. Jul 1997 A
5651769 Waxman et al. Jul 1997 A
5651788 Fleischer et al. Jul 1997 A
5658312 Green et al. Aug 1997 A
5658313 Thal Aug 1997 A
5662587 Grundfest et al. Sep 1997 A
5662654 Thompson Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662663 Shallman Sep 1997 A
5665109 Yoon Sep 1997 A
5665112 Thal Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5679005 Einstein Oct 1997 A
5683417 Cooper Nov 1997 A
5683419 Thal Nov 1997 A
5690655 Hart et al. Nov 1997 A
5690656 Cope et al. Nov 1997 A
5693060 Martin Dec 1997 A
5695448 Kimura et al. Dec 1997 A
5700236 Sauer et al. Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5702348 Harhen Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702421 Schneidt Dec 1997 A
5707394 Miller et al. Jan 1998 A
5709708 Thal Jan 1998 A
5713903 Sander et al. Feb 1998 A
5714125 Sagstetter Feb 1998 A
5720734 Copenhaver et al. Feb 1998 A
5720765 Thal Feb 1998 A
5724978 Tenhoff Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5728178 Buffington et al. Mar 1998 A
5732707 Widder et al. Mar 1998 A
5741297 Simon Apr 1998 A
5746752 Burkhart May 1998 A
5746755 Wood et al. May 1998 A
5749828 Solomon et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752963 Allard et al. May 1998 A
5759151 Sturges Jun 1998 A
5766189 Matsuno Jun 1998 A
5766196 Griffiths Jun 1998 A
5776150 Nolan et al. Jul 1998 A
5779624 Chang Jul 1998 A
5779719 Klein et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782865 Grotz Jul 1998 A
5787897 Kieturakis Aug 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800516 Fine et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810851 Yoon Sep 1998 A
5810853 Yoon Sep 1998 A
5810879 de Guillebon Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5814070 Borzone et al. Sep 1998 A
5817107 Schaller Oct 1998 A
5817110 Kronner Oct 1998 A
5823956 Roth et al. Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5824011 Stone et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5840078 Yerys Nov 1998 A
5843084 Hart et al. Dec 1998 A
5843126 Jameel Dec 1998 A
5846182 Wolcott Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5888196 Bonutti Mar 1999 A
5888247 Benetti Mar 1999 A
5891168 Thal Apr 1999 A
5893856 Jacob et al. Apr 1999 A
5895404 Ruiz Apr 1999 A
5897417 Grey Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899914 Zirps et al. May 1999 A
5899920 DeSatnick et al. May 1999 A
5899921 Caspari et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902254 Magram May 1999 A
5910105 Swain et al. Jun 1999 A
5910289 Sagstetter Jun 1999 A
5916147 Boury Jun 1999 A
5916224 Esplin Jun 1999 A
5921915 Aznoian et al. Jul 1999 A
5925059 Palermo et al. Jul 1999 A
5928264 Sugarbaker et al. Jul 1999 A
5941815 Chang Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5947896 Sherts et al. Sep 1999 A
5947983 Solar et al. Sep 1999 A
5947997 Pavcnik et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5954731 Yoon Sep 1999 A
5954732 Hart et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5964765 Fenton, Jr. et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5975140 Lin Nov 1999 A
5976073 Ouchi Nov 1999 A
5976127 Lax Nov 1999 A
5976158 Adams et al. Nov 1999 A
5976159 Bolduc et al. Nov 1999 A
5980558 Wiley Nov 1999 A
5984933 Yoon Nov 1999 A
5993476 Groiso Nov 1999 A
6013083 Bennett Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6027523 Schmieding Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6042155 Lockwood Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6045573 Wenstrom, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056760 Koike et al. May 2000 A
6056770 Epstein et al. May 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6074612 Sagstetter Jun 2000 A
6077214 Mortier et al. Jun 2000 A
6077281 Das Jun 2000 A
6077291 Das Jun 2000 A
6078039 Lacy Jun 2000 A
6079414 Roth Jun 2000 A
6082583 Bussell et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6086601 Yoon Jul 2000 A
6099485 Patterson Aug 2000 A
6110183 Cope Aug 2000 A
6113609 Adams Sep 2000 A
6113611 Allen et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120434 Kimura et al. Sep 2000 A
6142931 Kaji Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162168 Schweich, Jr. et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6165120 Schweich, Jr. et al. Dec 2000 A
6167889 Benetti Jan 2001 B1
6171320 Monassevitch Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6174323 Biggs et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179848 Solem Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
RE37117 Palermo Mar 2001 E
6197022 Baker Mar 2001 B1
6210430 Solem Apr 2001 B1
