Methods and apparatus for selecting a device to perform shared functionality in a deterministic and fair manner in a wireless data communication system

Information

  • Patent Grant
  • 9860862
  • Patent Number
    9,860,862
  • Date Filed
    Monday, November 28, 2016
    8 years ago
  • Date Issued
    Tuesday, January 2, 2018
    7 years ago
Abstract
The present disclosure describes methods and apparatus for selecting a device to perform shared functionality in a deterministic and fair manner in a wireless data communication system. A wireless data communication system includes multiple wireless transceiver devices and certain functionality, such as the transmitting of a beacon used to synchronize the wireless transceiver devices, is distributed among the wireless transceiver devices. Each wireless transceiver device generates a device rank for a given time for itself as well as one or more other wireless transceiver devices in a deterministic and fair manner. Each wireless transceiver device determines the same device ranks for the wireless transceiver devices, and each wireless transceiver device selects the wireless transceiver device having a highest device rank at any given time as the wireless transceiver device that is to perform the functionality at that given time.
Description
BACKGROUND

As the number and types of computing and other electronic devices that are available has increased, it has become increasingly important for devices to be able to communicate with one another. To allow devices to communicate with one another, communication protocols that distribute functionality among the devices are oftentimes used. For example, the transmitting of a beacon may be distributed among multiple devices that are communicating with one another. Although allowing communication among various devices allows data transfers between devices as well as various other functionality, allowing such communication is not without its problems. One such problem is that it can be difficult to distribute functionality among the devices, which can result in some devices being unduly burdened with a large amount of the responsibility of providing particular functionality.


SUMMARY

This summary is provided to introduce subject matter that is further described below in the Detailed Description and Drawings. Accordingly, this Summary should not be considered to describe essential features nor used to limit the scope of the claimed subject matter.


In general, in one aspect, this specification describes a method implemented in a first wireless transceiver device of multiple wireless transceiver devices in a wireless data communication system. The method includes obtaining a synchronization value for the wireless data communication system, the synchronization value comprising a value used to facilitate keeping the multiple wireless transceiver devices synchronized. The method also includes generating, for each of the multiple wireless transceiver devices and based on the synchronization value, a device rank for the wireless transceiver device for a given time in a deterministic and fair manner that results in each of the multiple wireless transceiver devices having a highest device rank within a threshold amount of the same number of times over a given time range. The method also includes selecting, based on the generated device ranks, whether the first wireless transceiver device is to perform shared functionality at the given time, the performance of the shared functionality being distributed among the multiple wireless transceiver devices.


In general, in another aspect, this specification describes a first wireless transceiver device of multiple wireless transceiver devices in a wireless data communication system. The first wireless transceiver device includes a microprocessor and one or more computer-readable media storing computer-executable instructions that, when executed by the microprocessor, implement a deterministic fair selector. The deterministic fair selector is configured to obtain a synchronization value for the wireless data communication system, the synchronization value comprising a value used to facilitate keeping the multiple wireless transceiver devices synchronized. The deterministic fair selector is also configured to generate, for each of the multiple wireless transceiver devices and based on the synchronization value, a device rank for the wireless transceiver device for a given time in a deterministic and fair manner that results in each of the multiple wireless transceiver devices having a highest device rank within a threshold amount of the same number of times over a given time range. The deterministic fair selector is further configured to select, based on the generated device ranks, whether the first wireless transceiver device is to perform shared functionality at the given time, the performance of the shared functionality being distributed among the multiple wireless transceiver devices.


In general, in another aspect, this specification describes a computer-readable memory device comprising computer-executable instructions that, when executed, implement a system in a first wireless transceiver device of multiple wireless transceiver devices in a wireless data communication system. The implemented system is to obtain a synchronization value for the wireless data communication system, the synchronization value comprising a value used to facilitate keeping the multiple wireless transceiver devices synchronized. The implemented system is also to generate, for each of the multiple wireless transceiver devices and based on the synchronization value, a device rank for the wireless transceiver device for a given time in a deterministic and fair manner that results in each of the multiple wireless transceiver devices having a highest device rank within a threshold amount of the same number of times over a given time range. The implemented system is also to select, based on the generated device ranks, whether the first wireless transceiver device is to perform shared functionality at the given time, the performance of the shared functionality being distributed among the multiple wireless transceiver devices.





BRIEF DESCRIPTION OF THE DRAWINGS

In the figures, the left-most digit of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures indicate like elements.



FIG. 1 illustrates an example wireless data communication system in which the methods and apparatus for selecting a device to perform shared functionality in a deterministic and fair manner can be used in accordance with one or more embodiments.



FIG. 2 illustrates an example of the timing of sending beacons in a wireless data communication system in accordance with one or more embodiments.



FIG. 3 illustrates an example deterministic fair selector in accordance with one or more embodiments.



FIG. 4 is a flowchart illustrating an example process for implementing the techniques discussed herein in accordance with one or more embodiments.



FIG. 5 illustrates an example system that can implement various aspects of the techniques described herein.





DETAILED DESCRIPTION

Methods and apparatus for selecting a device to perform shared functionality in a deterministic and fair manner in a wireless data communication system are discussed herein. A wireless data communication system includes multiple wireless transceiver devices each capable of operating as both a transmitter device and a receiver device. Responsibility for performing certain functionality, such as the transmitting of a beacon used to synchronize the wireless transceiver devices, is shared or distributed among the wireless transceiver devices. Each wireless transceiver device generates a device rank for itself as well as one or more other wireless transceiver devices. Each wireless transceiver device determines the same device ranks for the wireless transceiver devices, and each wireless transceiver device selects the wireless transceiver device having a highest device rank at any given time as the wireless transceiver device that is to perform the functionality at that given time.


The device rank is a deterministic and fair rank used to select one of the multiple wireless transceiver devices to perform the functionality at any given time. The device rank being deterministic refers to each of the multiple wireless transceiver devices generating the same device rank for a particular one of the multiple wireless transceiver devices for various given times, such as a current time or at least one future time. Thus, each of the multiple wireless transceiver devices can know the device rank for each of the multiple wireless transceiver devices at any given current or future time. The device rank being fair refers to the device ranks for the multiple wireless transceiver devices being generated so that the number of times each of the multiple wireless transceiver devices has the highest device rank over a given time range is approximately equal (e.g., each of the multiple wireless transceiver devices has the highest device rank over a given time range (e.g., thirty seconds, five minutes, etc.) within a threshold amount (e.g., a fixed amount such as 5 or 10 times, or a relative amount such as 10% or 20% of the number of times) of one another). The device rank being fair results in each of the multiple wireless transceiver devices being selected to perform the functionality approximately the same number of times (e.g., within a threshold amount (e.g., a fixed amount such as 5 or 10 times, or a relative amount such as 10% or 20% of the number of times) of the same number of times) over the given time range.



