Methods and apparatus for securely displaying digital images

Information

  • Patent Grant
  • 10726151
  • Patent Number
    10,726,151
  • Date Filed
    Friday, June 9, 2017
    7 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
Abstract
The invention provides methods and apparatus for securing personalized or sensitive information appearing in digital images. Digital images containing information to be secured is processed and divided into a plurality of image cells. At least one image cell from the plurality of image cells is selected and redacted or altered to render the information to be secured with the selected image cells indecipherable. The invention also provides methods and apparatus for transmitting or streaming unredacted image cells alone or in combination with redacted image cells for secured viewing on a user browser or computer.
Description
FIELD OF THE INVENTION

The invention relates to securely displaying digital images of documents containing selected or confidential information. More particularly, the invention relates to methods and apparatus for altering or redacting digital images of documents for viewing such as personal checks in order to secure sensitive information.


BACKGROUND

Converting a paper hardcopy document into a digital image may be desirable due to the ease with which it can be transmitted and processed by a computer system. For example, images of documents can be scanned and transmitted via e-mail or shared on the Internet using a variety of known protocols such as HTTP or FTP. Obtaining a digital image of a document may also be advantageous so that it can be manipulated or edited on a computer system. Electronic transmissions of digital images are frequently preferred over traditional postal methods due to speed of delivery and the ever increasing number of computer systems and our reliance thereon.


The U.S. Congress recognized the advantages of using digital versions of checks over paper versions thereof by passing the Check 21 Act enacted in 2003. The Check 21 Act allows a financial institution to create a digital version of a processed check and make it accessible online to the payer of the check, thereby eliminating the need for further handling or return of the paper check.


This computerized process greatly reduces the time and costs associated with the processing of paper checks, and hence enhances the efficiency of our banking system. It abo provides an easy and convenient alternative for bank customers to monitor and manage banking related documents and activities. Online checking offered by many financial institutions such as Bank of America and Wells Fargo allows customers to conveniently view digital images of their cashed checks.


However digital images of documents may often contain personal or sensitive information that a customer or a user may wish to conceal. The term “sensitive information” may include anything designated by a party that should be secured for viewing online such as a customer's name, address or telephone number in conjunction with the customer's social security number, driver's license, or account number (FDIC FIL-27 2005).


At the same time, images must also reveal or contain sufficient information that is legible or usable to the user. For example, banks and other kinds of financial institutions allow a user to access an online bank account and view a digital image of a processed check or financial document. But sensitive information such as the customer's name, bank account number, routing number, address, telephone number, signature and other personal information, may appear on a computer screen while viewing a digital version of the check. The security of such personalized or sensitive information is compromised when it is displayed. The customer or user may therefore wish to hide or secure such personalized information from computer hackers, identity thieves, or even from viewers with no ill intentions.


A variety of graphics editing programs are available today such as Adobe Photoshop that allows a digital image to be edited or altered manually. Original versions of an image may be created and saved as a new image. When using such software programs, a user often manually edits the personalized or sensitive content of the individual digital image with an editing tool such as a blur tool included with the software. Meanwhile, banks and other financial institutions usually process large quantities of checks and/or documents containing personalized or sensitive information. A financial institution may have numerous customers, each with an online bank account on which they can view digital versions of a processed or cashed check. The digital image may be conveniently displayed to a customer while at the same time the financial institution can avoid having to mail or return the processed check to the customer. The ability to efficiently process a large number of checks while protecting personal information contained therein presents significant challenges in online security and the prevention of fraud of theft.


A need therefore exists to secure and protect personalized or sensitive information within digital images of documents. It would be further advantageous to protect available information online without having to manually and singularly edit or alter the contents of the digital images.


SUMMARY OF THE INVENTION

The invention provides methods and apparatus for securing selected information contained within digital images of documents. Various aspects of the invention described herein may be applied to any of the particular applications set forth below or for any other types of information that is displayed for viewing. The invention may be applied as a standalone tool or as part of an integrated software solution against online fraud and identify theft. The invention can be optionally integrated into existing business processes seamlessly. It shall be understood that different aspects of the invention can be appreciated individually, collectively or in combination with each other.


A preferable embodiment of the invention provides image masking systems and methods for providing online banking customers with necessary or shared information online without exposing sensitive data to potential fraud. Such image masking can be performed real-time or on-the-fly to a presented image only without necessarily altering an originally scanned document. An originally scanned image can be remain intact and unaltered, in a preferably embodiment, while a new revised or redacted digital image can be created. All of the image information for redacted digital images provided herein may be transmitted for viewing, or alternatively, sanitized versions of a scanned document with just some of the image information may be sent instead to display non-sensitive portions of an original document. The modified or redacted digital images provided in accordance with the invention offer customers access to pictorial or graphical images of corresponding paper documents without compromising account or personal identity information that should be kept secured. Such information can be blurred by various digital editing techniques such as blurring or pixelating or shading, or alternatively, sections of the digital image containing sensitive information may not be transmitted at all.


Accordingly, the invention can provide numerous advantages over other available and complicated document security solutions by protecting sensitive customer data from fraud and identify theft without involving customer education, adoption or enrollment. No enrollment process or change of behavior is required on the part of customers. The security processes provided in accordance with the invention can be performed on the back end, invisible to users which can thereby enhance their sense of security without adding inconvenience or latency to the online experience (automated backend security). While the masked images of secured documents herein may be helpful for daily use, customers can still request to view and access an unredacted version of a document when appropriate security measures are in place for additional authentication. Further password information may be requested, challenge questions may be presented calling for valid responses, one-time tokens or other strong authentication protocol may be employed.


Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized:



FIG. 1 describes methods of securing personalized or sensitive information displayed within a digital image of a document.



FIGS. 2-4 describe an embodiment of the invention that displays digital images of checks or other selected documents containing information to be secured.



FIGS. 5-8 describe another embodiment of the invention that converts a first digital image of a document such as a check into a second redacted digital image containing selectively pixelated image cells that can be securely displayed.



FIG. 9 illustrates a redacted digital image of a cashed personal check that is processed in accordance with another aspect of the invention.



FIG. 10 describes a system for securing digital images from already digitally scanned documents or directly from paper documents with an image security module according to yet another aspect of the invention.



FIG. 11 described a system for securing digital images with an electronic image sanitizer that can filter out and send only sections of an electronic image for secure viewing.





DETAILED DESCRIPTION OF THE INVENTION

The invention is directed to methods and apparatus for modifying or altering digital images of documents in order to secure selected information contained therein. The selected information may include personalized or sensitive information or any content which can be redacted or hidden from view in accordance with the invention. The selected information may be hidden in an altered digital image so it can be secured from view. Another aspect of the invention provides high throughput automated processes and apparatus for securing or altering of digital images of hardcopies of documents. The invention further provides computer systems and software programs that include instructions to carry out or perform various steps of such methods.



FIG. 1 describes an aspect of the invention that provides methods for securing selected information contained within a digital image. The digital image to be displayed may be derived from a scanned paper hardcopy document or any computer generated illustration that contains personalized or sensitive information or content. Upon selection of the digital image, it can be divided into a plurality of image cells that can be characterized or designated as either legible portions or illegible portions of the document or image. The legible portions of the image may present non-sensitive or non-personal information that a user may wish to display. The illegible portions of the image may however include sensitive, financial or personal information that should not be displayed. The image cells corresponding to illegible portions of the image may be redacted to hide or obscure the underlying information contained in the image. Meanwhile, the image cells corresponding to legible portions of the image can remain unredacted and visible so as to reveal content or images located therein. The resulting redacted or altered digital image can be useful in many respects and communicate sufficient context or information but not so far as to compromise or unnecessarily reveal sensitive information. Accordingly, the redacted image of the document can be rendered or available for display online in a controlled and secure manner.


A preferable embodiment of the invention provides a method of securely displaying digital images of banking related documents. The method comprises selecting a first digital image of a banking related document containing personalized content, dividing the first digital image into a plurality of image cells, and then redacting at least one of the image cells to provide a second digital image wherein the personalized content in the banking related document is illegible (see FIGS. 2-4). This methodology can be applied to a variety of digital images corresponding to checks (personal or business check images) from financial institutions or any hardcopy document outside of banking transactions. Other preferable embodiments of the invention can be directed to documents or digital images thereof such as deposit slips, bank statements, brokerage statements, legal documents, credit card bills, as well as tax documents or returns, driver's licenses, medical records or any other document containing personalized or sensitive information that a user may wish to hide or conceal from view on a computer or online. It shall be understood that the personalized or sensitive information need not be in the form of text, but may be rather a graphical image such as an illustration of an individual, fingerprint or biometric information. The documents secured in accordance with this aspect of the invention can originally exist as a paper hardcopy that can be scanned to create digital images, or the documents may be stored as digital images in computer readable memory such as a computer hard drives, flash memory drives or other memory media.


A digital image of a check or a selected document can be chosen for secure display in accordance with the invention as shown in FIG. 2. The check or selected document can be designed with various shapes and sizes including relevant information printed thereon. Selected kinds of personalized information may be displayed or appear within the same general location or region on the face of the check or document. For example, the name and address information of an individual, e.g., payor, can be printed generally on the upper left hand corner 210 of foe check or selected document. The date appears often in the upper right had corner 220. The central portion 230 of the check or selected document may contain other kinds of sensitive information. For example, with respect to any selected document, this location may include information such as credit card numbers, bank account/routing numbers, account statements from financial institutions or graphical content. It shall be understood that the invention can be applied to protecting other kinds of non-textual information such as photographs, images, blueprints or schematics that should not be readily viewable by an observer. With respect to a check, as shown in FIG. 2, the central portion 230 often includes the name of the payee or to whom the check is written. The dollar amount for the check appears immediately below usually written or spelled out (one hundred dollars) as well as appearing numerically ($100). A memo line is also provided o the lower left hand corner 240 of the check that identifies for what the check was written. A space or line 250 can be provided at the lower right hand corner of the check where the signature of the payor appears.


As shown in FIG. 3, the check can be conceptually divided into a plurality of image cells in accordance with the invention. The digital image of the check can be divided into a grid consisting of five (5) columns×three (3) rows. As with other embodiments of the invention described elsewhere herein, the image cells within the grid may be designated or separated into either redacted or un-redacted portions or cells. In some embodiments of the invention, the number of image cells within the grid may be predetermined or fixed by the party who wants to secure confidential information such as a payor or a bank having the account from which the check will be drawn against. When more image cells are selected, greater control can be provided over which regions of a check or a selected document can be secured in accordance with the invention. It shall be understood that the grids described herein may include any number of desired columns/rows and are not limited to rectangular or square shapes and can include image cells with different symmetrical or asymmetrical shapes and sizes.


