1. Field of the Invention
The present invention relates to Mobile IP network technology. More particularly, the present invention relates to authenticating the identity of a node during proxy registration performed on behalf of the node.
2. Description of the Related Art
Mobile IP is a protocol which allows laptop computers or other mobile computer units (referred to as “Mobile Nodes” herein) to roam between various sub-networks at various locations—while maintaining internet and/or WAN connectivity. Without Mobile IP or related protocol, a Mobile Node would be unable to stay connected while roaming through various sub-networks. This is because the IP address required for any node to communicate over the internet is location specific. Each IP address has a field that specifies the particular sub-network on which the node resides. If a user desires to take a computer which is normally attached to one node and roam with it so that it passes through different sub-networks, it cannot use its home base IP address. As a result, a business person traveling across the country cannot merely roam with his or her computer across geographically disparate network segments or wireless nodes while remaining connected over the internet. This is not an acceptable state-of-affairs in the age of portable computational devices.
To address this problem, the Mobile IP protocol has been developed and implemented. An implementation of Mobile IP is described in RFC 2002 of the Network Working Group, C. Perkins, Ed., October 1996. Mobile IP is also described in the text “Mobile IP Unplugged” by J. Solomon, Prentice Hall. Both of these references are incorporated herein by reference in their entireties and for all purposes.
The Mobile IP process and environment are illustrated in
As shown in
Now, suppose that Mobile Node 6 is removed from its home base network segment 12 and roams to a remote network segment 14. Network segment 14 may include various other nodes such as a PC 16. The nodes on network segment 14 communicate with the internet through a router which doubles as Foreign Agent 10. Mobile Node 6 may identify Foreign Agent 10 through various solicitations and advertisements which form part of the Mobile IP protocol. When Mobile Node 6 engages with network segment 14, Foreign Agent 10 relays a registration request to Home Agent 8 (as indicated by the dotted line “Registration”). The Home and Foreign Agents may then negotiate the conditions of the Mobile Node's attachment to Foreign Agent 10. For example, the attachment may be limited to a period of time, such as two hours. When the negotiation is successfully completed, Home Agent 8 updates an internal “mobility binding table” which specifies the care-of address (e.g., a collocated care-of address or the Foreign Agent's IP address) in association with the identity of Mobile Node 6. Further, the Foreign Agent 10 updates an internal “visitor table” which specifies the Mobile Node address, Home Agent address, etc. In effect, the Mobile Node's home base IP address (associated with segment 12) has been shifted to the Foreign Agent's IP address (associated with segment 14).
Now, suppose that Mobile Node 6 wishes to send a message to a corresponding node 18 from its new location. An output message from the Mobile Node is then packetized and forwarded through Foreign Agent 10 over the internet 4 and to corresponding node 18 (as indicated by the dotted line “packet from MN”) according to a standard internet protocol. If corresponding node 18 wishes to send a message to Mobile Node—whether in reply to a message from the Mobile Node or for any other reason—it addresses that message to the IP address of Mobile Node 6 on sub-network 12. The packets of that message are then forwarded over the internet 4 and to router R1 and ultimately to Home Agent 8 as indicated by the dotted line (“packet to MN(1)”). From its mobility binding table, Home Agent 8 recognizes that Mobile Node 6 is no longer attached to network segment 12. It then encapsulates the packets from corresponding node 18 (which are addressed to Mobile Node 6 on network segment 12) according to a Mobile IP protocol and forwards these encapsulated packets to a “care of” address for Mobile Node 6 as shown by the dotted line (“packet to MN(2)”). The care-of address may be, for example, the IP address of Foreign Agent 10. Foreign Agent 10 then strips the encapsulation and forwards the message to Mobile Node 6 on sub-network 14. The packet forwarding mechanism implemented by the Home and Foreign Agents is often referred to as “tunneling.”
It is often desirable to assign a unique IP address to each user or device within a network. Moreover various protocols enable automatic assignment of IP addresses within a particular network. For instance, in accordance with the Dynamic Host Configuration Protocol (DHCP), network administrators may manage a network centrally and automate the assignment of Internet Protocol (IP) addresses in an organization's network. More particularly, using the Internet's set of protocols (TCP/IP), each device that is capable of connecting to the Internet needs a unique IP address. When an organization sets up its computer users with a connection to the Internet, an IP address must be assigned to each machine. Without DHCP, the IP address must be entered manually at each computer and, if computers move to another location in another part of the network, a new IP address must be entered. DHCP allows a network administrator to supervise and distribute IP addresses from a central point and automatically sends a new IP address when a computer is plugged into a different location within the network.