FIG. 1 illustrates an example wireless data communication system 100 in which the methods and apparatus for selecting a device to perform shared functionality in a deterministic and fair manner in a wireless data communication system can be used in accordance with one or more embodiments. The wireless data communication system 100 includes a wireless transceiver device 102, a wireless transceiver device 104, a wireless transceiver device 106, and a wireless transceiver device 108. The wireless transceiver device 102 includes a transceiver 112 that transmits data that can be received by other devices in the wireless data communication system 100, and also receives data transmitted by other devices in the wireless data communication system 100. The wireless transceiver device 104 includes a transceiver 114 that transmits data that can be received by other devices in the wireless data communication system 100, and also receives data transmitted by other devices in the wireless data communication system 100. The wireless transceiver device 106 includes a transceiver 116 that transmits data that can be received by other devices in the wireless data communication system 100, and also receives data transmitted by other devices in the wireless data communication system 100. The wireless transceiver device 108 includes a transceiver 118 that transmits data that can be received by other devices in the wireless data communication system 100, and also receives data transmitted by other devices in the wireless data communication system 100.


It should be noted that although the wireless data communication system 100 is discussed as including multiple wireless transceiver devices, the wireless data communication system 100 can alternatively include one or more transmitter devices that transmit data that can be received by other devices in the wireless data communication system 100 but that do not receive data transmitted by other devices in the wireless data communication system 100. The wireless data communication system 100 can also alternatively include one or more receiver devices that receive data transmitted by other devices in the wireless data communication system 100 but that do not transmit data that can be received by other devices in the wireless data communication system 100.


Certain functionality is distributed among the wireless transceiver devices 102, 104, 106, and 108, with different ones of the wireless transceiver devices 102, 104, 106, and 108 performing particular shared functionality at given times. In one or more embodiments, the shared functionality that is distributed among the wireless transceiver devices 102, 104, 106, and 108 is the transmission of a beacon in the wireless data communication system 100. The beacon is used by the wireless transceiver devices 102, 104, 106, and 108 to determine when to listen for data and when to send data, as discussed in more detail below.


In the discussions herein, reference is made to the functionality being distributed among all of the wireless transceiver devices 102, 104, 106, and 108. Alternatively, in some situations the functionality is distributed among certain ones of the wireless transceiver devices 102, 104, 106, and 108 (e.g., ones of the wireless transceiver devices 102, 104, 106, and 108 designated as masters). In such situations, which ones of the wireless transceiver devices 102, 104, 106, and 108 the functionality is shared across can be determined using any of a variety of public or proprietary techniques.


The wireless transceiver device 102 includes a deterministic fair selector 122 that generates a device rank for itself as well as the other wireless transceiver devices 104, 106, and 108. The wireless transceiver device 104 includes a deterministic fair selector 124 that generates a device rank for itself as well as the other wireless transceiver devices 102, 106, and 108. The wireless transceiver device 106 includes a deterministic fair selector 126 that generates a device rank for itself as well as the other wireless transceiver devices 102, 104, and 108. The wireless transceiver device 108 includes a deterministic fair selector 128 that generates a device rank for itself as well as the other wireless transceiver devices 102, 104, and 106.


The device ranks generated by the deterministic fair selectors 122, 124, 126, and 128 are deterministic and fair ranks used to select one of the wireless transceiver devices 102, 104, 106, or 108 to perform the shared functionality at any given time. The device rank is deterministic, so each of the wireless transceiver devices 102, 104, 106, and 108 generates the same device rank for each of the wireless transceiver devices 102, 104, 106, and 108 for a given time. For example, deterministic fair selector 122, 124, 126, and 128 each generate the same device rank for wireless transceiver device 102 at a given time, each generate the same device rank for wireless transceiver device 104 at a given time, and so forth.


As indicated above, in one or more embodiments the shared functionality that is distributed among the wireless transceiver devices 102, 104, 106, and 108 is the transmission of a beacon used by the wireless transceiver devices 102, 104, 106, and 108 to determine when to listen for data and when to send data. For example, each wireless transceiver device 102, 104, 106, and 108 device in the wireless data communication system 100 can know that it is to receive data during one particular range of microseconds after receipt of a beacon, and that it is to send data during another particular range of microseconds after the beacon.


In one or more embodiments, the wireless data communication system 100 uses a communication protocol that includes beacons and that is compliant with Wi-Fi networks, such as networks implementing the IEEE 802.11 standard (e.g., as discussed in the IEEE Std 802.11-2012, Mar. 29, 2012). The wireless data communication system 100 operates in one of various modes of operation that are compliant with the IEEE 802.11 standard, such as BSS (Basic Service Set), IBSS (Independent Basic Service Set), NAN (Neighbor Awareness Networking), and so forth. Although reference is made herein to the IEEE 802.11 standard, it should be noted that the techniques discussed herein are also usable with other standards and signaling technologies.


In one or more embodiments, a beacon is transmitted in the wireless data communication system 100 at regular or irregular intervals. One of the wireless transceiver devices 102, 104, 106, or 108 transmits the beacon at the time after each interval elapses. The responsibility of transmitting the beacon is shared by the wireless transceiver devices 102, 104, 106, or 108, also referred to as being distributed among the wireless transceiver devices 102, 104, 106, or 108. Which of the wireless transceiver devices 102, 104, 106, and 108 transmits the beacon at a particular time is based at least in part on the device rank generated by the deterministic fair selectors 122, 124, 126, and 128.



FIG. 2 illustrates an example of the timing of sending beacons in a wireless data communication system in accordance with one or more embodiments. A timing diagram 200 illustrates a timing of when each of multiple wireless transceiver devices transmit a beacon. A timing 202 corresponds to one wireless transceiver device (e.g., wireless transceiver device 102), a timing 204 corresponds to another wireless transceiver device (e.g., wireless transceiver device 104), a timing 206 corresponds to another wireless transceiver device (e.g., wireless transceiver device 106), and a timing 208 corresponds to another wireless transceiver device (e.g., wireless transceiver device 108).