Alternatively, the number and/or kind of image cells can be user defined. A user may select various image cell inputs designating the size, shape, and number of rows and columns for a desired grid. For example, a digital image can be divided into a plurality of image cells located within a rectangular grid based on user input values with a predefined number of rows and columns, e.g., 4 columns×3 rows. The grid may be characterized as a conceptual overlay upon the image so that the image can be broken-up or segmented into image cells that pertain to both redacted and un-redacted portions of the digital image. It shall be understood that image cells are not necessarily laid out in a grid like pattern with both rows and columns and can be alternatively arranged in any manner including a layout with cells that are aligned in only horizontal rows or only vertical columns.


By selectively altering redacted portions of the digital image as shown in FIG. 4, sensitive information contained within the check or selected document can be protected. For example, one or more selected in image cells containing sensitive information can be identified within the grid. These image cells can be designated as the ones for editing or redaction. The image fragments contained within these selected image cells or redacted cells can be altered in appearance in accordance with the invention. Meanwhile, the remaining or non-selected image cells can be left untouched so that corresponding image fragments contained therein are plainly visible. Any graphics editing software tool or program may be used to alter or change the appearance of the image fragments within the selected image cells so that the sensitive information contained within the selected image cells will not be legible to an ordinary observer. In a preferable embodiment, the selected image cells can be grayed out (colored grey) entirely as shown so that any traces of the image fragments are not visible. Two selected image cells located at the upper left hand corner of the digital image, and two selected image cells located at the lower right hand corner, can be redacted to protect sensitive information otherwise visible, namely the name and address of the payor and a corresponding signature. In another preferable embodiment of the invention, a group of one or more selected image cells may be deleted or omitted from a digital image before delivering or transmitting it for secure viewing. The entire redacted digital images(s) to be viewed may thus comprise the entire group or all image cells (redacted and un-redacted) or only a selected subgroup of image cells (un-redacted) corresponding to the documents(s). Accordingly, the resulting digital image of the check or selected document can be displayed online or on a computer screen securely without sharing or disclosing sensitive information.


There are a variety of ways in which digital images can be redacted in accordance with the invention. For example, the step of redacting selected portions of a digital image can be achieved by a combination of one or more different means including graying or blacking out these areas. For purposes of this invention, the term “redacted” can mean a blurred, obscured, removed, blocked out, or crossed out so that underlying information cannot be seen and is not apparent on its face to an ordinary observer. Preferably, personalized information protected in accordance with the invention includes confidential subject matter such as personal data, financial or other types of information that can or should be shielded from general public viewing. Other ways to redact digital images in accordance with the invention may include various combinations of one or more techniques such as masking in solid colors (e.g., black, grey, white), pixelating or pixelizing, encrypting and/or otherwise rendering selected regions of a digital image illegible or indecipherable. In preferable embodiments of the invention, some legible portions of the digital image remain unredacted or plainly visible to reveal image fragments or contents of the document residing within these portions. It is often useful to provide at least some context and to relay some minimal amount of information to an observer but not to the extent such that sensitive information is revealed beyond an intended purpose.



FIG. 5 illustrates another embodiment of the invention that securely displays a digital image of a personal check containing a variety of sensitive information including a series of important numbers relating to a banking account. For example, a 9-digit number American Banking Association (ABA) routing transit number can be found at the bottom of the check adjacent to an account number from a financial institution. The ABA number or routing transit number is a sensitive piece of information that is often necessary to reorder checks, to set up direct deposits and recurring payments, or when preparing a wire transfer. The customer bank account number is another piece of sensitive information that should be guarded carefully to prevent identity theft and fraud. For many online banking purposes, it is not necessary to display these series of numbers. For example, bank customer may just want to determine whether a check has been properly endorsed, or by whom, by viewing an image of the back of a check. The customer may also want to inspect the front face of the check to confirm there has been no forgery or unauthorized alterations made. The unsecured display of such information online thus presents exposure to both the customer and the financial institution with no intended benefit in such circumstances. Accordingly, any digital images of checks that are available online can be secured in accordance with the invention to prevent unauthorized viewing by hackers or other persons who gain access to viewable online account information.


As shown in FIG. 5, the check includes additional personalized or sensitive information such as the payor name and address, a signature line, and routing transit/bank account numbers. Upon writing and cashing the check, a digital image of the instrument can be created using available scanning equipment and processes by a financial institution. It can be redacted and secured in accordance with the invention as described elsewhere herein. However a financial institution such as a bank may determine a methodology or process beforehand in which the check and other similar checks can be secured for online display. For example, the check can be initially scanned and saved. Digital images can be saved and loaded into memory of any type of computer system or network maintained by the financial institution. The digital image may be saved as a file that can be edited in accordance with the invention, or in other embodiments, the image may be derived from a stream of data as with other embodiments described herein. It shall be understood again that invention can be applied to electronic or digital images of any type of document where it may be desirable to alter the content of the image such that at least a portion of the image cannot be seen or is illegible. Electronic images of other documents may be selected besides personal checks such as deposit slips, bank statements, credit card bills, tax returns, or any other documents that may contain sensitive or personal information. In addition, the digital image of a hardcopy of a document may exist in various known formats including without limitation the following commonly used graphics file formats for displaying digital images on the World Wide Web: JPEG/JPG, GIF, PNG, TIF, TIFF, BMP, PSD, WMF, EMF, PCX, PIC and PDF.


In a preferable embodiment of the invention, as shown in FIG. 6, the financial institution can divide the digital image of the check into a plurality of image cells. A grid can be formed over the check or its image to provide a series of image cells arranged in rows and columns. While any number of image cells may be chosen and arranged in different ways, the check as shown is divided into thirty-nine (39) sections. The grid can be thus designed with three (3) rows and thirteen (13) columns. When more image cells are defined in accordance with this aspect of the invention, more flexibility is often provided in redacting selected portions of the check. The number of selected image cells or the number of rows or columns into which the digital image is divided may be based on user input. In this embodiment of the invention, the grid is created with vertical and horizontal lines such that the image is divided into rectangular-shaped image cells while in other embodiments the grid may comprise curved lines, or lines that do not form a regular pattern. Other embodiments may include any combination of the above, or may include any other division of the image as may be desired to carry out the invention. The image may be divided into any number of image cells which may be of any size, shape, orientation, or other configuration.


In some embodiments of the invention, a group of image cells formed within a grid can be identified by a marker to distinguish the image cell relative to others within the entire electronic image. The marker may be a reference number according to a numbering convention. In an exemplary numbering system, the image cells may be designated with sequential numbers starting with zero (0) or one (1) in the upper left corner of the grid. The image cells may be assigned numbers from left to right (each column) and continue from top to bottom (each row). While any unique identifier or number may be assigned in any order, methods are provided herein whereby each image cell is assigned a unique number until all image cells are identified. Other numbering or marking systems may be used to designate the position of the image cells within the grid including but not limited to an alphabetical system (A-Z), an alphanumeric system (A1, A2, . . . Z10) or a color coded system may be used to uniquely label the plurality of image cells. In some embodiments of the invention, a simple binary-type cell identifier system can be also adopted. Each image cell would not have to be uniquely identified from every other image cell. For example, each image cell corresponding to a portion of a digital image may be designated either as a redacted cell or not (un-redacted cell). Any or all image cells designated as redacted cells can be altered while un-redacted cells remain visible in accordance with this embodiment the invention.



FIG. 7 illustrates a preferable embodiment of the invention whereby a plurality of image cells is identified using numerical cell identifiers ranging from zero (0) to thirty-eight (38). The cell identifiers begin with the number zero (0) in the upper left cell and may continue sequentially across the columns and in a row-by-row manner until all image cells are assigned a number ending with the number thirty-eight (38). Three rows of thirteen image cells are therefore created to provide a thirteen (13) by three (3) grid corresponding to portions of the digital image. In accordance with this aspect of the invention, the digital image may be redacted according to selected identifiers. This redaction may be accomplished by selecting a group of one or more cell identifiers corresponding to portions of the digital image containing sensitive information. The image fragments residing within these image cells can be redacted. Selecting cell identifiers for redaction may be accomplished by user input indicating which image cell identifiers, and thus their corresponding image cells, are to be redacted. A computer program may also include instructions or computer code to automatically select which image cell(s) are to be redacted based on corresponding image cell identifiers. Such computer code may further carry out steps to automatically redact a digital image according to selected cell identifiers. Accordingly, a first digital image can be altered by having at least one image cell redacted to provide a second digital image wherein the redacted image cell is illegible, thus securing personalized content.


As shown in FIG. 8, a predefined group of image cells within the grid can be selected for redaction. Because the name and address of an individual often appears on the upper left hand corner of a check, image cells 1 through 5 can be selected for redaction as these cells correspond to that portion of the document or digital image. At the same time, since the routing transit and bank account numbers often appear along the bottom edge of a check, image cells 28 through 38 can be selected for redaction as these cells correspond to that portion of the check. Any number of image cells may be selected for redaction in order to partially or entirely secure information. For example, partial routing transit numbers may partially appear while the entire account number for a payor is completely illegible. In other instances it may be necessary or desired to reveal certain kinds of information appearing on the check such as the fractional routing number (FRN). So the image cells corresponding to this portion of the image (e.g., image cells 9 through 10) are not selected for redaction. Upon selection of the image cells that are to be redacted, a graphics editing tool or program can be used to redact those portions of the image in order to protect otherwise visible information. In this illustrated embodiment of the invention, the image cells chosen for redaction were masked or rendered illegible by pixelating the image cells or the portions of the digital image corresponding to the image selected cells. Other methods may be used to redact the image cells besides pixelating including but not limited to graying out, encrypting, blurring, masking, or drawing a line through all or just a portion of an image cell. In alternative embodiments, the redacted cells can be blurred or pixelated, wherein the blurring or pixelating is achieved by utilizing a blur size parameter to designate the of the blurred area. A blur size may be, e.g., but not limited to, ten (10) by ten (10) pixels.


The selected image cells to be redacted can be identified according to markers or cell identifiers that direct the editing tool or program as to which portions of the digital image should be redacted. It shall be understood that information to be secured within checks or any other selected document in accordance with the invention may reside in slightly or entirely different locations therein. An appropriate number of image cells may be chosen in order to offer at least some minimal level of security to at least partially redact information positioned within a digital image since checks or any other selected document may vary in size and shape. Accordingly, a financial institution such as a bank may therefore decide beforehand how much or which portions of customer checks should be generally available for online display.