DHCP uses the concept of a “lease” or amount of time that a given IP address will be valid for a computer. The lease time can vary depending on how long a user is likely to require the Internet connection at a particular location. DHCP is particularly useful in education and other environments where users change frequently. Using very short leases, DHCP can dynamically reconfigure networks in which there are more computers than there are available IP addresses. Thus, DHCP supports static addresses for computers containing Web servers that need a permanent IP address.
Although DHCP functions in a static environment, the assignment of a new IP address each time a computer changes its location within a network is far from ideal within a mobile environment. More particularly, when a mobile node roams to a new location within a network, it would be desirable for the node to maintain its home address. However, provisions have not been made for a node that wishes to maintain a single IP address when it changes its location within a network using DHCP. Moreover, a node that is not mobile enabled cannot currently change its location within a network using DHCP and still maintain its assigned IP address.
It is possible to provide Internet services via a wireless link for mobile users who attach to a network via a connection such as a DHCP connection, even where the node does not support Mobile IP. Specifically, a proxy device may implement Mobile IP on behalf of a node that does not support Mobile IP functionality. One such proxy device is the access point (AP). An Access Point (AP) may be defined as the center point in an all-wireless network or serves as a connection point between a wired and a wireless network. Multiple APs can be placed throughout a facility to give users with WLAN adapters the ability to roam freely throughout an extended area while maintaining uninterrupted access to all network resources.
Patent application Ser. No. 10/080,995, entitled “METHODS AND APPARATUS FOR SUPPORTING PROXY MOBILE IP REGISTRATION IN A WIRELESS LOCAL AREA NETWORK,” discloses a system for communicating subnet addresses of gateways (e.g., Home Agents) that support APs in the network. When an AP receives a data packet, the AP may compare the data packet (e.g., source address) with the AP information for one or more APs to determine whether to send a registration request on behalf of the node. More particularly, the AP determines from the source address whether the node is located on a subnet identical to a subnet of the AP. If the node is located on the subnet of the AP, no Mobile IP service is required on behalf of the node. However, when it is determined from the source address that the node is not located on the subnet identical to the subnet of the Access Point, the AP composes and sends a mobile IP registration request on behalf of the node. For instance, the mobile IP registration request may be composed using the gateway associated with the “home” AP (e.g., having a matching subnet) as the node's Home Agent.
Proxy Mobile IP allows clients to move between networks while maintaining sessions. This is accomplished through Mobile IP control messages such as those disclosed in application Ser. No. 10/080,995, entitled “METHODS AND APPARATUS FOR SUPPORTING PROXY MOBILE IP REGISTRATION IN A WIRELESS LOCAL AREA NETWORK,” by inventors Wang et al, filed on Feb. 20, 2002. In this manner, even clients that do not support Mobile IP may move between networks while maintaining sessions.
As shown in
Alternatively, if the node 205 were on a different sub-network, a registration request would be composed on behalf of the client 205 and sent to the Foreign Agent. The registration request is then processed by the Foreign Agent, shown here as router 206, and subsequently by the client's Home Agent. Upon completion of registration of the node 205 with its Home Agent, packets addressed to the node 205 are then tunneled to node 205 by its Home Agent via the Foreign Agent and Access Point.
When the node 205 subsequently roams beyond the layer 3 boundary from sub-network A to sub-network B, one of the two Access Points 208 and 210 supporting proxy Mobile IP for sub-network B composes a registration request on behalf of the client 205 once it is determined that the IP address of the node 205 is on a different sub-network. The registration request is then processed by the Foreign Agent, shown here as router 212, and forwarded to the client's Home Agent. Upon completion of registration of the node 205 with its Home Agent, packets addressed to the node 205 are then tunneled to the node 205 by the node's Home Agent via the Foreign Agent and Access Point.
While proxy Mobile IP is advantageous since it allows non-Mobile IP enabled nodes to move while maintaining a session, this method is susceptible to route poisoning and Denial of Service (DoS) attacks. Specifically, another client may send packets with various source IP addresses and MAC addresses. When this second client sends a packet with another client's IP address, the network would then direct traffic to the IP address at the location of the second client because the Access Point would assume that the first client has moved.
In view of the above, it would be desirable if an authentication mechanism could be implemented to authenticate the identity of a client for which proxy Mobile IP registration is being performed.