6210432 Solem et al. Apr 2001 B1
6214007 Anderson Apr 2001 B1
6228023 Zaslavsky et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6235019 Lehmann et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248119 Solem Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6283973 Hubbard et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6293956 Crainich et al. Sep 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6302447 Lee Oct 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6306163 Fitz Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6315789 Cragg Nov 2001 B1
6322538 Elbert et al. Nov 2001 B1
6322563 Cummings et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6332468 Benetti Dec 2001 B1
6332863 Schweich, Jr. et al. Dec 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6336940 Graf et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6348064 Kanner Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6355052 Neuss et al. Mar 2002 B1
6358197 Silverman et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6368339 Amplatz Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6394949 Crowley et al. May 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6423087 Sawada Jul 2002 B1
6425911 Akerfeldt et al. Jul 2002 B1
6434507 Clayton et al. Aug 2002 B1
6447533 Adams Sep 2002 B1
6458106 Meier et al. Oct 2002 B1
6494888 Laufer et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508828 Akerfeldt et al. Jan 2003 B1
6517552 Nord et al. Feb 2003 B1
6533796 Sauer et al. Mar 2003 B1
6537285 Hatasaka, Jr. et al. Mar 2003 B1
6540789 Silverman et al. Apr 2003 B1
6551315 Kortenbach et al. Apr 2003 B2
6554793 Pauker et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6595984 DeGuillebon Jul 2003 B1
6610056 Durgin et al. Aug 2003 B2
6641592 Sauer et al. Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6669713 Adams Dec 2003 B2
6689051 Nakada et al. Feb 2004 B2
6692506 Ory et al. Feb 2004 B1
6695764 Silverman et al. Feb 2004 B2
6699233 Slanda et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6719763 Chung et al. Apr 2004 B2
6719764 Gellman et al. Apr 2004 B1
6736828 Adams et al. May 2004 B1
6740082 Shadduck May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6761685 Adams et al. Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6790173 Saadat et al. Sep 2004 B2
6790214 Kraemer et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6811532 Ogura et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6837849 Ogura et al. Jan 2005 B2
6869395 Page et al. Mar 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6986781 Smith Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
7112208 Morris et al. Sep 2006 B2
7122028 Looper et al. Oct 2006 B2
7160312 Saadat Jan 2007 B2
7186262 Saadat Mar 2007 B2
7316703 Suzuki Jan 2008 B2
20010000040 Adams et al. Mar 2001 A1
20010016675 Mortier et al. Aug 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20010025185 Laufer et al. Sep 2001 A1
20010049509 Sekine et al. Dec 2001 A1
20010051815 Esplin Dec 2001 A1
20010052686 Galik Dec 2001 A1
20010056282 Sonnenschein et al. Dec 2001 A1
20020008386 Lee Jan 2002 A1
20020010490 Schaller et al. Jan 2002 A1
20020013570 Ruegg et al. Jan 2002 A1
20020013608 ElAttrache et al. Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022851 Kalloo et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020032368 Takase Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020049458 Singhatat Apr 2002 A1
20020055757 Torre et al. May 2002 A1
20020058855 Schweich et al. May 2002 A1
20020062062 Belson et al. May 2002 A1
20020065534 Hermann et al. May 2002 A1
20020068849 Schweich et al. Jun 2002 A1
20020068945 Sixto et al. Jun 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020077524 Schweich et al. Jun 2002 A1
20020078967 Sixto et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020082622 Kane Jun 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020116012 May et al. Aug 2002 A1
20020120178 Tartaglia et al. Aug 2002 A1
20020138086 Sixto et al. Sep 2002 A1
20020143346 McGuckin et al. Oct 2002 A1
20020147385 Butler et al. Oct 2002 A1
20020161281 Jaffe et al. Oct 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020193661 Belson Dec 2002 A1
20020193662 Belson Dec 2002 A1
20020193816 Laufer et al. Dec 2002 A1
20030009085 Arai et al. Jan 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030045778 Ohline et al. Mar 2003 A1
20030055442 Laufer et al. Mar 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030120289 McGuckin et al. Jun 2003 A1
20030139752 Pasricha et al. Jul 2003 A1