FIG. 9 illustrates yet another embodiment of the invention that is applicable to personal checks. The personal check in this figure appears as it would to an ordinary observer on a display or monitor after it has been partially redacted in accordance with the invention. In this instance, a grid with three (3) rows by four (4) columns was selected that divides the digital image into twelve (12) image cells. After the check is cashed, the payor/account holder/customer may want to view the check on a home computer through an online banking system. Through a web browser, for example, the payor or any other person may select for viewing the cashed check (front/back images). Regardless of whether the image of the check has been intercepted or viewed by someone without permission, the relatively sensitive information contained thereon is secured in accordance with the invention. The digital image of the already scanned paper (hardcopy) document is redacted to conceal information such as the payor name and address, the routing transit and bank account numbers, plus the payor's signature which could otherwise be studied to commit forgery. Meanwhile, certain kinds of information can be visible to give some context and to convey some basic information that my be deemed useful but relatively non-sensitive or non-personal, e.g., date, name of payee, name of bank, dollar amount, purpose of check. In this illustration, image cells 0 through 1 and 9 through 11 were selected for redaction. The secured information has been redacted by pixelation and masked from view. The image cells could have been alternatively redacted by other masking techniques described elsewhere herein, or otherwise blackened or grayed out, partially or completely. As illustrated in this embodiment, selected image cells can be partially rather than entirely redacted. This degree of controlled redaction can be achieved based on the technique selected such as pixelation in this embodiment. It may be desirable to pixelate only certain portions of the image cells leaving other pixels corresponding to some image fragments within such cells intact and viewable. As with other embodiments of the invention, it may be thus desirable to only partially redact an image cell containing personalized information.


While masked or redacted images provided herein may be advantageous for securing personalized content, a user or customer may wish to view the original unredacted image or document. An alternative embodiment of the invention may offer this by presenting a complete digital image to an authorized person following an authentication procedure. A user may view an original unredacted image online after providing for example a user identification and password. It shall be understood that the invention may be also applied to digital image encryption/decryption schemes such as those disclosed in U.S. Pat. No. 6,954,532 (Handley et al), which is incorporated by reference in its entirety herein. But preferable embodiments of the invention herein can provide document security without encryption/decryption schemes or segmenting digital images into conceptual layers. For example, redacted portions of documents (e.g., pixelated) provided in accordance with the invention may be permanently altered and considered unredactable (e.g., unpixelated) by anyone including even the creator of the document. Other alternative embodiments of the invention however provide temporarily redacted documents that can be unredacted, preferably without public/private key encryption and decryption techniques wherein redacted images shared online include embedded public key information. Such keyless redaction and unredaction techniques such as pixelating/unpixelating according to graphical editing software programs (e.g., Adobe PhotoShop) that are known only by authorized users or viewers can be also be applied to embodiments of the invention herein. Alternatively, the unredacted image may be presented following some predetermined level of second level authentication online (or ordered through paper mail or made available and a local branch of a financial institution).


In accordance with yet another aspect of the invention, as shown in FIG. 10, one or more hardcopy paper documents can be modified to secure selected information contained therein. The digital image of an already scanned document can be redacted, or alternatively, paper documents can be scanned and converted directly into secured digital images. For example, an original unredacted group of one or more documents can be scanned to generate electronic images using image scanning tools or equipment. Such apparatus may have Optical Character Recognition (OCR) capabilities and be able to scan paper copies to generate unredacted digital images according to a preselected digital image format such as a JPEG format, for example. The image(s) may be subsequently redacted and converted by upon execution of a computer software program for redacting digital images that resides in the memory of a computer provided in accordance with another aspect of the invention described herein. A computer running the software program (redactor) may contain an image security module that redacts selected portions of the already scanned digital images to secure certain information as described elsewhere herein. The image security module may optionally convert the first unredacted digital image existing in a first format (JPEG) into a second redacted digital image existing in a second format (PDF). It shall be understood that the redactor and/or image security module may operate independently as a stand alone application software program or an add-on tool for commercially available image scanning and conversion programs.



FIG. 10 illustrates another embodiment of the invention whereby paper documents are directly scanned and secured by the image security module. It shall be understood that the image security module may be a computer program or set of instructions to carry out a method of redacting digital images of hardcopy documents, or it may be a discrete set of instructions or a combination of subroutines to perform functions such as the scanning and/or redacting of documents as described herein. For example, a group of one or more selected paper hardcopy documents can be processed by the image security module to redact certain portions thereof. When the documents are relatively uniform, in appearance, e.g., shape, size, font, a common group of image cells corresponding to similar portions of the documents can be scanned and redacted in accordance with other aspects of the invention described elsewhere herein. However when the documents to be scanned and redacted are not uniform, or if different regions of similar or uniform documents are to be redacted, then the image security module can selectively redact digital images accordingly such that resulting digital images of the documents protect information residing at different portions of the scanned documents. Either the redacted digital images of the paper documents can be rendered for immediate display, or they can be stored for later viewing after being processed by the image security module to mask or hide sensitive information appearing on the face of the documents. Accordingly, paper documents can be scanned and directly converted into redacted digital images by the image security module.


Various aspects of the invention herein may scan paper documents, or convert digital images of documents, into any digital image format. The following is a description of some of the most commonly used graphics file formats for putting graphics on the World Wide Web that may be applied to the invention.


JPEG/JPG. Short for Joint Photographic Experts Group, the original name of the committee that wrote the standard. JPG is an image file format supported on the Web that is a lossy compression technique designed to compress color and grayscale continuous-tone images. The information that is discarded in the compression is information that the human eye cannot detect JPG images can support 16 million colors and are suitable for photographs and complex graphics. A user may have to compromise on either the quality of the image or the size of the file. JPG may not work well on line drawings, lettering or simple graphics.


GIF. Short for Graphics Interchange Format, another of the graphics formats supported by the Web. Unlike JPG, the GIF format is a lossless compression technique and it can support 256 colors. GIF may be viewed as a preferred format over JPG for images with only a few distinct colors, such as line drawings, black and white images and small text that is only a few pixels high. With an animation editor, GIF images can be put together for animated images. GIF also supports transparency, where the background color can be set to transparent in order to let the color on the underlying Web page to show through.


PNG. Short for Portable Network Graphics, it is another graphics standard found on the Web but is not supported by all browsers. An image in a lossless PNG file can be 5%-25% more compressed than a GIF file of the same image. PNG builds on the idea of transparency in GIF images and allows the control of the degree of transparency, known as opacity. PNG does not support animation like GIF does.


It shall be understood that the invention herein can redact and convert or produce document images from many other different types of image formats such as TIF, TIFF, BMP, PSD, WMF, EMF, PCX, PIC and PDF formats.


Another aspect of the invention provides automated high throughput processes wherein a large number of digital images can be generated and/or secured on-the-fly (real time). For example, many checks from various financial institutions often adopt a relatively standard or substantially similar format. Because checks usually include the same kinds of information, their corresponding images can be similarly redacted (batch redacted) without individual manual editing or redacting with software programs such as Adobe PhotoShop. A variety of automated processes and systems are provided herein to redact sensitive information from digital images of documents for display online or through other communication channels as part of a high throughput process. With respect to checks, the image masking systems and processes herein can leverage the fact that personal or sensitive information often appears in common locations as described elsewhere herein. The front side of a check, for example, may include the payor address in an upper left side area while the routing number and account number may appear along the bottom near the signature of the payor. Digital images of a plurality of checks, for example, can be secured or altered in an automated batch process, thus requiring less time than would be required if the images were scanned and/or secured individually. A grid constructed with a plurality of image cells can be designed for the checks as described herein so that commonly selected (or the same) image cells can be redacted on-the-fly for each corresponding check. The selection of a sufficient number and/or location of image cells for redaction may be considered in view of modest variations existing as between different checks (different sizes, fonts and layouts). Some information on checks may be more edited or redacted compared to others but enough cells should be appropriately selected for redaction in order to sufficiently mask the check images to afford at least some level of protection, e.g., at least 5 digits from a 9 digit routing transit number should be redacted while 6, 7 or mote digits may be redacted in some checks. The digital images of the checks or any other document containing information to be protected herein can be therefore dynamically divided and masked in accordance with the invention on-the-fly, and preferably as part of a batch processing of checks or other documents by a financial institution, merchants and other parties desiring secure digital images.


For example, referring to FIG. 10, an image security module may perform a batch security process to securely display cashed checks for viewing by banking customers. In a preferable embodiment of the invention, the hardcopy paper versions of the checks (presumably cashed and held by a bank) can be digitally scanned using high volume paper scanners to capture and create digital images of (both front and back sides) the checks. A series of one or more image files such as PDF files can be created containing electronic images of the checks in unredacted form. This image data can be thereafter processed by an image security module to create redacted electronic images of the checks for secure viewing in accordance with other aspects of the invention described elsewhere herein. The image masking systems and methods herein can perform a wrapper function around existing image content by taking an already scanned document and blurring or redacting relevant parts of the digital image before presenting it to an end user. Alternatively, the digital image information corresponding to the checks upon scanning can be fed directly into the image security module whereby the function of redacting selected portions of the digital images are performed without generating unredacted digital versions of the checks. For some applications, it may be more useful to only create and/or store redacted electronic images of checks. No duplicate images are generated at all which reveal sensitive information according to this embodiment of the invention. Accordingly, this aspect of the invention allows a plurality of checks or any other documents with similarly located information to be redacted more efficiently and faster in time than if the digital images were redacted individually.


Other embodiments relating to this aspect of the invention can provide batch processing of digital images for other kinds of documents containing confidential or sensitive information described elsewhere herein to protect against identity theft, fraud and other kinds of illegal activity.


In an online application of the invention that securely displays digital images, the following data flow can be implemented: a user requests a page with a dynamic image content (such as a check); a server returns a HTML page with a reference to a back end service that can provide the image; a browser intercepts the <IMG> tag and follows the SRC link to retrieve the image; the service behind the <IMG> link interprets the request and locates the image in a repository (e.g., scanned documents created as shown in FIG. 10); and an image stream can be buffered and streamed back to the client browser. Accordingly, a straightforward and simple integration of the invention can be accomplished with an existing process whereby a server retrieves or receives an already scanned digital image, which is passed through an image security module, e.g., including ImageMask module, before sending the redacted (masked) image to a client (customer browser).


A preferable embodiment of the invention performs a wrapper function around an existing image content call, for example, when a customer desires to view a cashed check. This Java API function call can take the image and mask relevant parts in accordance with the invention herein before resolving an updated redacted image to an end user. The typical delivery process and image can retain intact, processing time can be negligible and no duplicate images are generated.


In accordance with another aspect of the invention, a database or repository of digital images can be created as shown in FIG. 11. It shall be understood that the repository may be maintained and integrated as part of an overall banking system or other network providing secured display of sensitive documents. The plurality of digital images may include both redacted and unredacted electronic images of documents. Such documents include bank checks, statements and any other documents containing sensitive information including those described elsewhere herein. The documents in the repository may be processed by an image security system (ISS) before their images are transmitted or streamed to viewers across a network like the Internet for viewing on a computer or device browser. The image security system may include one or more servers and computers containing computer programs for securing digital or electronic images of documents in accordance with other aspects of the invention. A server may retrieve a digital image from a repository, which is then passed through the image security system, before sending the redacted image to a client (customer browser). In addition to or instead of containing an image security module (see FIG. 10) and other programs, a computer memory in the image security system may also include an electronic image sanitizer. The electronic image sanitizer may be a software program or module with computer implemented instructions or code that filters out selected portions of an image before transmission for viewing. The selected portions of the image may be created and divided into multiple images cells as described elsewhere herein.