An invention is disclosed that enables proxy Mobile IP registration to be performed in a secure manner. Various security mechanisms may be used independently, or in combination with one another, to authenticate the identity of a node during the registration process. This is accomplished, at least in part, by verifying and/or transmitting the MAC address assigned to the node in various steps in the registration process.
In accordance with one aspect of the invention, as a first security mechanism, an Access Point receiving a packet from a node verifies that the source MAC address identified in the packet is in the Access Point's client association table. After this security mechanism is satisfied, the Access Point may compose a registration request or require that further security mechanisms be satisfied prior to composing a registration request on behalf of the node.
In accordance with another aspect of the invention, as a second security mechanism, the Access Point ensures that a one-to-one mapping exists for the source MAC address and source IP address identified in the packet in a mapping table maintained by the Access Point. After this security mechanism is satisfied, the Access Point may compose a registration request packet. In other words, the Access Point may require that both the first and second security mechanisms be satisfied prior to composing a registration request packet on behalf of the node.
In accordance with yet another aspect of the invention, as a third mechanism, a binding is not modified in the mobility binding table maintained by the Home Agent unless there is a one-to-one mapping in the mobility binding table between the source MAC address and the source IP address. Similarly, the Foreign Agent may also maintain a mapping between the source IP address and the source MAC address in its visitor table to ensure a one-to-one mapping between a source IP address and the associated MAC address.
In accordance with yet another aspect of the invention, the MAC address is preferably transmitted in a MAC address extension to the registration request and registration reply packets. In this manner, the Access Point, Home Agent, and Foreign Agent may ascertain the node's MAC address and ensure a one-to-one mapping between the IP address and the MAC address during the registration process. Through the use of the above technique(s), the risk of route poisoning and Denial of Service (DoS) attacks is reduced.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.
An invention is described herein that enables a node (e.g., a node that does not implement the Mobile IP protocol) to roam to various Foreign Agents within a network including a DHCP supported network. This is accomplished, in part, through the use of control messages sent between the access points within the network. For purposes of the following discussion, the term “mobile node” will be used to refer to a mobile node implementing the Mobile IP protocol while the term “node” will be used to refer to a node that does not implement the Mobile IP protocol.
In a wireless network, Access Points 202, 204 and 208, 210 are coupled to the Foreign Agents 206 and 212 respectively. By way of example, in a wireless network, the Access Points 202, 204 and 208, 210 may have an antenna and receiver for receiving packets. As yet another example, the Access Points 202, 204 and 208, 210 may designate connection points in a non-wireless network. Typically, a mobile node implementing Mobile IP registers and de-registers with its Home Agent through the registration process. However, according to various embodiments of the invention disclosed in patent application Ser. No. 10/080,995, entitled “METHODS AND APPARATUS FOR SUPPORTING PROXY MOBILE IP REGISTRATION IN A WIRELESS LOCAL AREA NETWORK,”, registration is initiated by the Access Point on behalf of the Mobile IP node. Similarly, de-registration may be initiated by the Access Point on behalf of the roaming node. For instance, node 205 that has roamed to the first Foreign Agent 206 is registered with the node's Home Agent 200 when the first Access Point 202 composes and sends a registration request packet via the first Foreign Agent 206. Thus, the first Foreign Agent's visitor table and the Home Agent's mobility binding table are updated to indicate that the node has roamed to the first Foreign Agent 206. When the node 205 roams to the second Foreign Agent 212, the node 205 is registered with the Home Agent via the second Foreign Agent 212 (e.g., by one of the Access Points 208, 210, the Foreign Agent 212 and/or the Home Agent 200). In other words, the first Foreign Agent 206 updates its visitor table to reflect the movement of the node 205. Similarly, the Home Agent's mobility binding table is updated to reflect the movement of the node 205 to the second Foreign Agent 212. Thus, the appropriate entry in the first Foreign Agent's visitor table and the Home Agent's mobility binding table may be deleted. A new entry is then entered in the Home Agent's mobility binding table and the second Foreign Agent's visitor table upon completion of registration of the mobile node with the Home Agent. Alternatively, the visitor table may be maintained and updated by the Access Point.
The Access Point may learn the IP and MAC address of the node through other mechanisms as well as from packets received by the Access Point. For instance, during Mobile IP authentication of the node, an IP address may be allocated to the node by an entity such as the Home Agent or Foreign Agent. During this authentication process, the Access Point may therefore learn the IP and MAC address. In another embodiment, the Access Point may listen to DHCP queries from the node from which the IP and MAC address are obtained.