20030158582 Bonutti et al. Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030171760 Gambale Sep 2003 A1
20030176890 Buckman et al. Sep 2003 A1
20030181924 Yamamoto et al. Sep 2003 A1
20030191476 Smit Oct 2003 A1
20030204205 Sauer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030216613 Suzuki et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030229296 Ishikawa et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236536 Grigoryants et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040009224 Miller Jan 2004 A1
20040010271 Kortenbach Jan 2004 A1
20040021894 Mundra Feb 2004 A1
20040030347 Gannoe et al. Feb 2004 A1
20040034371 Lehman et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049095 Goto et al. Mar 2004 A1
20040059346 Adams et al. Mar 2004 A1
20040059349 Sixto et al. Mar 2004 A1
20040059354 Smith et al. Mar 2004 A1
20040059358 Kortenbach et al. Mar 2004 A1
20040073089 Nozue Apr 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040087976 DeVries et al. May 2004 A1
20040088008 Gannoe et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040097986 Adams May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040116949 Ewers et al. Jun 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122473 Ewers et al. Jun 2004 A1
20040122474 Gellman et al. Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138682 Onuki et al. Jul 2004 A1
20040138704 Gambale et al. Jul 2004 A1
20040147941 Takemoto et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040158125 Aznoian et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040167546 Saadat et al. Aug 2004 A1
20040176784 Okada Sep 2004 A1
20040186349 Ewers et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193008 Jaffe et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193117 Laufer et al. Sep 2004 A1
20040193184 Laufer et al. Sep 2004 A1
20040193193 Laufer et al. Sep 2004 A1
20040193194 Laufer et al. Sep 2004 A1
20040194790 Laufer et al. Oct 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20040249362 Levine et al. Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249392 Mikkaichi et al. Dec 2004 A1
20040249395 Mikkaichi et al. Dec 2004 A1
20050020901 Belson et al. Jan 2005 A1
20050033320 McGuckin et al. Feb 2005 A1
20050033328 Laufer et al. Feb 2005 A1
20050033354 Montalvo et al. Feb 2005 A1
20050043720 Ishikawa Feb 2005 A1
20050043758 Golden et al. Feb 2005 A1
20050049617 Chatlynne et al. Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065401 Saadat et al. Mar 2005 A1
20050065536 Ewers et al. Mar 2005 A1
20050070931 Li et al. Mar 2005 A1
20050075653 Saadat et al. Apr 2005 A1
20050075654 Kelleher Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050090842 Suzuki et al. Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050113640 Saadat et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050129108 Bendall et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050137456 Saadat et al. Jun 2005 A1
20050187565 Baker et al. Aug 2005 A1
20050187567 Baker et al. Aug 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050203488 Michlitsch et al. Sep 2005 A1
20050203489 Saadat et al. Sep 2005 A1
20050203500 Saadat et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216041 Okada et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050222492 Adams Oct 2005 A1
20050234294 Saadat et al. Oct 2005 A1
20050234296 Saadat et al. Oct 2005 A1
20050245945 Ewers et al. Nov 2005 A1
20050250980 Swanstrom et al. Nov 2005 A1
20050250984 Lam et al. Nov 2005 A1
20050250985 Saadat et al. Nov 2005 A1
20050250986 Rothe et al. Nov 2005 A1
20050250987 Ewers et al. Nov 2005 A1
20050250988 Ewers et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050251091 Saadat et al. Nov 2005 A1
20050251157 Saadat et al. Nov 2005 A1
20050251158 Saadat et al. Nov 2005 A1
20050251159 Ewers et al. Nov 2005 A1
20050251160 Saadat et al. Nov 2005 A1
20050251161 Saadat et al. Nov 2005 A1
20050251162 Rothe et al. Nov 2005 A1
20050251165 Vaughan et al. Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050251177 Saadat et al. Nov 2005 A1
20050251189 Saadat et al. Nov 2005 A1
20050251202 Ewers et al. Nov 2005 A1
20050251205 Ewers et al. Nov 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050251207 Flores et al. Nov 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050251210 Westra et al. Nov 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277966 Ewers et al. Dec 2005 A1
20050277975 Saadat et al. Dec 2005 A1
20050277981 Maahs et al. Dec 2005 A1
20050277983 Saadat et al. Dec 2005 A1
20060020274 Ewers et al. Jan 2006 A1