For example, the electronic image data for a document such as a cashed personal check may be stored in the repository 110. When the document exists in its unredacted form, its image may be divided into a plurality of image cells so that certain selected cells containing sensitive information can be identified in accordance with other aspects of the invention (e.g., FIG. 9). The image data corresponding to the selected cells can be filtered out by the electronic image sanitizer. The filtered data can be discarded or optionally retained (XXXX) by the security system. So only some and not all image cells of the document are transmitted for secured viewing. The image data and related pixel information corresponding to areas of the document containing sensitive information can be thus omitted from transmission. A sanitized document 112 can therefore be made available for viewing on a computer browser 114 that visibly excludes sensitive information.


Alternatively, a document may exist in the repository in its redacted form 116 following image data processing in accordance with other aspects of the invention. In this embodiment of the invention, the document may have been already redacted by the image security module so that sensitive portions of the document are not legible when rendered on a computer browser or device screen 119. Here the image security system may transmit directly or indirectly a complete set of image data for a document 117 including both redacted and unredacted portions. The transmitted image data may include information corresponding to redacted image cells (solid masked and/or pixelated image portions) and unredacted image cells. But in alternative embodiments of the invention, the data for some image cells (cross-hatch/shaded section), preferably the ones corresponding to confidential or sensitive information in a document, are not transmitted at all and omitted from the relayed image data to render a sanitized document 118 for viewing on a display. This may reduce the amount of data sent over the networks to a remote user device, and also provides added security in that the data corresponding to sensitive information does not even leave a secure computer network such as those operated by financial institutions. Selected image data or data streams corresponding to repository documents can be buffered and streamed back to a client browser or display for secure viewing. Accordingly, this aspect of the invention provides systems and processes for sanitizing a digital representation of a document for viewing.


The embodiments of the invention which perform sanitization of documents and data herein may be characterized as systems and processes for removing sensitive information from a document or other medium so that it may be securely distributed. When dealing with sensitive or classified information, sanitization may convert an otherwise classified document into an unclassified document. For example, a page of a classified document may be sanitized for public release in accordance with the invention. Classified information may be removed so that only the unclassified information is available or visible. A printed document which contains classified or sensitive information will frequently contain significant information which is less sensitive. And, there may be a need to release the less sensitive portions to uncleared personnel or members of the general public such as requests under the Freedom of Information Act (FOIA). The printed document may thus be sanitized to remove the sensitive information, or as with any of the embodiments of the invention herein, the document may be redacted to obscure the information instead. The terms sanitization and redaction as used herein may be applied to printed or paper documents as well as computer media, information and data as well.


It should be understood from the foregoing that, while particular implementations have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.

Claims
  • 1. An image security system for editing a digital image, the image security system comprising: a non-transitory data store configured to store a plurality of digital images and division patterns associated with a plurality of predetermined document types;a computer processor programmed to: access a digital image of a scanned document from the plurality of digital images, the scanned document associated with a predetermined document type of the plurality of predetermined document types;divide the digital image of the scanned document into a plurality of image cells according to a division pattern associated with the predetermined document type;assign each of the plurality of image cells with a cell identifier;select from the plurality of image cells at least one image cell, a first image cell of the at least one image cell selected based on a location of the first image cell within the digital image;identify a first cell identifier associated with the first image cell;perform a first redacting operation on a first portion of the first image cell based at least in part on the first cell identifier, wherein the first portion of the first image cell displays sensitive information, and wherein the first redacting operation is of a first redaction type comprising at least one of: encrypting, blurring, masking, or inserting a line over all or just a portion of the first image cell;select a second image cell from the at least one image cell, the second image cell selected based on a location of the second image cell within the digital image; andperform a second redacting operation on a first portion of the second image cell, wherein the first portion of the second image cell displays sensitive information, wherein the second redacting operation is of a second redaction type comprising at least one of:encrypting, blurring, masking, or inserting a line over all or just a portion of the second image cell, and wherein the second redaction type is different from the first redaction type; and generate a digital image based at least in part on an output of the first redacting operation and the second redacting operation.
  • 2. The image security system of claim 1, wherein a portion of the first image cell comprises non-sensitive information.
  • 3. The image security system of claim 1, first image cell and the second image cell are of different sizes.
  • 4. The image security system of claim 1, the computer processor is further programmed to perform a third redacting operation on a second portion of the first image cell, wherein the third redacting operation is of a third redaction type comprising at least one of pixelating, encrypting or obfuscating of the second portion, and wherein the first redaction type is different from the third redaction type.
  • 5. The image security system of claim 1, wherein a number of plurality of image cells associated with the division pattern is based at least on the predetermined document type and a desired level of security associated with the predetermined document type.
  • 6. A method for automatically editing a digital image, the method comprising: accessing, from a non-transitory data store, a digital image of a scanned document, the non-transitory data store storing a plurality of digital images and division patterns associated with a plurality of predetermined document types;accessing, from the non-transitory data store, a division pattern associated with a document type of the scanned document;dividing the digital image of the scanned document into a plurality of image fragments according to the division pattern;assigning each of the plurality of image cells with a cell identifier;selecting from the plurality of image cells at least one image cell, a first image cell of the at least one image cell selected based on a location of the first image cell within the digital image;identifying a first cell identifier associated with the first image cell;performing a first redacting operation on a first portion of the first image cell based at least in part on the first cell identifier, wherein the first portion of the first image cell displays sensitive information, and wherein the first redacting operation is of a first redaction type comprising at least one of: encrypting, blurring, masking, or inserting a line over all or just a portion of the first image cell;selecting a second image cell from the at least one image cell, the second image cell selected based on a location of the second image cell within the digital image; andperforming a second redacting operation on a first portion of the second image cell, wherein the first portion of the second image cell displays sensitive information, wherein the second redacting operation is of a second redaction type comprising at least one of: encrypting, blurring, masking, or inserting a line over all or just a portion of the second image cell, and wherein the second redaction type is different from the first redaction type; andgenerating a digital image based at least in part on an output of the first redacting operation and the second redacting operation.
  • 7. The method of claim 6, wherein a reminder of the first image cell comprises non-sensitive information.
  • 8. The method of claim 6, wherein the first image cell and the second image cell are of different sizes.
  • 9. The method of claim 6, further comprising performing a third redacting operation on a second portion of the first image cell, wherein the third redacting operation is of a third redaction type comprising at least one of pixelating, encrypting or obfuscating of the second portion, and wherein the first redaction type is different from the third redaction type.
  • 10. The method of claim 6, wherein a number of plurality of image cells associated with the division pattern is based at least on the predetermined document type and a desired level of security associated with the predetermined document type.
  • 11. A non-transitory computer storage having stored thereon a computer program, the computer program including executable instructions that instruct a computer system to at least: access, from a non-transitory data store, a digital image of a scanned document, the non-transitory data store storing a plurality of digital images and division patterns associated with a plurality of predetermined document types;access, from the non-transitory data store, a division pattern associated with a document type of the scanned document;divide the digital image of the scanned document into a plurality of image fragments according to the division pattern;assign each of the plurality of image cells with a cell identifier;]select from the plurality of image cells at least one image cell, the first image cell of the at least one image cells selected based on a location of the first image cell within the digital image;identify a first cell identifier associated with the first image cell;perform a first redacting operation on a first portion of the first image cell based at least in part on the first cell identifier, wherein the first portion of the first image cell displays sensitive information, and wherein the first redacting operation is of a first redaction type comprising at least one of: encrypting, blurring, masking, or inserting a line over all or just a portion of the first image cell;select a second image cell from the at least one image cell, the second image cell selected based on a location of the second image cell within the digital image; andperform a second redacting operation on a first portion of the second image cell, wherein the first portion of the second image cell displays sensitive information, wherein the second redacting operation is of a second redaction type comprising at least one of: encrypting, blurring, masking, or inserting a line over all or just a portion of the second image cell, and wherein the second redaction type is different from the first redaction type; andgenerate a digital image based at least in part on an output of the first redacting operation and the second redacting operation.
  • 12. The non-transitory computer storage of claim 11, the executable instructions further instruct the computer system to perform a third redacting operation on a second portion of the first image cell, wherein the third redacting operation is of a third redaction type comprising at least one of: pixelating, encrypting or obfuscating of the second portion, and wherein the first redaction type is different from the third redaction type.
  • 13. The non-transitory computer storage of claim 11, wherein the first image cell and the second image cell are of different sizes.
  • 14. The non-transitory computer storage of claim 11, wherein a number of plurality of image cells associated with the division pattern is based at least on the predetermined document type and a desired level of security associated with the predetermined document type.
Parent Case Info

This application is a continuation application of U.S. patent application Ser. No. 14/580,085, filed on Dec. 22, 2014, which is a continuation of U.S. patent application Ser. No. 11/769,674, filed on Jun. 27, 2007, which is a continuation-in-part application of U.S. patent application Ser. No. 11/612,425 filed on Dec. 18, 2006, now U.S. Pat. No. 8,612,854, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/751,188 filed on Dec. 16, 2005, wherein each are incorporated herein by reference in their entirety.