Multiple times x, x+1, x+2, and so forth are shown in FIG. 2. Which wireless transceiver device transmits a beacon during which interval is shown by a bump or rise in the timings 202, 204, 206, and 208. For example, the wireless transceiver device corresponding to timing 202 transmits the beacon at times x, x+1, and x+9. The wireless transceiver device corresponding to timing 204 transmits the beacon at times x+2, x+5, and x+7. The wireless transceiver device corresponding to timing 206 transmits the beacon at times x+6 and x+8. The wireless transceiver device corresponding to timing 208 transmits the beacon at times x+3 and x+4.



FIG. 3 illustrates an example deterministic fair selector 300 in accordance with one or more embodiments. The deterministic fair selector 300 is a deterministic fair selector of a wireless transceiver device in a wireless data communication system. The deterministic fair selector 300 can be any one of deterministic fair selectors 122, 124, 126, or 128 of FIG. 1. The deterministic fair selector 300 includes a selection measurer 302 and a selection based indicator 304.


The selection measurer 302 generates values, also referred to as selection measures, for each of the wireless transceiver devices that participate in performing the shared functionality. The selection measurer 302 generates a selection measure for a wireless transceiver device using one or more functions that are based on both an identifier of the wireless transceiver device and a synchronization value. Any of a variety of different functions can be used, such as a concatenation of the identifier and the synchronization value, a hash function (optionally a cryptographic hash function) applied to a concatenation of the identifier and the synchronization value, and so forth.


Any of a variety of different identifiers that allow the wireless transceiver device to be distinguished from other wireless transceiver devices that participate in performing the shared functionality can be used by the selection measurer 302. In one or more embodiments, the identifier of the device is a MAC (media access control) address. Alternatively, other identifiers are used, such as a network address (e.g., an IP (Internet protocol) address). A wireless transceiver device knows its own identifier, such as being pre-configured with its own identifier, being assigned its identifier by another device or service, and so forth. A wireless transceiver device also knows the identifiers of other wireless transceiver devices in the wireless data communication system, such as being notified by the other wireless transceiver devices when the other wireless transceiver devices join or otherwise establish communication with the wireless data communication system, receiving beacons or other data communications sent by the wireless transceiver devices, and so forth.


The selection measurer 302 optionally combines the identifier of the wireless transceiver device with one or more other values. Various different techniques for combining values can be used, such as concatenating values, logically exclusive OR′ing values, and so forth. For example, the selection measurer 302 can combine the identifier of the wireless transceiver device with the identifiers (or portions thereof) of other wireless transceiver devices.


The synchronization value is a value used to facilitate keeping the wireless transceiver devices in the wireless data communication system synchronized. The wireless transceiver devices keep and update their own copies of the synchronization value, and thus the synchronization value can also be referred to as a shared or common synchronization value. In one or more embodiments, the synchronization value is a TSF (Timing Synchronization Function) value such as is used with the IEEE 802.11 standard (e.g., as discussed in the IEEE Std 802.11-2012, Mar. 29, 2012). Each wireless transceiver device in the wireless data communication system keeps track of the TSF. The TSF values are also transmitted as part of the beacon, and the TSF value for a wireless transceiver device is updated as appropriate based on a received beacon. Whether the TSF value is updated can vary based on different criteria, such as whether a received TSF value is greater than the TSF value the wireless transceiver device has. Although TSF values may vary slightly between wireless transceiver devices, the TSF values maintained by different wireless transceiver devices are typically approximately the same (e.g., within a threshold amount of one another). The amount that the TSF values may differ can optionally be filtered out, such as by using a mask value as discussed in more detail below.


Alternatively, the selection measurer 302 uses values other than the TSF value as the synchronization value. Various other values can be used, such as any time indication (e.g., a current date and time maintained by the wireless transceiver devices), counters that increase by known amounts at known intervals, and so forth.


It should be noted that each wireless transceiver device knows how the synchronization value is incremented, and thus each wireless transceiver device knows what the synchronization value will be at future times. For example, referring to FIG. 2, if the current time is time x, each wireless transceiver device knows that the synchronization value is expected to increase to a particular value at time x+1, increase to another particular value at time x+2, and so forth. The selection measurer 302 can use these expected values to generate a device rank for a future time. For example, at time x the selection measurer 302 knows the expected synchronization values at times x+1 and x+2, as well as the identifier of the wireless transceiver device at times x+1 and x+2, and thus can readily generate a device rank for the wireless transceiver device at times x+1 and x+2.


The synchronization value can be combined with other values, such as a mask. The selection measurer 302 combines the synchronization value with a mask value in any of a variety of manners, such as using a logical exclusive OR operation, a logical AND, operation, and so forth. In one or more embodiments, the selection measurer 302 combines the synchronization value with a mask value to filter out or otherwise ignore certain bits of the synchronization value, such as the high or low order bits of the synchronization value. By filtering out or otherwise ignoring certain bits, the synchronization value can be modified to exclude the bits that change most frequently, resulting in the synchronization value (as modified) changing more slowly over time. For example, the appropriate high or low order bits of the synchronization value can be filtered out so that the synchronization value (as modified) changes every second rather than every millisecond.


The selection measurer 302 generates the device rank for each wireless transceiver device in the wireless data communication system that participates in performing the shared functionality. Each wireless transceiver device knows the identifier of each other wireless transceiver device, and the synchronization value (including any modifications to the synchronization value, such as combining the synchronization value with a mask value) is the same for all wireless transceiver devices, so the selection measurer 302 can readily generate the device ranks for each wireless transceiver device in the wireless data communication system.


In one or more embodiments, the selection measurer 302 uses the selection measures generated for the wireless transceiver devices as the device ranks for the wireless transceiver devices. In such embodiments, the wireless transceiver device having the largest (or alternatively smallest) synchronization value has the highest device rank. Alternatively, the selection measurer 302 uses the selection measures generated for the wireless transceiver devices to generate the device ranks for the wireless transceiver devices. The selection measurer 302 can use the selection measures to generate the device ranks in different manners, such as selecting the second largest synchronization value as the highest device rank, using other criteria or rules to assign device ranks, and so forth.