In order to ascertain whether proxy Mobile IP service is required, the Access Point determines whether the source IP address is on a different subnet from the Access Point at block 310. If the source IP address is not on a different subnet as shown at block 312, standard registration pursuant to RFC 3440 is performed at block 314. Otherwise, the Access Point proceeds with the proxy registration process.
First, the Access Point determines whether the source MAC address from the packet is in its client association table at block 316. An exemplary client association table will be described in further detail below with reference to
While this first security mechanism may be used on its own, it is preferably used in combination with a subsequent security mechanism, which ensures a one-to-one mapping between the source MAC address and the source IP address identified in the packet. Thus, as a second security mechanism, the Access Point checks at block 322 whether a mapping between the source IP address and the source MAC address exists in the Access Point's mapping table. An exemplary mapping table will be described in further detail below with reference to
The first and second security mechanism may each be used alone to ensure that a registration request is sent on behalf of a valid node. However, as described above, the two security mechanisms are preferably used in combination with one another. Thus, once both security mechanisms have been satisfactorily passed as shown at block 323, the Access Point composes a registration request at block 324. The registration request preferably includes a MAC address extension including the source MAC address. An exemplary registration request will be described in further detail below with reference to
Once a registration request is sent to the Foreign agent, the Foreign Agent performs standard Mobile IP processing at block 326. In addition, the Foreign Agent may also maintain a mapping table such as that illustrated in
When the Home Agent receives the registration request packet at block 328, it updates its mobility binding table as necessary. An exemplary mobility binding table will be described in further detail below with reference to
When the Foreign Agent receives the registration reply at block 344, it updates its visitor table as appropriate. For instance, if registration is successful, the visitor table is updated such that the Home Agent address is associated with the source IP address as well as the source MAC address. An exemplary visitor table will be described in further detail below with reference to
Once registration is completed, packets may be forwarded to the node at its new location by the Home Agent. Specifically, the Home Agent will look up the destination IP address specified in the packet in the Home Agent's mobility binding table to ascertain the node's care-of address. The packet may then be forwarded to the source IP address via the packets care-of address.
Generally, the techniques of the present invention may be implemented on software and/or hardware. For example, they can be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, or on a network interface card. In a specific embodiment of this invention, the technique of the present invention is implemented in software such as an operating system or in an application running on an operating system.
A software or software/hardware hybrid implementation of the techniques of this invention may be implemented on a general-purpose programmable machine selectively activated or reconfigured by a computer program stored in memory. Such a programmable machine may be a network device designed to handle network traffic, such as, for example, a router or a switch. Such network devices may have multiple network interfaces including frame relay and ISDN interfaces, for example. Specific examples of such network devices include routers and switches. For example, the Access Points of this invention may be implemented in specially configured routers or servers, as well as Cisco Aironet Access Points, available from Cisco Systems, Inc. of San Jose, Calif. A general architecture for some of these machines will appear from the description given below. In an alternative embodiment, the techniques of this invention may be implemented on a general-purpose network host machine such as a personal computer or workstation. Further, the invention may be at least partially implemented on a card (e.g., an interface card) for a network device or a general-purpose computing device.
Referring now to
CPU 1562 may include one or more processors 1563 such as a processor from the Motorola family of microprocessors or the MIPS family of microprocessors. In an alternative embodiment, processor 1563 is specially designed hardware for controlling the operations of network device 1560. In a specific embodiment, a memory 1561 (such as non-volatile RAM and/or ROM) also forms part of CPU 1562. However, there are many different ways in which memory could be coupled to the system. Memory block 1561 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, etc.
The interfaces 1568 are typically provided as interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with the network device 1560. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various very high-speed interfaces may be provided such as fast Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, ASI interfaces, DHEI interfaces and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control and management. By providing separate processors for the communications intensive tasks, these interfaces allow the master microprocessor 1562 to efficiently perform routing computations, network diagnostics, security functions, etc.
Although not shown, various removable antennas may be used for further increase range and reliability of the access points. In addition, radio transmit power e.g., 1, 5, 20, 30, 50, and 100 mW) on the Cisco Aironet-Access Point Series is configurable to meet coverage requirements and minimize interference. In addition, a Cisco Aironet AP can be configured as a redundant hot standby to another AP in the same coverage area. The hot-standby AP continually monitors the primary AP on the same channel, and assumes its role in the rare case of a failure of the primary AP.
Although the system shown in
Regardless of network device's configuration, it may employ one or more memories or memory modules (such as, for example, memory block 1565) configured to store data, program instructions for the general-purpose network operations and/or other information relating to the functionality of the techniques described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example.