US Referenced Citations (729)
Number Name Date Kind
4805222 Young et al. Feb 1989 A
4912761 Tan et al. Mar 1990 A
4924387 Jeppesen May 1990 A
5184849 Taylor Feb 1993 A
5491735 Hsieh Feb 1996 A
5519827 Mizushima May 1996 A
5521907 Ennis, Jr. May 1996 A
5557686 Brown et al. Sep 1996 A
5627886 Bowman May 1997 A
5679940 Templeton et al. Oct 1997 A
5721765 Smith Feb 1998 A
5724424 Giffor Mar 1998 A
5748740 Curry et al. May 1998 A
5748780 Stolfo et al. May 1998 A
5764275 Lappington et al. Jun 1998 A
5802156 Felger Sep 1998 A
5819226 Gopinathan et al. Oct 1998 A
5864620 Pettitt Jan 1999 A
5884289 Anderson et al. Mar 1999 A
5886334 D'Entremont Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5894510 Felger Apr 1999 A
5899980 Wilf et al. May 1999 A
5903646 Rackman May 1999 A
5903721 Sixtus May 1999 A
5933480 Felger Aug 1999 A
5960069 Felger Sep 1999 A
6009523 Owaki et al. Dec 1999 A
6029154 Pettitt Feb 2000 A
6029159 Zorba et al. Feb 2000 A
6062474 Kroll May 2000 A
6078907 Lamm Jun 2000 A
6092053 Boesch et al. Jul 2000 A
6094643 Anderson et al. Jul 2000 A
6105012 Chang et al. Aug 2000 A
6112240 Pogue et al. Aug 2000 A
6148407 Aucsmith Nov 2000 A
6151593 Cho et al. Nov 2000 A
6163604 Baulier et al. Dec 2000 A
6163771 Walker et al. Dec 2000 A
6164528 Hills et al. Dec 2000 A
6205436 Rosenberg et al. Mar 2001 B1
6209104 Jalili Mar 2001 B1
6216153 Vortriede Apr 2001 B1
6223289 Wall et al. Apr 2001 B1
6282276 Felger Aug 2001 B1
6295605 Dockter et al. Sep 2001 B1
6327384 Hirao et al. Dec 2001 B1
6330546 Gopinathan et al. Dec 2001 B1
6405922 Kroll Jun 2002 B1
6442529 Krishan et al. Aug 2002 B1
6442692 Zilberman Aug 2002 B1
6457021 Berkowitz et al. Sep 2002 B1
6480710 Laybourn et al. Nov 2002 B1
6509847 Anderson Jan 2003 B1
6523019 Borthwick Feb 2003 B1
6546493 Magdych et al. Apr 2003 B1
6553108 Felger Apr 2003 B1
6560455 Amin et al. May 2003 B2
6567099 Dawson May 2003 B1
6597775 Lawyer et al. Jul 2003 B2
6646765 Barker et al. Nov 2003 B1
6678666 Boulware Jan 2004 B1
6687390 Avni et al. Feb 2004 B2
6687696 Hofmann et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6718363 Ponte Apr 2004 B1
6745333 Thomsen Jun 2004 B1
6803920 Gossett et al. Oct 2004 B2
6804624 Silverman Oct 2004 B2
6850606 Lawyer et al. Feb 2005 B2
6892307 Wood et al. May 2005 B1
6895507 Tepler May 2005 B1
6895514 Kermani May 2005 B1
6898709 Teppler May 2005 B1
6908030 Rajasekaran et al. Jun 2005 B2
6937569 Sarkar et al. Aug 2005 B1
6947978 Huffman Sep 2005 B2
6954532 Handley et al. Oct 2005 B1
6957185 Labaton Oct 2005 B1
6957339 Shinzaki Oct 2005 B2
7002712 Barker et al. Feb 2006 B2
7003670 Heaven et al. Feb 2006 B2
7007174 Wheeler et al. Feb 2006 B2
7013001 Felger Mar 2006 B1
7027800 Haumont et al. Apr 2006 B2
7039505 Southard et al. May 2006 B1
7039699 Narin et al. May 2006 B1
7043640 Pritchard et al. May 2006 B2
7089310 Ellerman et al. Aug 2006 B1
7089585 Dharmarajan Aug 2006 B1
7096192 Pettitt Aug 2006 B1
7100049 Gasparini et al. Aug 2006 B2
7103570 Morea et al. Sep 2006 B1
7120590 Eisen et al. Oct 2006 B1
7130858 Ciaramitaro et al. Oct 2006 B2
7143095 Barrett et al. Nov 2006 B2
7158622 Lawyer et al. Jan 2007 B2
7165051 Ronning et al. Jan 2007 B2
7174454 Roskind Feb 2007 B2
7191467 Dujari et al. Mar 2007 B1
7197646 Fritz et al. Mar 2007 B2
7221949 Clough May 2007 B2
7225974 Yamauchi Jun 2007 B2
7237717 Rao et al. Jul 2007 B1
7249093 King Jul 2007 B1
7251624 Lee et al. Jul 2007 B1
7260837 Abraham et al. Aug 2007 B2
7263492 Suresh et al. Aug 2007 B1
7263506 Lee et al. Aug 2007 B2
7272610 Torres Sep 2007 B2
7272728 Pierson et al. Sep 2007 B2
7292723 Tedesco et al. Nov 2007 B2
7293096 Foltak et al. Nov 2007 B1
7296088 Padmanabhan et al. Nov 2007 B1
7328216 Hofmann et al. Feb 2008 B2
7330824 Kanojia et al. Feb 2008 B1
7330871 Barber Feb 2008 B2
7340045 Felger Mar 2008 B2
7346551 Pe Jimenez et al. Mar 2008 B2
7346775 Gasparinl et al. Mar 2008 B2
7349955 Korb et al. Mar 2008 B1
7359962 Willebeek-LeMair et al. Apr 2008 B2
7363170 Seul et al. Apr 2008 B2
7373669 Eisen May 2008 B2
7376618 Anderson et al. May 2008 B1
7379891 Donner et al. May 2008 B1
7404087 Teunen Jun 2008 B2
7401082 Keene et al. Jul 2008 B2
7403922 Lewis et al. Jul 2008 B1
7406441 Kimura et al. Jul 2008 B2
7428587 Rowland et al. Sep 2008 B2
7436780 Stephens Oct 2008 B2
7438226 Helsper et al. Oct 2008 B2
7447494 Law et al. Nov 2008 B2
7451487 Oliver et al. Nov 2008 B2
7457401 Lawyer et al. Nov 2008 B2
7457823 Shraim et al. Nov 2008 B2
7475242 Baird et al. Jan 2009 B2
7478182 Schweig Jan 2009 B2
7487350 Utin Feb 2009 B2
7496752 Yamaguchi et al. Feb 2009 B2
7497374 Helsper et al. Mar 2009 B2
7502610 Maher Mar 2009 B2
7502933 Jakobsson et al. Mar 2009 B2
7526796 Lulich et al. Apr 2009 B2
7543740 Greene et al. Jun 2009 B2
7552090 Barber Jun 2009 B1
7555458 Felger Jun 2009 B1
7562221 Nyström et al. Jul 2009 B2
7577620 Donner Aug 2009 B1
7581112 Brown et al. Aug 2009 B2
7606560 Labrou et al. Oct 2009 B2
7657626 Zwicky Feb 2010 B1
7660902 Graham et al. Feb 2010 B2
7665140 Oliver et al. Feb 2010 B2
7665658 Fields Feb 2010 B2
7673793 Greene et al. Mar 2010 B2
7685629 White et al. Mar 2010 B1
7698743 Ohmori et al. Apr 2010 B2
7708200 Helsper et al. May 2010 B2
7711846 Padmanabhan et al. May 2010 B2
7735141 Noel et al. Jun 2010 B1
7739402 Roese et al. Jun 2010 B2
7739512 Hawkes Jun 2010 B2
7743409 Gonzalez et al. Jun 2010 B2
7752084 Pettitt Jul 2010 B2
7756783 Crooks Jul 2010 B2
7761379 Zoldi et al. Jul 2010 B2
7778846 Suresh et al. Aug 2010 B2
7813937 Pathria et al. Oct 2010 B1
7813944 Luk et al. Oct 2010 B1
7849029 Crooks et al. Dec 2010 B2
7849307 Roskind Dec 2010 B2
7853526 Milana Dec 2010 B2
7853533 Eisen Dec 2010 B2
7856372 Ullah Dec 2010 B2
7860783 Yang et al. Dec 2010 B2
7861260 Shkedi Dec 2010 B2
7865427 Wright et al. Jan 2011 B2
7882217 Katzir Feb 2011 B2
7908223 Klein et al. Mar 2011 B2
7908645 Varghese et al. Mar 2011 B2
7930285 Abraham et al. Apr 2011 B2
7933984 Smith et al. Apr 2011 B1
7937467 Barber May 2011 B2
7940929 Sengupta May 2011 B1
7945494 Williams May 2011 B2
7945515 Zoldi et al. May 2011 B2
7949564 Hughes et al. May 2011 B1
7958029 Bobich et al. Jun 2011 B1
7958246 Barber Jun 2011 B2
7961857 Zoldi et al. Jun 2011 B2
7970701 Lewis et al. Jun 2011 B2
7983691 Wong et al. Jul 2011 B1
7991716 Crooks et al. Aug 2011 B2
7995996 Link, II et al. Aug 2011 B2
8001376 Utin Aug 2011 B2
8001597 Crooks Aug 2011 B2
8015614 Matsuzaki et al. Sep 2011 B2
8015921 Leppanen et al. Sep 2011 B2
8019678 Wright et al. Sep 2011 B2
8020763 Kowalchyk et al. Sep 2011 B1
8024266 Barber Sep 2011 B1
8025220 Zoldi et al. Sep 2011 B2
8027439 Zoldi et al. Sep 2011 B2
8032448 Anderson et al. Oct 2011 B2
8037097 Guo et al. Oct 2011 B2
8037511 Lundy et al. Oct 2011 B1
8041597 Li et al. Oct 2011 B2
8042164 Sheynblat et al. Oct 2011 B2
8046271 Jimenez et al. Oct 2011 B2
8060922 Crichton et al. Nov 2011 B2
8065233 Lee et al. Nov 2011 B2
8090648 Zoldi et al. Jan 2012 B2
8108378 Ott, IV et al. Jan 2012 B2
8121962 Vaiciulis et al. Feb 2012 B2
8122082 Klein Feb 2012 B2
8126816 Mu et al. Feb 2012 B2
8131615 Diev et al. Mar 2012 B2
8140689 Barber Mar 2012 B2
8141148 Thomas et al. Mar 2012 B2
8145560 Kulkarni et al. Mar 2012 B2
8145762 Barber Mar 2012 B2
8150968 Barber Apr 2012 B2
8151327 Eisen Apr 2012 B2
8166068 Stevens Apr 2012 B2
8175897 Lee et al. May 2012 B2
8176178 Thomas et al. May 2012 B2
8180686 Ryu et al. May 2012 B2
8181015 Roskind May 2012 B2
8185953 Rothstein et al. May 2012 B2
8190513 Felger May 2012 B2
8190529 Abe et al. May 2012 B2
8191148 Oliver et al. May 2012 B2
8201099 Osbourn et al. Jun 2012 B1
8204833 Mu et al. Jun 2012 B2
8209744 Zhu et al. Jun 2012 B2
8209760 Hardman Jun 2012 B1
8213898 Choti et al. Jul 2012 B2
8214232 Tyler et al. Jul 2012 B2
8214285 Hu et al. Jul 2012 B2
8219415 Tyler et al. Jul 2012 B2
8224348 Bolon et al. Jul 2012 B2
8229844 Felger Jul 2012 B2
8250631 Iyengar et al. Aug 2012 B2
8266295 Klein et al. Sep 2012 B2
8271891 Osbourn et al. Sep 2012 B1
8280833 Miltonberger Oct 2012 B2
8290838 Thakur et al. Oct 2012 B1
8295898 Ashfield et al. Oct 2012 B2
8296228 Kloor Oct 2012 B1
8296229 Yellin et al. Oct 2012 B1