It should be noted that the selection measurer 302 in each wireless transceiver device operates to generate synchronization values for the wireless transceiver devices in the same manner. The selection measurer 302 in each wireless transceiver device relies on the same values when generating the synchronization value for each wireless transceiver device, and determines the device ranks in the same manner. Thus, the deterministic fair selector 300 of each wireless transceiver device that participates in performing the shared functionality determines the same device ranks for any given time as the deterministic fair selectors 300 of the other wireless transceiver devices that participate in performing the shared functionality.


The selection measurer 302 also determines whether the device rank for the wireless transceiver device that includes the selection measurer 302 is the highest at a particular given time. In each wireless transceiver device, the selection measurer 302 in the device determines that the wireless transceiver device is the selected wireless transceiver device or is the “winner” in response to the device rank for the wireless transceiver device being the highest. Additionally, in each wireless transceiver device, the selection measurer 302 in the device determines that the wireless transceiver device is not the selected wireless transceiver device or is the “loser” in response to the device rank for the wireless transceiver device not being the highest. The given time can be a current time or some future time. For example, referring to FIG. 2, if the current time is time x, the selection measurer 302 can determine whether the wireless transceiver device that includes the selection measurer 302 has the highest device rank at future time x+1, at future time x+2, and so forth.


The selection based indicator 304 takes an appropriate action for a given time based on whether the wireless transceiver device that includes the selection based indicator 304 has the highest device rank at the given time. The appropriate action is also based on the shared functionality. In one or more embodiments, the shared functionality is transmitting of a beacon. In response to the selection measurer 302 indicating that the device has the highest device rank at the given time, the selection based indicator 304 prepares for the wireless transceiver device including the deterministic fair selector 300 to transmit a beacon at the given time. The selection based indicator 304 prepares to transmit the beacon by obtaining the information to be included in the beacon and providing a frame to transmit as the beacon to the transceiver of the wireless transceiver device, or alternatively prepares to transmit the beacon by informing another component or module of the wireless transceiver device to perform the appropriate operations for the transceiver of the wireless transceiver device to transmit the beacon at the given time.


In response to the selection measurer 302 indicating that the device does not have the highest device rank at the given time, the selection based indicator 304 allows the wireless transceiver device to sleep through the given time. The wireless transceiver device need not wake up or otherwise transition out of a lower power mode at the given time in order to check for a beacon or obtain a value to generate the synchronization value for later times. For example, referring to FIG. 2, if the current time is time x and the given time is time x+1, the selection based indicator 304 can allow the wireless transceiver device to sleep through time x+1. Additionally, the selection measurer 302 determines at the current time x what the device rank for the wireless transceiver device will be at time x+2, so the wireless transceiver device need not wake up at time x+1 in order to obtain any value that it uses to determine its device rank at time x+2. The selection based indicator 304 can have the wireless transceiver device similarly sleep through subsequent given times for which the wireless transceiver device is not the highest ranked device, such as time x+3, time x+4, and so forth.



FIG. 4 is a flowchart illustrating an example process 400 for implementing the techniques discussed herein in accordance with one or more embodiments. Process 400 is described in the form of a set of blocks that specify operations to be performed, however the operations are not necessarily limited to the order shown. The operations performed by the set of blocks in process 400 are performed by a wireless transceiver device, such as a wireless transceiver device 102, 104, 106, or 108 of FIG. 1.


At block 402, a synchronization value is obtained. The synchronization value is a synchronization value for the wireless data communication system, and the wireless transceiver device maintains its own local copy of this synchronization value that can be obtained at block 402. The synchronization value can take various forms, such as a TSF value as discussed above.


At block 404, an identifier of each wireless transceiver device is obtained. The wireless transceiver devices for which identifiers are obtained are the wireless transceiver devices in the wireless data communication system that participate in performing the shared functionality. The identifiers of the wireless transceiver devices can be obtained in different manners as discussed above.


At block 406, a selection measure for each wireless transceiver device is generated for a given time. The given time can be a current time or a future time, as discussed above. The selection measures can be generated in different manners as discussed above for each of the wireless transceiver devices in the wireless data communication system that participate in performing the shared functionality.


At block 408, a device rank for each wireless transceiver device is generated for a given time. The given time can be a current time or a future time, as discussed above. The device ranks can be generated in different manners based on the selection measures as discussed above. In situations in which the device rank is the selection measure, block 408 need not be performed as the selection measures generated at block 406 are used as the device ranks.


At block 410, a check is made as to whether the wireless transceiver device implementing process 400 has the highest device rank for the given time. At block 412, in response to the wireless transceiver device implementing process 400 having the highest device rank for the given time, the wireless transceiver device implementing process 400 is selected as the wireless transceiver device to perform the shared functionality at the given time (e.g., transmit a beacon at the given time).


At block 414, in response to the wireless transceiver device implementing process 400 not having the highest device rank for the given time, the wireless transceiver device implementing process 400 is not selected as the wireless transceiver device to perform the shared functionality at the given time. Rather, the other of the wireless transceiver devices in the wireless data communication system that does have the highest device rank for the given time performs the shared functionality at the given time.


The techniques discussed herein support various usage scenarios. The techniques discussed herein provide a selection technique that results in a fair selection of wireless transceiver devices performing the shared functionality over time. One wireless transceiver device, such as the wireless transceiver device having the largest or smallest MAC address, is not consistently selected as the wireless transceiver device to perform the shared functionality. Rather, the selected wireless transceiver device changes over time based on the synchronization value.


The techniques discussed herein also provide a selection technique that results in a deterministic selection of wireless transceiver devices performing the shared functionality over time. Each wireless transceiver device can determine for one or more future times whether the wireless transceiver device is the wireless transceiver device selected to perform the shared functionality. If the wireless transceiver device is not the wireless transceiver device selected to perform the shared functionality, the wireless transceiver device can take an appropriate action such as sleeping through the one or more future times. The wireless transceiver devices do not rely on a value that is random or that must be transmitted in each beacon, and thus the wireless transceiver devices need not be awake to receive beacons during times that the wireless transceiver devices are not selected to transmit the beacon.