Because such information and program instructions may be employed to implement the systems/methods described herein, the present invention relates to machine readable media that include program instructions, state information, etc. for performing various operations described herein. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM). The invention may also be embodied in a carrier wave travelling over an appropriate medium such as airwaves, optical lines, electric lines, etc. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.
Although illustrative embodiments and applications of this invention are shown and described herein, many variations and modifications are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those of ordinary skill in the art after perusal of this application. For instance, although the specification has described access points, other entities used to tunnel packets to mobile nodes on remote network segments can be used as well. For example, routers, bridges or other less intelligent packet switches may also employ the features of this invention. Moreover, although the present invention is useful for nodes that do not support Mobile IP, the invention may also be applicable for nodes that support Mobile IP. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
This application is a divisional application of patent application Ser. No. 10/426,106, entitled “Methods and Apparatus for Securing Proxy Mobile IP,” filed on Apr. 28, 2003, by Leung et al, now U.S. Pat. No. 7,505,432, which is incorporated herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4692918 | Elliott et al. | Sep 1987 | A |
5016244 | Massey et al. | May 1991 | A |
5018133 | Tsukakoshi et al. | May 1991 | A |
5218600 | Schenkyr et al. | Jun 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5473599 | Li et al. | Dec 1995 | A |
5490139 | Baker et al. | Feb 1996 | A |
5570366 | Baker et al. | Oct 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5619552 | Karppanen et al. | Apr 1997 | A |
5729537 | Billstrom | Mar 1998 | A |
5751799 | Mori | May 1998 | A |
5805702 | Curry et al. | Sep 1998 | A |
5825759 | Liu | Oct 1998 | A |
5862345 | Okanoue et al. | Jan 1999 | A |
5978672 | Hartmaier et al. | Nov 1999 | A |
6016428 | Diachina et al. | Jan 2000 | A |
6055236 | Nessett et al. | Apr 2000 | A |
6061650 | Malkin et al. | May 2000 | A |
6075783 | Voit | Jun 2000 | A |
6078575 | Dommety et al. | Jun 2000 | A |
6079020 | Liu | Jun 2000 | A |
6081507 | Chao et al. | Jun 2000 | A |
6122268 | Okanoue et al. | Sep 2000 | A |
6131095 | Low et al. | Oct 2000 | A |
6137791 | Frid et al. | Oct 2000 | A |
6144671 | Perinpanathan et al. | Nov 2000 | A |
6154839 | Arrow et al. | Nov 2000 | A |
6163843 | Inoue et al. | Dec 2000 | A |
6167513 | Inoue et al. | Dec 2000 | A |
6172986 | Watanuki et al. | Jan 2001 | B1 |
6173399 | Gilbrech | Jan 2001 | B1 |
6175917 | Arrow et al. | Jan 2001 | B1 |
6195705 | Leung | Feb 2001 | B1 |
6226748 | Bots et al. | May 2001 | B1 |
6226751 | Arrow et al. | May 2001 | B1 |
6230012 | Wilkie et al. | May 2001 | B1 |
6240089 | Okanoue et al. | May 2001 | B1 |
6256300 | Ahmed et al. | Jul 2001 | B1 |
6272129 | Dynarski et al. | Aug 2001 | B1 |
6308267 | Greemmelmaier | Oct 2001 | B1 |
6339830 | See et al. | Jan 2002 | B1 |
6377982 | Rai et al. | Apr 2002 | B1 |
6393482 | Rai et al. | May 2002 | B1 |
6396828 | Liu | May 2002 | B1 |
6400722 | Chuah et al. | Jun 2002 | B1 |
6445922 | Hiller et al. | Sep 2002 | B1 |
6452920 | Comstock | Sep 2002 | B1 |