8296245 Barber et al. Oct 2012 B2
8296250 Crooks et al. Oct 2012 B2
8306933 Kawai et al. Nov 2012 B2
8307430 Chen et al. Nov 2012 B1
8311907 Klein et al. Nov 2012 B2
8321269 Linden et al. Nov 2012 B2
8326759 Hammad Dec 2012 B2
8326760 Ma et al. Dec 2012 B2
8326763 Zuili Dec 2012 B2
8332338 Vaiciulis et al. Dec 2012 B2
8332522 Barber Dec 2012 B2
8370253 Grossman et al. Feb 2013 B1
8370638 Duane et al. Feb 2013 B2
8380831 Barber Feb 2013 B2
8392987 Sasamura et al. Mar 2013 B2
8407112 Walter Mar 2013 B2
8407798 Lotem et al. Mar 2013 B1
8417587 Jimenez et al. Apr 2013 B2
8423458 Barber Apr 2013 B2
8424061 Rosenor Apr 2013 B2
8429070 Hu et al. Apr 2013 B2
8438184 Wang May 2013 B1
8443202 White et al. May 2013 B2
8452715 Barber May 2013 B2
8453226 Hammad May 2013 B2
8462161 Barber Jun 2013 B1
8464290 Beyda et al. Jun 2013 B2
8468582 Kuang et al. Jun 2013 B2
8484470 Sakakihara et al. Jul 2013 B2
8495714 Jones et al. Jul 2013 B2
8516439 Brass et al. Aug 2013 B2
8539070 Barber Sep 2013 B2
8543522 Ryman-Tubb et al. Sep 2013 B2
8548137 Zoldi et al. Oct 2013 B2
8559607 Zoldi et al. Oct 2013 B2
8567669 Griegel et al. Oct 2013 B2
8588816 Collins Nov 2013 B2
8601109 Johannsen Dec 2013 B2
8611856 Yan et al. Dec 2013 B2
8612854 Eisen et al. Dec 2013 B2
8660539 Khambete et al. Feb 2014 B2
8683561 Utin Mar 2014 B2
8688543 Dominguez Apr 2014 B2
8751815 Lunde et al. Jun 2014 B2
8762283 Gerber et al. Jun 2014 B2
8762574 Barber Jun 2014 B2
8763113 Thomas et al. Jun 2014 B2
8776225 Pierson et al. Jul 2014 B2
8779981 Eisen et al. Jul 2014 B2
8781975 Bennett et al. Jul 2014 B2
8782783 Thomas et al. Jul 2014 B2
8799458 Barber Aug 2014 B2
8817984 Miller et al. Aug 2014 B2
8826393 Eisen Sep 2014 B2
8838478 Kretz et al. Sep 2014 B2
8838967 Mills et al. Sep 2014 B1
8862514 Eisen Oct 2014 B2
8862526 Miltonberger Oct 2014 B2
8881288 Levy et al. Nov 2014 B1
8938671 Eisen et al. Jan 2015 B2
8954560 Johannsen Feb 2015 B2
8966276 Nanopoulos et al. Feb 2015 B2
9060012 Eisen Jun 2015 B2
9083735 Reumann et al. Jul 2015 B2
9098617 Pauley, Jr. et al. Aug 2015 B1
9112850 Eisen Aug 2015 B1
9118646 Pierson et al. Aug 2015 B2
9191370 Barber et al. Nov 2015 B2
9196004 Eisen Nov 2015 B2
9203837 Pierson et al. Dec 2015 B2
9294448 Miller et al. Mar 2016 B2
9298677 Tollinger et al. Mar 2016 B2
9332020 Thomas et al. May 2016 B2
9361597 Britton et al. Jun 2016 B2
9378500 Jimenez et al. Jun 2016 B2
9390384 Eisen Jul 2016 B2
9396331 Eisen et al. Jul 2016 B2
9412123 Eisen Aug 2016 B2
9514248 Guan et al. Dec 2016 B1
9521161 Reumann et al. Dec 2016 B2
9521551 Eisen et al. Dec 2016 B2
9559852 Miller et al. Jan 2017 B2
9633201 Katz Apr 2017 B1
9703983 Eisen et al. Jul 2017 B2
9754256 Britton et al. Sep 2017 B2
9754311 Eisen Sep 2017 B2
9781151 McCorkendale et al. Oct 2017 B1
9785973 Tollinger et al. Oct 2017 B2
9948629 Eisen Apr 2018 B2
9990631 Eisen Jun 2018 B2
10021099 Eisen et al. Jul 2018 B2
10089679 Eisen Oct 2018 B2
10091312 Khanwalkar et al. Oct 2018 B1
10339306 Katz Jul 2019 B1
10341344 Eisen et al. Jul 2019 B2
10395252 Eisen Aug 2019 B2
10417637 Eisen Sep 2019 B2
10453066 Eisen Oct 2019 B2
20010011243 Dembo et al. Aug 2001 A1
20010011304 Wesigner et al. Aug 2001 A1
20010016840 Hijikata et al. Aug 2001 A1
20010016876 Kurth et al. Aug 2001 A1
20010018739 Anderson et al. Aug 2001 A1
20010034712 Colvin Oct 2001 A1
20010046096 Worden Nov 2001 A1
20020035622 Barber Mar 2002 A1
20020041328 LeCompte et al. Apr 2002 A1
20020046157 Solomon Apr 2002 A1
20020052852 Bozeman May 2002 A1
20020056042 van der Kaay et al. May 2002 A1
20020073046 David Jun 2002 A1
20020073327 Vellandi Jun 2002 A1
20020083079 Meier et al. Jun 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020112171 Ginter et al. Aug 2002 A1
20020128917 Grounds Sep 2002 A1
20020138335 Palmer et al. Sep 2002 A1
20020138577 Teng et al. Sep 2002 A1
20020153424 Li Oct 2002 A1
20020156724 Levchin et al. Oct 2002 A1
20020156836 Janosik, Jr. et al. Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020167965 Beasley et al. Nov 2002 A1
20030002732 Gossett et al. Jan 2003 A1
20030002740 Melikian et al. Jan 2003 A1
20030014327 Skantze Jan 2003 A1
20030033161 Walker et al. Feb 2003 A1
20030033356 Tran et al. Feb 2003 A1
20030070080 Rosen Apr 2003 A1
20030074301 Solomon Apr 2003 A1
20030076242 Burns et al. Apr 2003 A1
20030105707 Audebert et al. Jun 2003 A1
20030105854 Thorsteinsson et al. Jun 2003 A1
20030113033 Huang Jun 2003 A1
20030115334 Bhat et al. Jun 2003 A1
20030115481 Baird et al. Jun 2003 A1
20030120543 Carey Jun 2003 A1
20030120586 Litty Jun 2003 A1
20030140258 Nelson et al. Jul 2003 A1
20030154214 Tu et al. Aug 2003 A1
20030158751 Suresh et al. Aug 2003 A1
20030163359 Kanesaka Aug 2003 A1
20030163398 Yoshioka et al. Aug 2003 A1
20030163413 Wiczkowski Aug 2003 A1
20030172036 Feigenbaum Sep 2003 A1
20030182551 Frantz et al. Sep 2003 A1
20030208684 Camacho et al. Nov 2003 A1
20030212618 Keyes et al. Nov 2003 A1
20030233553 Parks et al. Dec 2003 A1
20040001044 Luciani et al. Jan 2004 A1
20040004733 Barker et al. Jan 2004 A1
20040006553 de Vries et al. Jan 2004 A1
20040010682 Foster et al. Jan 2004 A1
20040027385 Rekimoto et al. Feb 2004 A1
20040030912 Merkle, Jr. et al. Feb 2004 A1
20040034652 Hofmann et al. Feb 2004 A1
20040034794 Mayer et al. Feb 2004 A1
20040073809 Wing Keong Apr 2004 A1
20040088313 Torres May 2004 A1
20040098618 Kim et al. May 2004 A1
20040105431 Monjas-Llorente et al. Jun 2004 A1
20040111621 Himberger et al. Jun 2004 A1
20040117321 Sancho Jun 2004 A1
20040139008 Mascavaage, III Jul 2004 A1
20040153644 McCorkendale et al. Aug 2004 A1
20040159699 Nelson et al. Aug 2004 A1
20040166857 Shim et al. Aug 2004 A1
20040171381 Inselberg Sep 2004 A1
20040181598 Paya et al. Sep 2004 A1
20040203750 Cowdrey et al. Oct 2004 A1
20040230820 Hui Hsu et al. Nov 2004 A1
20040236696 Aoki et al. Nov 2004 A1
20040236702 Fink et al. Nov 2004 A1
20040254890 Sancho et al. Dec 2004 A1
20040260876 Singh et al. Dec 2004 A1
20040260922 Goodman et al. Dec 2004 A1
20050008148 Jacobson Jan 2005 A1
20050015601 Tabi Jan 2005 A1
20050022020 Fremberg et al. Jan 2005 A1
20050033653 Eisenberg et al. Feb 2005 A1
20050033703 Holdsworth Feb 2005 A1
20050039034 Doyle et al. Feb 2005 A1
20050039219 Cooper et al. Feb 2005 A1
20050076230 Redenbaugh et al. Apr 2005 A1
20050085931 Willeby Apr 2005 A1
20050097320 Golan et al. May 2005 A1
20050108177 Sancho May 2005 A1
20050111054 Umeda May 2005 A1
20050113092 Coppinger et al. May 2005 A1
20050131826 Cook Jun 2005 A1
20050185225 Brawn et al. Aug 2005 A1
20050188423 Motsinger et al. Aug 2005 A1
20050204159 Davis et al. Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050246551 Dondl et al. Nov 2005 A1
20050278542 Pierson et al. Dec 2005 A1
20060008779 Shand et al. Jan 2006 A1
20060010072 Eisen Jan 2006 A1
20060026669 Zakas Feb 2006 A1
20060031938 Choi Feb 2006 A1
20060048211 Pierson et al. Mar 2006 A1
20060064346 Steenstra et al. Mar 2006 A1
20060069619 Walker et al. Mar 2006 A1
20060075492 Golan et al. Apr 2006 A1
20060080263 Willis et al. Apr 2006 A1
20060126829 Lai Jun 2006 A1
20060130132 Dharmarajan Jun 2006 A1
20060136294 Linden et al. Jun 2006 A1
20060155985 Canard et al. Jul 2006 A1
20060161501 Waserstein et al. Jul 2006 A1
20060190331 Tollinger et al. Aug 2006 A1
20060190489 Vohariwatt Aug 2006 A1
20060200855 Willis Sep 2006 A1
20060200856 Salowey et al. Sep 2006 A1
20060224898 Ahmed Oct 2006 A1
20060237531 Heffez et al. Oct 2006 A1
20060253327 Morris et al. Nov 2006 A1
20060253328 Kohli et al. Nov 2006 A1
20060264202 Hagmeier et al. Nov 2006 A1
20060281541 Nguyen et al. Dec 2006 A1
20060282660 Varghese et al. Dec 2006 A1
20060284838 Tsatalos et al. Dec 2006 A1
20060287902 Helsper et al. Dec 2006 A1
20070011078 Jain et al. Jan 2007 A1
20070030528 Quaeler Feb 2007 A1
20070038568 Greene et al. Feb 2007 A1
20070043837 Kruse et al. Feb 2007 A1
20070061211 Ramer et al. Mar 2007 A1
20070061273 Greene et al. Mar 2007 A1
20070073630 Greene et al. Mar 2007 A1
20070094594 Matichuk et al. Apr 2007 A1
20070097076 Gross May 2007 A1
20070097976 Wood et al. May 2007 A1
20070101405 Engle et al. May 2007 A1
20070107059 Chasin et al. May 2007 A1