20060020276 Saadat et al. Jan 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060100480 Ewers et al. May 2006 A1
20060100579 Maahs et al. May 2006 A1
20060111614 Saadat et al. May 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060157067 Saadat et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060178562 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060200062 Saadat Sep 2006 A1
20060217762 Maahs et al. Sep 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060253183 Thagalingam et al. Nov 2006 A1
20060258909 Saadat et al. Nov 2006 A1
20060271073 Lam et al. Nov 2006 A1
20060271101 Saadat et al. Nov 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20070015965 Cox et al. Jan 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070123840 Cox May 2007 A1
20070142849 Ewers et al. Jun 2007 A1
20070175488 Cox et al. Aug 2007 A1
20080009888 Ewers et al. Jan 2008 A1
20080086155 Rothe et al. Apr 2008 A1
20080177304 Westra et al. Jul 2008 A1
20080200930 Saadat et al. Aug 2008 A1
20080262294 Ewers et al. Oct 2008 A1
20080262300 Ewers et al. Oct 2008 A1
20080262525 Chang et al. Oct 2008 A1
20080262539 Ewers et al. Oct 2008 A1
20090018552 Lam et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
Foreign Referenced Citations (77)
Number Date Country
0480428 Apr 1992 EP
0497781 Aug 1992 EP
0646356 Apr 1995 EP
0847727 Jun 1998 EP
1031321 Aug 2000 EP
2768324 Mar 1999 FR
2165559 Apr 1986 GB
2004180781 Jul 2004 JP
WO 9204870 Apr 1992 WO
WO 9519140 Jul 1995 WO
WO 9525468 Sep 1995 WO
WO 9922649 May 1999 WO
WO 9951283 Oct 1999 WO
WO 9959664 Nov 1999 WO
WO 0040159 Jul 2000 WO
WO 0054653 Sep 2000 WO
WO 0057796 Oct 2000 WO
WO 0078227 Dec 2000 WO
WO 0078229 Dec 2000 WO
WO 0121246 Mar 2001 WO
WO 0135834 May 2001 WO
WO 0166001 Sep 2001 WO
WO 0166018 Sep 2001 WO
WO 0167964 Sep 2001 WO
WO 0170096 Sep 2001 WO
WO 0170097 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0187144 Nov 2001 WO
WO 0189370 Nov 2001 WO
WO 0189392 Nov 2001 WO
WO 0189393 Nov 2001 WO
WO 0200119 Jan 2002 WO
WO 0224058 Mar 2002 WO
WO 0224080 Mar 2002 WO
WO 0239880 May 2002 WO
WO 0239909 May 2002 WO
WO 02060328 Aug 2002 WO
WO 02062200 Aug 2002 WO
WO 02064012 Aug 2002 WO
WO 02068988 Sep 2002 WO
WO 02069841 Sep 2002 WO
WO 02085252 Oct 2002 WO
WO 02094105 Nov 2002 WO
WO 03007796 Jan 2003 WO
WO 03007799 Jan 2003 WO
WO 03053253 Jul 2003 WO
WO 03090633 Nov 2003 WO
WO 03092509 Nov 2003 WO
WO 03094785 Nov 2003 WO
WO 03096909 Nov 2003 WO
WO 03099137 Dec 2003 WO
WO 03099139 Dec 2003 WO
WO 03099140 Dec 2003 WO
WO 03105732 Dec 2003 WO
WO 2004000129 Dec 2003 WO
WO 2004004542 Jan 2004 WO
WO 2004004544 Jan 2004 WO
WO 2004017863 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004019788 Mar 2004 WO
WO 2004021865 Mar 2004 WO
WO 2004021867 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004021873 Mar 2004 WO
WO 2004021894 Mar 2004 WO
WO 2004056273 Jul 2004 WO
WO 2004071284 Aug 2004 WO
WO 2004075787 Sep 2004 WO
WO 2004080313 Sep 2004 WO
WO 2004084702 Oct 2004 WO
WO 2004084808 Oct 2004 WO
WO 2004103189 Dec 2004 WO
WO 2005004727 Jan 2005 WO
WO 2005037152 Apr 2005 WO
WO 2006068970 Jun 2006 WO
WO 2006108050 Oct 2006 WO
WO 2004049905 Jun 2007 WO
Non-Patent Literature Citations (11)
Entry
Mason, Edward E. “Development and Future of Gastroplasties for Morbid Obesity,” Arch Surg., vol. 138, pp. 361-366, Apr. 2003.
Okudaira et al., “The Healing and Tensile Strength of the Gastroplasty Staple Line,” The American Surgeon, Oct. 1984, pp. 564-568.
Spivak, et al. “Endoluminal Surgery”, Surgical Endoscopy, 11 :321-325, 1997.
Surgical Dynamics, Inc., The S D sorb Meniscal Stapler [brochure] (1997), 3 pages total.
Sutura, The Next Generation in Vascular Suturing Devices: Superstitch [brochure], 2 pages total.
Suzuki et al., “Development of an Endoscopic Robotic System with Two Hands for 518 Various Gastric Tube Surgeries,” Stud Health Technol Inform,2003, 94:349-53 [Abstract Only].
AngioLINK, The Expanding Vascular Staple [brochure], 1 page total.
Bluett et al., “Experimental Evaluation of Staple Lines in Gastric Surgery,” Arch. Surg., vol. 122, Jul. 1987, pp. 772-776.
Brolin et al., “Experimental Evaluation of Techniques of Gastric Paritioning for Morbid Obesity,” Surgery, Gynecology & Obstetrics, vol. 153, Dec. 1981, pp. 878-882.
Chuttani, Ram et al. “A Novel Endoscopic Full-Thickness Plicator for Treatment of DERD: An Animal Model Study,” Gastointestinal Endoscopy, 2002; vol. 56, pp. 116-122.
Johnston et al. “The Magenstrasse and Mill Operation of Morbid Obesity,” Obesity Surgery 13, 2003, pp. 10-16.
Related Publications (1)
Number Date Country
20070175488 A1 Aug 2007 US