6466964 | Leung et al. | Oct 2002 | B1 |
6473413 | Chiou et al. | Oct 2002 | B1 |
6487406 | Chang et al. | Nov 2002 | B1 |
6496491 | Chuah et al. | Dec 2002 | B2 |
6496855 | Hunt et al. | Dec 2002 | B1 |
6501746 | Leung | Dec 2002 | B1 |
6510144 | Dommety et al. | Jan 2003 | B1 |
6515974 | Inoue et al. | Feb 2003 | B1 |
6522880 | Verma et al. | Feb 2003 | B1 |
6535493 | Lee et al. | Mar 2003 | B1 |
6571289 | Montenegro | May 2003 | B1 |
6577643 | Rai et al. | Jun 2003 | B1 |
6578085 | Khalil et al. | Jun 2003 | B1 |
6587882 | Inoue et al. | Jul 2003 | B1 |
6597882 | Tanaka | Jul 2003 | B1 |
6625135 | Johnson et al. | Sep 2003 | B1 |
6651105 | Bhagwat et al. | Nov 2003 | B1 |
6657981 | Lee et al. | Dec 2003 | B1 |
6665537 | Lioy | Dec 2003 | B1 |
6675208 | Rai et al. | Jan 2004 | B1 |
6683871 | Lee et al. | Jan 2004 | B1 |
6684241 | Sandick et al. | Jan 2004 | B1 |
6701437 | Hoke et al. | Mar 2004 | B1 |
6707809 | Warrier et al. | Mar 2004 | B1 |
6731621 | Mizutani et al. | May 2004 | B1 |
6742036 | Das et al. | May 2004 | B1 |
6760444 | Leung | Jul 2004 | B1 |
6763007 | La Porta et al. | Jul 2004 | B1 |
6795857 | Leung et al. | Sep 2004 | B1 |
6810259 | Zhang | Oct 2004 | B1 |
6947401 | El-Malki et al. | Sep 2005 | B2 |
6973068 | Inoue et al. | Dec 2005 | B2 |
6982967 | Leung | Jan 2006 | B1 |
6992994 | Das et al. | Jan 2006 | B2 |
6992995 | Agrawal et al. | Jan 2006 | B2 |
6996084 | Troxel et al. | Feb 2006 | B2 |
7068640 | Kakemizu et al. | Jun 2006 | B2 |
7079499 | Akhtar et al. | Jul 2006 | B1 |
7079520 | Feige et al. | Jul 2006 | B2 |
7080151 | Borella et al. | Jul 2006 | B1 |
7096273 | Meier | Aug 2006 | B1 |
7130629 | Leung et al. | Oct 2006 | B1 |
7134012 | Doyle et al. | Nov 2006 | B2 |
7139833 | Heller | Nov 2006 | B2 |
7152238 | Leung et al. | Dec 2006 | B1 |
7161913 | Jung | Jan 2007 | B2 |
7170892 | Major | Jan 2007 | B2 |
7216159 | Hirose et al. | May 2007 | B2 |
7236469 | Yokota et al. | Jun 2007 | B2 |
7260638 | Crosbie | Aug 2007 | B2 |
7289631 | Ishidoshiro | Oct 2007 | B2 |
7339903 | O'Neil | Mar 2008 | B2 |
7339928 | Choyi et al. | Mar 2008 | B2 |
7362742 | Siddiqi et al. | Apr 2008 | B1 |
7428226 | Adrangi et al. | Sep 2008 | B2 |
7447188 | Dommety et al. | Nov 2008 | B1 |
7457289 | Wang | Nov 2008 | B2 |
7471661 | Wang et al. | Dec 2008 | B1 |
7505432 | Leung et al. | Mar 2009 | B2 |
20010005369 | Kloth | Jun 2001 | A1 |
20010036184 | Kinoshita et al. | Nov 2001 | A1 |
20020021689 | Robbins | Feb 2002 | A1 |
20020075866 | Troxel et al. | Jun 2002 | A1 |
20020078238 | Troxel et al. | Jun 2002 | A1 |
20020080752 | Johansson et al. | Jun 2002 | A1 |
20020147837 | Heller | Oct 2002 | A1 |
20020188562 | Igarashi et al. | Dec 2002 | A1 |
20030021275 | Shabeer | Jan 2003 | A1 |
20030212794 | Touati et al. | Nov 2003 | A1 |
20040001513 | Major et al. | Jan 2004 | A1 |
20040024901 | Agrawal et al. | Feb 2004 | A1 |
20040081086 | Hippelainen et al. | Apr 2004 | A1 |
20040103282 | Meier et al. | May 2004 | A1 |
20040109452 | Takihiro et al. | Jun 2004 | A1 |
20040114559 | Wang | Jun 2004 | A1 |
20040208187 | Mizell et al. | Oct 2004 | A1 |
20040213172 | Myers et al. | Oct 2004 | A1 |
20040213260 | Leung et al. | Oct 2004 | A1 |
20060203804 | Whitmore et al. | Sep 2006 | A1 |
20090080399 | Wang et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0924913 | Jun 1999 | EP |
0978977 | Feb 2000 | EP |
1124396 | Aug 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20090141688 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10426106 | Apr 2003 | US |
Child | 12368159 | US |