FIG. 5 illustrates an example system 500 that can implement various aspects of the techniques described herein. System 500 can be implemented in a variety of different devices, such as one or a combination of a media device, computer device, television set-top box, video processing and/or rendering device, Ethernet interface, switch, appliance device, gaming device, electronic device, vehicle, workstation, smart phone, tablet, and/or in any other type of computing device. System 500 can be implemented as a System-on-Chip (SoC).


System 500 can include electronic circuitry, a microprocessor, memory, input-output (I/O) logic control, communication interfaces and components, other hardware, firmware, and/or software needed to run a device. System 500 can also include an integrated data bus (not shown) that couples the various components of the system for data communication between the components. A wireless communication device that includes system 500 can also be implemented with many combinations of differing components.


In this example, system 500 includes various components such as an input-output (I/O) logic control 502 (e.g., to include electronic circuitry) and a microprocessor 504 (e.g., any of a microcontroller or digital signal processor). System 500 also includes a memory 506, which can be any type and/or combination of RAM, low-latency nonvolatile memory (e.g., Flash memory), ROM, one-time programmable memory, and/or other suitable electronic data storage. Alternately or additionally, system 500 may comprise a memory interface for accessing additional or expandable off-chip memory, such as an external Flash memory module. System 500 can also include various firmware and/or software, such as an operating system 508, which can be computer-executable instructions maintained by memory 506 and executed by microprocessor 504. System 500 may also include other various communication interfaces and components, communication components, other hardware, firmware, and/or software, and so forth.


System 500 also includes a deterministic fair selector 510 that determines whether a wireless transceiver device including or implementing system 500 is to perform shared functionality at a given time as discussed herein. The deterministic fair selector 510 can be, for example, a deterministic fair selector 122, 124, 126, or 128 of FIG. 1, or a deterministic fair selector 300 of FIG. 3. The deterministic fair selector 510 can be implemented in hardware, firmware, software, or combinations thereof.


One or more of the methods or techniques described above can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer-readable medium can be any apparatus that can tangibly store the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device). Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD. The computer-readable medium can include computer-readable memory devices, which can be any of the devices or mediums discussed above, although excludes signals, signal transmission, and carrier waves.


Although the subject matter has been described in language specific to structural features and/or methodological operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or operations described above, including orders in which they are performed.

Claims
  • 1. A method implemented in a first transceiver device of multiple transceiver devices in a data communication system configured to distribute functionality among the multiple transceiver devices, the method comprising: sending an identifier of the first transceiver device to other transceiver devices of the multiple transceiver devices;receiving identifiers of the other transceiver devices;updating a synchronization value for the data communication system, the updated synchronization value comprising a value used to facilitate keeping the multiple transceiver devices synchronized;generating for a given time, for each transceiver device of the multiple transceiver devices, a selection measure from the updated synchronization value and the respective identifier of each of the transceiver devices;ranking for the given time each of the multiple transceiver devices based on the generated selection measures; andselecting, based on the ranking, one of the multiple transceiver devices as a transceiver to transmit a beacon at the given time.
  • 2. The method of claim 1, wherein the selected one of the multiple transceiver devices is the first transceiver device, and in response to the selecting, further comprising transmitting the beacon at the given time.
  • 3. The method of claim 1, wherein the selected one of the multiple transceiver devices is one of the other transceiver devices, and in response to the selecting, further comprising configuring the first transceiver device to sleep through the given time.
  • 4. The method of claim 1, wherein the given time comprises one or more future times.
  • 5. The method of claim 1, wherein the ranking is performed in a deterministic and fair manner that results in each of the multiple transceiver devices having a highest device rank in the ranking within a threshold amount of the same number of times over a given time range.
  • 6. The method of claim 1, wherein the selection measure for said each transceiver device is generated by concatenation of the updated synchronization value and the respective identifier of each of the transceiver devices.
  • 7. The method of claim 1, wherein the synchronization value is part of an additional beacon received by one of the other transceiver devices, the additional beacon corresponding to a different time than the given time.
  • 8. The method of claim 1, wherein the selected one of the multiple transceiver devices is a highest ranked transceiver according to the ranking.
  • 9. The method of claim 1, wherein the selected one of the multiple transceiver devices is selected from a subset of the multiple transceiver devices comprising less than all of the multiple transceiver devices.
  • 10. The method of claim 1, wherein the identifiers of the other transceiver devices are received from the other transceiver devices.
  • 11. The method of claim 1, further comprising receiving an additional beacon, and responsive to the receiving the additional beacon, sending or receiving data during a particular range of time after the additional beacon.
  • 12. The method of claim 1, wherein the identifier of the first transceiver device and the identifiers of the other transceiver devices comprise network addresses.
  • 13. A first transceiver device of multiple transceiver devices in a data communication system configured to distribute functionality among the multiple transceiver devices, the first transceiver device comprising: a microprocessor; andone or more computer-readable media storing computer-executable instructions that, when executed by the microprocessor, implement a selector to: send an identifier of the first transceiver device to other transceiver devices of the multiple transceiver devices;receive identifiers of the other transceiver devices;update a synchronization value for the data communication system, the updated synchronization value comprising a value used to facilitate keeping the multiple transceiver devices synchronized;generate for a given time, for each transceiver device of the multiple transceiver devices, a selection measure from the updated synchronization value and the respective identifier of each of the transceiver devices;rank for the given time each of the multiple transceiver devices based on the generated selection measures; andselect, based on the rank, one of the multiple transceiver devices as a transceiver to transmit a beacon at the given time.
  • 14. The first transceiver device of claim 13, wherein the selected one of the multiple transceiver devices is the first transceiver device, and in response to the selection, further comprising to transmit the beacon at the given time.
  • 15. The first transceiver device of claim 13, wherein the selected one of the multiple transceiver devices is one of the other transceiver devices, and in response to the selection, further comprising configuring the first transceiver device to sleep through the given time.
  • 16. The first transceiver device of claim 13, wherein the rank is performed in a deterministic and fair manner that results in each of the multiple transceiver devices having a highest device rank in the rank within a threshold amount of the same number of times over a given time range.
  • 17. The first transceiver device of claim 13, wherein the selected one of the multiple transceiver devices is a highest ranked transceiver according to the rank.
  • 18. A non-transitory computer-readable memory device comprising computer-executable instructions that, when executed, implement a system in a first transceiver device of multiple transceiver devices in a data communication system configured to distribute functionality among the multiple transceiver devices, the system in the first transceiver device configured to: send an identifier of the first transceiver device to other transceiver devices of the multiple transceiver devices;receive identifiers of the other transceiver devices;update a synchronization value for the data communication system, the updated synchronization value comprising a value used to facilitate keeping the multiple transceiver devices synchronized;generate for a given time, for each transceiver device of the multiple transceiver devices, a selection measure from the updated synchronization value and the respective identifier of each of the transceiver devices;rank for the given time each of the multiple transceiver devices based on the generated selection measures; andselect, based on the rank, one of the multiple transceiver devices as a transceiver to transmit a beacon at the given time.
  • 19. The non-transitory computer-readable memory device of claim 18, wherein the selected one of the multiple transceiver devices is the first transceiver device, and in response to the selection, further comprising to transmit the beacon at the given time.
  • 20. The non-transitory computer-readable memory device of claim 18, further comprising to receive an additional beacon, and responsive to the reception of the additional beacon, sending first data during a first range of time after the additional beacon and receiving second data during a second range of time after the additional beacon.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of and claims priority to U.S. Utility patent application Ser. No. 14/281,693 which in turn claims priority to U.S. Provisional Patent Application Ser. No. 61/825,686 filed May 21, 2013, the disclosures of which are incorporated herein by reference in their entirety.