20070118892 Sastry et al. May 2007 A1
20070124246 Lawyer et al. May 2007 A1
20070162763 Bender et al. Jul 2007 A1
20070183000 Eisen et al. Aug 2007 A1
20070198410 Labgold et al. Aug 2007 A1
20070199054 Florencio et al. Aug 2007 A1
20070204044 Rice et al. Aug 2007 A1
20070214151 Scott et al. Sep 2007 A1
20070220594 Tulsyan Sep 2007 A1
20070233599 Ganesan et al. Oct 2007 A1
20070234070 Horning et al. Oct 2007 A1
20070239604 O'Connell et al. Oct 2007 A1
20070255821 Ge et al. Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20070271466 Mak Nov 2007 A1
20070294401 Shkedi Dec 2007 A1
20080002725 Alicherry et al. Jan 2008 A1
20080002911 Eisen et al. Jan 2008 A1
20080005394 Crooks Jan 2008 A1
20080010367 Cheng et al. Jan 2008 A1
20080010678 Burdette et al. Jan 2008 A1
20080015988 Brown et al. Jan 2008 A1
20080021801 Song et al. Jan 2008 A1
20080040653 Levine Feb 2008 A1
20080040802 Pierson et al. Feb 2008 A1
20080046562 Butler Feb 2008 A1
20080052629 Phillips et al. Feb 2008 A1
20080098222 Zilberman Apr 2008 A1
20080101277 Taylor May 2008 A1
20080104070 Lonchar May 2008 A1
20080104672 Lunde et al. May 2008 A1
20080104684 Lunde et al. May 2008 A1
20080120195 Shakkarwar May 2008 A1
20080120214 Steele et al. May 2008 A1
20080133420 Barber Jun 2008 A1
20080162200 O'Sullivan et al. Jul 2008 A1
20080162202 Khanna et al. Jul 2008 A1
20080162475 Meggs Jul 2008 A1
20080163128 Callanan et al. Jul 2008 A1
20080174603 Brass et al. Jul 2008 A1
20080184355 Walrath et al. Jul 2008 A1
20080184372 Hoshina Jul 2008 A1
20080189790 Park Aug 2008 A1
20080191007 Keay Aug 2008 A1
20080201214 Aaron Aug 2008 A1
20080204788 Kelly et al. Aug 2008 A1
20080222706 Renaud et al. Sep 2008 A1
20080235623 Li Sep 2008 A1
20080239365 Salgado Oct 2008 A1
20080249820 Pathria et al. Oct 2008 A1
20080281606 Kitts Nov 2008 A1
20080281941 Park et al. Nov 2008 A1
20080288299 Schultz Nov 2008 A1
20080301281 Wang et al. Dec 2008 A1
20080306830 Lasa et al. Dec 2008 A1
20080313079 Van Bosch et al. Dec 2008 A1
20080319774 O'Sullivan et al. Dec 2008 A1
20080319841 Oliver et al. Dec 2008 A1
20090018940 Wang et al. Jan 2009 A1
20090024971 Willner et al. Jan 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090044282 Govindaraju Feb 2009 A1
20090055398 Zhu et al. Feb 2009 A1
20090070664 Gavin Mar 2009 A1
20090089869 Varghese Apr 2009 A1
20090106413 Salo Apr 2009 A1
20090138590 Lee et al. May 2009 A1
20090157417 Bradley et al. Jun 2009 A1
20090164269 Gupta et al. Jun 2009 A1
20090177692 Chagoly et al. Jul 2009 A1
20090183010 Schnell et al. Jul 2009 A1
20090205031 Sato et al. Aug 2009 A1
20090222308 Zoldi et al. Sep 2009 A1
20090228585 Kosbab et al. Sep 2009 A1
20090234738 Britton et al. Sep 2009 A1
20090241174 Rajan et al. Sep 2009 A1
20090260064 Mcdowell et al. Oct 2009 A1
20090265773 Schultz Oct 2009 A1
20090271306 Pierson Oct 2009 A1
20090307141 Kongalath et al. Oct 2009 A1
20090280777 Doherty Nov 2009 A1
20090292568 Khosravani et al. Nov 2009 A1
20090293128 Lippmann et al. Nov 2009 A1
20090296907 Vendrow et al. Dec 2009 A1
20090298480 Khambete et al. Dec 2009 A1
20090307119 Ahles et al. Dec 2009 A1
20090313134 Faith et al. Dec 2009 A1
20100005013 Uriarte Jan 2010 A1
20100030641 Ibenforth Feb 2010 A1
20100030777 Panwar et al. Feb 2010 A1
20100057623 Kapur et al. Mar 2010 A1
20100070606 Shenfield et al. Mar 2010 A1
20100082972 Benco et al. Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094768 Miltonberger Apr 2010 A1
20100106611 Paulsen et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100121716 Golan May 2010 A1
20100138299 Preston et al. Jun 2010 A1
20100145960 Casteel et al. Jun 2010 A1
20100153540 Li et al. Jun 2010 A1
20100157848 Das et al. Jun 2010 A1
20100161424 Sylvain Jun 2010 A1
20100161566 Adair et al. Jun 2010 A1
20100169157 Muhonen et al. Jul 2010 A1
20100169192 Zoldi et al. Jul 2010 A1
20100192082 Sodah Jul 2010 A1
20100199332 Bachmann et al. Aug 2010 A1
20100199338 Craddock et al. Aug 2010 A1
20100211464 Zhu et al. Aug 2010 A1
20100223105 Gassewitz et al. Sep 2010 A1
20100223145 Dragt Sep 2010 A1
20100228625 Priyadarshan et al. Sep 2010 A1
20100228638 Mikan et al. Sep 2010 A1
20100257065 Gupta et al. Oct 2010 A1
20100274678 Rolf et al. Oct 2010 A1
20100293094 Kolkowitz et al. Nov 2010 A1
20100306827 Esteve Balducci et al. Dec 2010 A1
20100321296 Gross Dec 2010 A1
20100333170 Cox et al. Dec 2010 A1
20110022483 Hammad Jan 2011 A1
20110022517 Hammad Jan 2011 A1
20110035302 Martell et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110082768 Eisen Apr 2011 A1
20110112901 Fried et al. May 2011 A1
20110161228 Suzuki et al. Jun 2011 A1
20110173281 Smith Jul 2011 A1
20110184778 Graepel et al. Jul 2011 A1
20110194679 Patisaul et al. Aug 2011 A1
20110218860 Barber Sep 2011 A1
20110225091 Plastina et al. Sep 2011 A1
20110238575 Nightengale et al. Sep 2011 A1
20110251951 Kolkowitz et al. Oct 2011 A1
20110258118 Ciurea Oct 2011 A1
20110264612 Ryman-Tubb et al. Oct 2011 A1
20110282778 Wright et al. Nov 2011 A1
20110288932 Marks et al. Nov 2011 A1
20110302087 Crooks Dec 2011 A1
20110302096 Lowry Dec 2011 A1
20110307341 Zohar et al. Dec 2011 A1
20110314557 Marshall Dec 2011 A1
20120022883 Morrison Jan 2012 A1
20120030083 Newman et al. Feb 2012 A1
20120030757 Baikalov et al. Feb 2012 A1
20120030771 Pierson et al. Feb 2012 A1
20120036042 Graylin et al. Feb 2012 A1
20120041841 Hu et al. Feb 2012 A1
20120054136 Maulik Mar 2012 A1
20120054847 Schultz et al. Mar 2012 A1
20120084203 Mehew et al. Apr 2012 A1
20120084860 Cao et al. Apr 2012 A1
20120094639 Carlson et al. Apr 2012 A1
20120101939 Kasower Apr 2012 A1
20120150742 Poon et al. Jun 2012 A1
20120150750 Law et al. Jun 2012 A1
20120157062 Kim et al. Jun 2012 A1
20120158586 Ganti et al. Jun 2012 A1
20120166533 Rubinstein et al. Jun 2012 A1
20120173465 Hore et al. Jul 2012 A1
20120179558 Fischer Jul 2012 A1
20120197981 Chan Aug 2012 A1
20120204262 Thomas et al. Aug 2012 A1
20120215896 Johannsen Aug 2012 A1
20120216282 Pappu et al. Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120222111 Oliver et al. Aug 2012 A1
20120233665 Ranganathan et al. Sep 2012 A1
20120239553 Gonen et al. Sep 2012 A1
20120239574 Smith et al. Sep 2012 A1
20120239774 Tola et al. Sep 2012 A1
20120278127 Kirakosyan et al. Nov 2012 A1
20120295580 Corner Nov 2012 A1
20120297380 Colbert et al. Nov 2012 A1
20120311162 Paulsen et al. Dec 2012 A1
20120323788 Keresman et al. Dec 2012 A1
20120323836 Wright et al. Dec 2012 A1
20120330787 Hanson et al. Dec 2012 A1
20130006743 Moore et al. Jan 2013 A1
20130018789 Kaufmann Jan 2013 A1
20130018791 Mendicino et al. Jan 2013 A1
20130024300 Choudhuri et al. Jan 2013 A1
20130036304 Lin et al. Feb 2013 A1
20130040603 Stahlberg et al. Feb 2013 A1
20130042298 Plaza Fonseca et al. Feb 2013 A1
20130055388 Thomas et al. Feb 2013 A1
20130073463 Dimmick et al. Mar 2013 A1
20130073473 Heath Mar 2013 A1
20130085841 Singleton et al. Apr 2013 A1
20130097673 Meehan et al. Apr 2013 A1
20130097701 Moyle et al. Apr 2013 A1
20130103482 Song et al. Apr 2013 A1
20130103629 Vaiciulis et al. Apr 2013 A1
20130110637 Bott May 2013 A1
20130111592 Zhu et al. May 2013 A1
20130117832 Gandhi May 2013 A1
20130144539 Allen et al. Jun 2013 A1
20130148525 Cuadra Sanchez et al. Jun 2013 A1
20130159195 Kirillin et al. Jun 2013 A1
20130185764 Krstić et al. Jul 2013 A1
20130197998 Buhrmann et al. Aug 2013 A1
20130198066 Wall et al. Aug 2013 A1
20130226717 Ahluwalia et al. Aug 2013 A1
20130273879 Eisen et al. Oct 2013 A1
20130339186 French Dec 2013 A1
20140032902 Agrawal et al. Jan 2014 A1
20140114821 Yoshioka et al. Apr 2014 A1
20140120864 Manolarakis et al. May 2014 A1
20140122343 Einav et al. May 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140289867 Bukai Sep 2014 A1
20140361926 Eisen et al. Dec 2014 A1
20150026027 Priess et al. Jan 2015 A1
20150046989 Oberheide et al. Feb 2015 A1
20150106270 Burrell et al. Apr 2015 A1
20150127825 Johannsen May 2015 A1
20150186901 Miltonberger Jul 2015 A1
20150188897 Grigorovici et al. Jul 2015 A1
20150193769 Barber Jul 2015 A1
20150193821 Izumori et al. Jul 2015 A1
20150242861 Baldassano Aug 2015 A9