US Referenced Citations (260)
Number Name Date Kind
5155833 Cullison et al. Oct 1992 A
5390165 Tuch Feb 1995 A
5467398 Pierce et al. Nov 1995 A
5469506 Berson et al. Nov 1995 A
5479514 Klonowski Dec 1995 A
5481733 Douglis et al. Jan 1996 A
5617118 Thompson Apr 1997 A
5673416 Chee et al. Sep 1997 A
5696989 Miura et al. Dec 1997 A
5771356 Leger et al. Jun 1998 A
5828835 Isfeld et al. Oct 1998 A
5884099 Klingelhofer Mar 1999 A
5991519 Benhammou et al. Nov 1999 A
6006018 Burnett et al. Dec 1999 A
6014722 Rudin et al. Jan 2000 A
6058188 Chandersekaran et al. May 2000 A
6092108 DiPlacido et al. Jul 2000 A
6145069 Dye Nov 2000 A
6167514 Matsui et al. Dec 2000 A
6216230 Rallis et al. Apr 2001 B1
6230277 Nakaoka et al. May 2001 B1
6330626 Dennin et al. Dec 2001 B1
6389538 Gruse et al. May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6473861 Stokes Oct 2002 B1
6564318 Gharda et al. May 2003 B1
6601167 Gibson et al. Jul 2003 B1
6614985 Tokunaka et al. Sep 2003 B1
6678790 Kumar Jan 2004 B1
6704872 Okada Mar 2004 B1
6711447 Saeed Mar 2004 B1
6756988 Wang et al. Jun 2004 B1
6799271 Kugai Sep 2004 B2
6823472 DeKoning et al. Nov 2004 B1
6832280 Malik et al. Dec 2004 B2
6901298 Govindaraj et al. May 2005 B1
7010808 Leung et al. Mar 2006 B1
7035827 Ezaki Apr 2006 B2
7036018 Horvat et al. Apr 2006 B2
7069439 Chen et al. Jun 2006 B1
7089419 Foster et al. Aug 2006 B2
7103788 Souza et al. Sep 2006 B1
7117352 Giles et al. Oct 2006 B1
7126913 Patel et al. Oct 2006 B1
7194638 Larky Mar 2007 B1
7206940 Evans et al. Apr 2007 B2
7210038 Walmsley Apr 2007 B2
7266842 Foster et al. Sep 2007 B2
7299365 Evans Nov 2007 B2
7308591 Dubinsky Dec 2007 B2
7333464 Yang et al. Feb 2008 B2
7356707 Foster et al. Apr 2008 B2
7370349 Holvey et al. May 2008 B2
7373506 Asano et al. May 2008 B2
7376976 Fierstein et al. May 2008 B2
7496952 Edwards et al. Feb 2009 B2
7499548 Meandzija et al. Mar 2009 B2
7511636 Takahashi Mar 2009 B2
7516325 Willey Apr 2009 B2
7522726 Ishiguro et al. Apr 2009 B2
7536558 Neble et al. May 2009 B2
7549056 Carr Jun 2009 B2
7571216 McRae et al. Aug 2009 B1
7596614 Saunderson et al. Sep 2009 B2
7606230 Cohen et al. Oct 2009 B1
7620784 Panabaker Nov 2009 B2
7676040 Augenstein et al. Mar 2010 B2
7725738 Langhammer et al. May 2010 B1
7743260 Fetik Jun 2010 B2
7774635 Shiota Aug 2010 B2
7788670 Bodas et al. Aug 2010 B2
7813326 Kelm et al. Oct 2010 B1
7818389 Chiang et al. Oct 2010 B1
7835725 Suzuki et al. Nov 2010 B2
7865733 Goto et al. Jan 2011 B2
7873841 Mullis, II et al. Jan 2011 B2
7898857 Kirsch et al. Mar 2011 B2
7900060 Hodzic Mar 2011 B2
7916594 Yang Mar 2011 B2
7991943 Berenbaum et al. Aug 2011 B2
7995596 Kuila et al. Aug 2011 B2
8000284 Lott et al. Aug 2011 B2
8001592 Hatakeyama Aug 2011 B2
8094822 Suzuki Jan 2012 B2
8095816 Chan Jan 2012 B1
8117478 Liu et al. Feb 2012 B2
8139521 Mukherjee et al. Mar 2012 B2
8166309 Muralidharan et al. Apr 2012 B2
8171309 Poo May 2012 B1
8296555 Chu Oct 2012 B2
8321706 Zhang Nov 2012 B2
8327056 Chan Dec 2012 B1
8418242 Zhang Apr 2013 B2
8423789 Poo Apr 2013 B1
8437290 Kalhan May 2013 B2
8443187 Orr May 2013 B1
8443211 Zhao et al. May 2013 B2
8483718 Hwang Jul 2013 B2
8510560 Lambert et al. Aug 2013 B1
8576961 Zhu Nov 2013 B1
8645716 Dujari et al. Feb 2014 B1
8688968 Chu et al. Apr 2014 B2
8694782 Lambert Apr 2014 B2
8839016 Zhang et al. Sep 2014 B2
8843686 Chan et al. Sep 2014 B1
9009778 Pearce et al. Apr 2015 B2
9141394 Sakarda Sep 2015 B2
9204244 Rantala Dec 2015 B2
9220012 Inamdar Dec 2015 B1
9253175 Orr Feb 2016 B1
9363249 Lambert et al. Jun 2016 B2
9398455 Lambert Jul 2016 B2
9402270 Lambert Jul 2016 B2
9521635 Lambert Dec 2016 B1
9736801 Lambert Aug 2017 B1
20020065834 Wiggen et al. May 2002 A1
20020069354 Fallon et al. Jun 2002 A1
20020082035 Aihara et al. Jun 2002 A1
20020087816 Atkinson et al. Jul 2002 A1
20020103930 Kamentsky et al. Aug 2002 A1
20030014368 Leurig et al. Jan 2003 A1
20030188162 Candelore et al. Oct 2003 A1
20030200453 Foster et al. Oct 2003 A1
20030200454 Foster et al. Oct 2003 A1
20030208675 Burokas et al. Nov 2003 A1
20030236991 Letsinger Dec 2003 A1
20040015621 Tanaka Jan 2004 A1
20040030909 Sako et al. Feb 2004 A1
20040054898 Chao et al. Mar 2004 A1
20040103272 Zimmer et al. May 2004 A1
20040125679 Kwean Jul 2004 A1
20040158669 Weng et al. Aug 2004 A1
20040158708 Peyravian et al. Aug 2004 A1
20040184343 Roohparvar et al. Sep 2004 A1
20040187001 Bousis Sep 2004 A1
20040193875 Aura Sep 2004 A1
20040257462 Goris et al. Dec 2004 A1
20040264699 Meandzija et al. Dec 2004 A1
20040266386 Kuo Dec 2004 A1
20050015602 Rees Jan 2005 A1
20050033869 Cline Feb 2005 A1
20050055547 Kawamura Mar 2005 A1
20050086551 Wirasinghe et al. Apr 2005 A1
20050088980 Olkkonen Apr 2005 A1
20050089005 Sakoda et al. Apr 2005 A1
20050108171 Bajikar et al. May 2005 A1
20050114686 Ball et al. May 2005 A1
20050138365 Bellipady et al. Jun 2005 A1
20050144468 Northcutt et al. Jun 2005 A1
20050156925 Fong et al. Jul 2005 A1
20050177674 Ober et al. Aug 2005 A1
20050185596 Kamentsky et al. Aug 2005 A1
20050210290 Ono et al. Sep 2005 A1
20050278523 Fortin et al. Dec 2005 A1
20060004946 Shah et al. Jan 2006 A1
20060019653 Stamoulis et al. Jan 2006 A1
20060036897 Lin et al. Feb 2006 A1
20060059372 Fayar et al. Mar 2006 A1
20060072748 Buer Apr 2006 A1
20060075259 Bajikar et al. Apr 2006 A1
20060090084 Buer Apr 2006 A1
20060104243 Park May 2006 A1
20060117177 Buer Jun 2006 A1
20060123248 Porter et al. Jun 2006 A1
20060136735 Plotkin et al. Jun 2006 A1
20060142906 Brozovich et al. Jun 2006 A1
20060156390 Baugher Jul 2006 A1
20060200670 Kuffel et al. Sep 2006 A1
20060209595 Newell Sep 2006 A1
20060233149 Rustagi et al. Oct 2006 A1
20060253704 Kempf et al. Nov 2006 A1
20060253716 Dhiman et al. Nov 2006 A1
20060259656 Sullivan Nov 2006 A1
20060285686 Van Den Heuvel et al. Dec 2006 A1
20070005824 Howard Jan 2007 A1
20070011445 Waltermann et al. Jan 2007 A1
20070022469 Cooper et al. Jan 2007 A1
20070038866 Bardsley et al. Feb 2007 A1
20070073915 Go et al. Mar 2007 A1
20070097904 Mukherjee et al. May 2007 A1
20070098178 Raikar May 2007 A1
20070136792 Ting et al. Jun 2007 A1
20070150756 Kudelski Jun 2007 A1
20070174602 Kao Jul 2007 A1
20070180271 Hatakeyama et al. Aug 2007 A1
20070186105 Bailey et al. Aug 2007 A1
20070189249 Gurevich et al. Aug 2007 A1
20070220501 Yanagawa et al. Sep 2007 A1
20070234028 Rothman et al. Oct 2007 A1
20070242643 Chandra et al. Oct 2007 A1
20070260905 Marsden et al. Nov 2007 A1
20070277051 Reece et al. Nov 2007 A1
20070297606 Tkacik et al. Dec 2007 A1
20080005549 Ke Jan 2008 A1
20080016313 Murotake et al. Jan 2008 A1
20080028243 Morisawa Jan 2008 A1
20080034411 Aoyama Feb 2008 A1
20080043508 Chao et al. Feb 2008 A1
20080046732 Fu et al. Feb 2008 A1
20080066075 Nutter et al. Mar 2008 A1
20080072311 Mullick et al. Mar 2008 A1
20080082837 Mattsson Apr 2008 A1
20080091944 von Mueller et al. Apr 2008 A1
20080104422 Mullis et al. May 2008 A1
20080108322 Upp May 2008 A1
20080120717 Shakkarwar May 2008 A1
20080165952 Smith et al. Jul 2008 A1
20080181154 Sherman Jul 2008 A1
20080295157 Wong et al. Nov 2008 A1
20080298289 Jeyaseelan Dec 2008 A1
20080313462 Zhao et al. Dec 2008 A1
20090006658 Gough et al. Jan 2009 A1
20090019250 Rofougaran et al. Jan 2009 A1
20090024846 Ganesan et al. Jan 2009 A1
20090049222 Lee et al. Feb 2009 A1
20090059841 Laroia et al. Mar 2009 A1
20090077618 Pearce et al. Mar 2009 A1
20090080389 Messerges et al. Mar 2009 A1
20090131061 Palanki et al. May 2009 A1
20090199031 Zhang et al. Aug 2009 A1
20090217043 Metke et al. Aug 2009 A1
20090254771 So et al. Oct 2009 A1
20090296866 Hsieh Dec 2009 A1
20090323972 Kohno et al. Dec 2009 A1
20090327608 Eschmann et al. Dec 2009 A1
20100023747 Asnaashari et al. Jan 2010 A1
20100039864 Sarin et al. Feb 2010 A1
20100058045 Borras et al. Mar 2010 A1
20100070751 Chue Mar 2010 A1
20100174934 Zhao Jul 2010 A1
20100217935 Cho et al. Aug 2010 A1
20110039592 Haddad et al. Feb 2011 A1
20110211564 Yoneyama et al. Sep 2011 A1
20110231649 Bollay et al. Sep 2011 A1
20110231652 Bollay et al. Sep 2011 A1
20120284517 Lambert Nov 2012 A1
20120287337 Kumar et al. Nov 2012 A1
20130031346 Sakarda Jan 2013 A1
20130046966 Chu Feb 2013 A1
20130124844 Baratam May 2013 A1
20130132502 Stacey May 2013 A1
20130143499 Ando et al. Jun 2013 A1
20130148639 Gao et al. Jun 2013 A1
20130246792 Lambert Sep 2013 A1
20130329620 Kim et al. Dec 2013 A1
20130346777 Zhang Dec 2013 A1
20140036787 Ganu et al. Feb 2014 A1
20140045536 Sydir et al. Feb 2014 A1
20140092877 Kazmi Apr 2014 A1
20140171109 Segev Jun 2014 A1
20140200044 Kimura et al. Jul 2014 A1
20140258724 Lambert et al. Sep 2014 A1
20150006633 Vandwalle et al. Jan 2015 A1
20150036540 Kasslin et al. Feb 2015 A1
20150071438 Lambert Mar 2015 A1
20150131529 Zhou et al. May 2015 A1
20150131571 Fodor et al. May 2015 A1
20150200811 Kasslin et al. Jul 2015 A1
20150230043 Yakir et al. Aug 2015 A1