20150254658 Bondesen et al. Sep 2015 A1
20150294316 Eisen Oct 2015 A1
20150350856 Circosta et al. Dec 2015 A1
20160019546 Eisen Jan 2016 A1
20160021084 Eisen Jan 2016 A1
20160034954 Tollinger et al. Feb 2016 A1
20160125461 Sivaramakrishnan et al. May 2016 A1
20160203487 Eisen Jul 2016 A1
20160246581 Jimenez et al. Aug 2016 A1
20160321701 Tollinger et al. Nov 2016 A1
20160328710 Britton et al. Nov 2016 A1
20170039571 Eisen Feb 2017 A1
20170142106 Eisen et al. May 2017 A1
20180108029 Sinha et al. Apr 2018 A1
20180121915 Britton et al. May 2018 A1
20180262478 Eisen Sep 2018 A1
20180322500 Eisen Nov 2018 A1
20190028472 Eisen Jan 2019 A1
20190066192 Eisen Feb 2019 A1
20190356659 Eisen et al. Nov 2019 A1
Foreign Referenced Citations (87)
Number Date Country
0 418 144 Mar 1991 EP
0 645 692 Mar 1995 EP
0 923 039 Jun 1999 EP
1 067 792 Jan 2001 EP
1 209 935 May 2002 EP
1 256 911 Nov 2002 EP
1 201 070 Jun 2006 EP
1 703 382 Sep 2006 EP
1 197 032 Aug 2007 EP
2 154 891 Feb 2010 EP
2 491 101 Nov 2012 GB
2 492 604 Jan 2013 GB
05-257602 Oct 1993 JP
2000-020467 Jan 2000 JP
2000-099250 Apr 2000 JP
2000-137755 May 2000 JP
2000-242582 Sep 2000 JP
2000-276281 Oct 2000 JP
2002-007697 Jan 2002 JP
2002-297869 Oct 2002 JP
2003-050910 Feb 2003 JP
2005-063216 Mar 2005 JP
2005-115644 Apr 2005 JP
2005-135431 May 2005 JP
2006-004333 Jan 2006 JP
2007-272520 Oct 2007 JP
2007-282249 Oct 2007 JP
2008-022298 Jan 2008 JP
2008-065363 Mar 2008 JP
2008-171315 Jul 2008 JP
2008-535124 Aug 2008 JP
2008-243008 Oct 2008 JP
2008-257434 Oct 2008 JP
2008-269229 Nov 2008 JP
2009-048538 Mar 2009 JP
2009-122880 Jun 2009 JP
2009-175984 Aug 2009 JP
2010-020728 Jan 2010 JP
2010-061254 Mar 2010 JP
2010-122955 Jun 2010 JP
2010-122956 Jun 2010 JP
2010-225040 Oct 2010 JP
2010-250664 Nov 2010 JP
2011-065531 Mar 2011 JP
2011-134252 Jul 2011 JP
2011-159307 Aug 2011 JP
2012-234503 Nov 2012 JP
5216932 Jun 2013 JP
10-1999-0015738 Mar 1999 KR
10-0645983 Nov 2006 KR
10-2008-0044558 May 2008 KR
10-2009-0051977 Sep 2009 KR
10-2010-0085888 Jul 2010 KR
WO 96041488 Dec 1996 WO
WO 97003410 Jan 1997 WO
WO 99050775 Oct 1999 WO
WO 01011450 Feb 2001 WO
WO 01033520 May 2001 WO
WO 01095550 Dec 2001 WO
WO 01097134 Dec 2001 WO
WO 02001462 Jan 2002 WO
WO 02071176 Sep 2002 WO
WO 02091226 Nov 2002 WO
WO 03017155 Feb 2003 WO
WO 03025868 Mar 2003 WO
WO 03075197 Sep 2003 WO
WO 03075197 Dec 2003 WO
WO 02037219 May 2004 WO
WO 2004038997 May 2004 WO
WO 2005038818 Apr 2005 WO
WO 2005099166 Oct 2005 WO
WO 2006135367 Dec 2006 WO
WO 2007001394 Jan 2007 WO
WO 2007045818 Apr 2007 WO
WO 2007072238 Jun 2007 WO
WO 2007075573 Jul 2007 WO
WO 2008029828 Mar 2008 WO
WO 2008054849 May 2008 WO
WO 2009132148 Oct 2009 WO
WO 2012054646 Apr 2012 WO
WO 2012061801 May 2012 WO
WO 2012142121 Oct 2012 WO
WO 2012142584 Oct 2012 WO
WO 2013006538 Jan 2013 WO
WO 2013142722 Sep 2013 WO
WO 2014022813 Feb 2014 WO
WO 2014078569 May 2014 WO
Non-Patent Literature Citations (44)
Entry
Official Communication in European Patent Application No. 05818903.6, dated Jul. 18, 2017.
Banking Services Newsletter, “Keeping You Up-to-Date on Banking Developments Throughout the UC System”, University of California, Office of the President, Banking Services Group, Newsletter 1, Dec. 2005, p. 1.
Bharosa, “Bharosa Authenticator”, http://www.bharosa.com/authenticator.html, Jan. 18, 2007, pp. 3.
Bharosa, “Bharosa Announces Online Authentication Solution to Counter Check 21-Based Fraud”, http://www.bharosa.com/news/PR-110705.html, Jan. 18, 2007, pp. 2.
Darlin, Damon, “Opening the Door on the Credit Report and Throwing Away the Lock”, http://www.nytimes.com/2006/03/18/business/yourmoney/18money.html, The New York Times, Saturday Mar. 18, 2006, pp. 2.
Derfler, Jr. et al, “How Networks Work”, Millennium Edition, Que Corporation, Indianapolis, IN, Sep. 2000, pp. 230.
Gralla, Preston, “How the Internet Works”, Millennium Edition, Que Corporation, Indianapolis, IN, Aug. 1999, pp. 329.
Gueye et al., “Constraint-Based Geolocation of Internet Hosts”, ACM Internet Measurement Conference 2004, Oct. 25-27, 2004, Taormina, Sicily, Italy, vol. 14, No. 6, pp. 288-293.
“ISO 8583”, Wikipedia, http://en.wikipedia.org/wiki/ISO_8583, dated Apr. 13, 2015 in 14 pages.
Kohno et al., “Remote Physical Device Fingerprinting”, Proceedings of 2005 IEEE Symposium on Security and Privacy, May 8-11, 2005, Oakland, CA, pp. 211-225.
Manavoglu et al., “Probabilistic User Behavior Models”, ICDM, Third IEEE International Conference on Data Mining, Nov. 19-22, 2003, pp. 203-210.
TechWeb, “Wells Fargo Intros Anti-Theft Alerts”, http://www.techweb.com/wire/166404177, Aug. 1, 2005, pp. 1.
“UPIC Marketing Guide—The Clearing House”, http://www.upic.com/infofiles/UPIC_Marketing_Guide.pdf, as printed Dec. 19, 2006. pp. 1-16.
White, Ron, “How Computers Work”, Millennium Edition, Que Corporation, Indianapolis, IN, Sep. 1999, pp. 284.
Official Communication in European Patent Application No. 05818903.6, dated Dec. 23, 2011.
Official Communication in European Patent Application No. 05818903.6, dated Mar. 18, 2014.
International Search Report and Written Opinion for Application No. PCT/US2005/035532, dated Oct. 29, 2007.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2005/035532, dated Jan. 9, 2008.
Official Communication in European Patent Application No. 6845722.5, dated Mar. 13, 2009.
Official Communication in European Patent Application No. 8159110.9), dated Oct. 27, 2008.
Official Communication in European Patent Application No. 8159110.9, dated Mar. 22, 2010.
International Search Report and Written Opinion for Application No. PCT/US2006/048251, dated Feb. 26, 2008.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2006/048251, dated Jun. 18, 2008.
International Search Report and Written Opinion for Application No. PCT/US2007/065776, dated Jul. 3, 2008.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2007/065776, dated Sep. 30, 2008.
International Search Report and Written Opinion received in PCT Application No. PCT/US2005/020750, dated Jun. 13, 2008.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2005/020750, dated Jul. 1, 2008.
Official Communication in European Patent Application No. 08165224.0, dated Nov. 15, 2010.
Supplementary European Search Report for Application No. EP09735653, dated Dec. 16, 2011.
Official Communication for Application No. EP09735653, dated Jan. 4, 2013.
International Search Report and Written Opinion for Application No. PCT/US2009/041462, dated Dec. 1, 2009.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2009/041462, dated Nov. 4, 2010.
International Search Report and Written Opinion for Application No. PCT/US2011/056948, dated Apr. 18, 2012.
International Preliminary Report on Patentability in Application No. PCT/US2011/056948, dated May 2, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/033357, dated Jul. 10, 2013.
International Preliminary Report on Patentability in Application No. PCT/US2013/033357, dated Sep. 23, 2014.
International Search Report and Written Opinion for Application No. PCT/US2013/053495, dated Nov. 22, 2013.
International Preliminary Report on Patentability in Application No. PCT/US2013/053495, dated Feb. 3, 2015.
International Search Report and Written Opinion for Application No. PCT/US2013/070146, dated Mar. 3, 2014.
International Preliminary Report on Patentability in Application No. PCT/US2013/070146, dated May 19, 2015.
Provisional Application as filed in U.S. Appl. No. 61/324,312, dated Apr. 15, 2010 in 15 pages.
Summons to Attend Oral Proceedings received in European Application No. EP09735653, dated Oct. 7, 2016.
The Knightmare, “Secrets of a Super Hacker”, Loompanics Unlimited, Port Townsend, Washington, 1994, pp. 233.
Official Communication in European Patent Application No. 19181057.1, dated Sep. 17, 2019.
Related Publications (1)
Number Date Country
20180089459 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
60751188 Dec 2005 US
Continuations (2)
Number Date Country
Parent 14580085 Dec 2014 US
Child 15619331 US
Parent 11769674 Jun 2007 US
Child 14580085 US
Continuation in Parts (1)
Number Date Country
Parent 11612425 Dec 2006 US
Child 11769674 US