20160209200 Kanayama Jul 2016 A1
Foreign Referenced Citations (18)
Number Date Country
88102647 Dec 1988 CN
1140272 Jan 1997 CN
101097522 Jan 2008 CN
102272734 Sep 2014 CN
1847911 Oct 2007 EP
2493230 Aug 2012 EP
2605170 Jun 2013 EP
2407239 Apr 2005 GB
08076872 Mar 1996 JP
09044418 Feb 1997 JP
10320302 Dec 1998 JP
2002099502 Apr 2002 JP
2002215409 Aug 2002 JP
2004005254 Jan 2004 JP
2005011120 Jan 2005 JP
5565778 Jun 2014 JP
WO-2013019423 Feb 2013 WO
WO-2013074797 May 2013 WO
Non-Patent Literature Citations (145)
Entry
“Advisory Action”, U.S. Appl. No. 13/804,425, Dec. 26, 2014, 3 pages.
“Amendment 3: Enhancements for Very High Throughput in the 50 GHz Band”, Sponsor IEEE 802.11 Committee of the IEEE Computer Society, IEEE P802.11ad/D5.0 (Draft Amendment Based on IEEE P802.11REVmb D10.0) (Amendment to IEEE 802.11REVmb D10.0 as amended by IEEE 802.11ae D5.0 and IEEE 802.11aa 06.0); Draft Standard for Information Technology Telecommunications and Information Exchange, Sep. 2011, 601 pages.
“Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band”, IEEE Standard for Information technology; Telecommunications and information exchange between systems; Local and metropolitan area networks; Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Jul. 2012, 628 pages.
“Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz”, IEEE Standard for Information technology; Telecommunications and information exchange between systems; Local and metropolitan area networks; Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Sep. 2011, 425 pages.
“Amendment 4: TV White Spaces Operation”, The Institute of Electrical and Electronics Engineers, Inc., IEEE Std P802.11af/D1.05 Draft Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan area networks—Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer, Nov. 2011, 123 Pages.
“Amendment 6: Sub 1 GHz License Exempt Operation”, 802.11 Working Group of the LAN/MAN Standards Committee of the IEEE Computer Society, IEEE P802.11ah/D1.0 Draft Standard for Information Technology—Telecommunications and Information exchange between systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PH, Oct. 2013, 394 Pages.
“Amendment 8: IEEE 802.11 Wireless Network Management”, Prepared by the LAN/MAN Standards Committee of the IEEE Computer Society, Draft Standard for Information technology Telecommunications and information exchange between systems-Local and metropolitan area networks Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Aug. 2010, 426 Pages.
“Board Opinion”, CN Application No. 200980136849.9, Aug. 28, 2015, 18 Pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/676,701, May 18, 2016, 2 pages.
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/958,101, Apr. 8, 2016, 9 pages.
“Extensions to Direct Link Setup (DLS) Comments”, IEEE, P802.11z, Jul. 2009, pp. 1-3.
“Final Office Action”, U.S. Appl. No. 12/098,254, May 18, 2011, 11 pages.
“Final Office Action”, U.S. Appl. No. 12/101,668, May 10, 2012, 8 pages.
“Final Office Action”, U.S. Appl. No. 12/125,670, May 24, 2011, 11 pages.
“Final Office Action”, U.S. Appl. No. 12/125,693, Jun. 9, 2011, 9 pages.
“Final Office Action”, U.S. Appl. No. 12/178,268, May 25, 2011, 13 pages.
“Final Office Action”, U.S. Appl. No. 12/541,731, May 31, 2012, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/552,421, Mar. 16, 2015, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/804,425, Nov. 6, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/804,425, Nov. 21, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/863,079, Jan. 15, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/863,079, May 7, 2014, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/958,101, Dec. 19, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 14/281,671, Apr. 25, 2016, 14 pages.
“Foreign Office Action”, CN Application No. 200980136849.9, May 24, 2013, 20 Pages.
“Foreign Decision to Grant”, JP Application No. 2011-544456, May 20, 2014, 2 pages.
“Foreign Notice of Allowance”, CN Application No. 200980153758.6, Jul. 15, 2014, 4 Pages.
“Foreign Notice of Allowance”, JP Application No. 2011-527899, Jan. 28, 2014, 1 Page.
“Foreign Office Action”, CN Application No. 200980136849.9, Feb. 7, 2014, 15 Pages.
“Foreign Office Action”, CN Application No. 200980136849.9, May 19, 2014, 11 Pages.
“Foreign Office Action”, CN Application No. 200980153758.6, Apr. 27, 2013, 14 pages.
“Foreign Office Action”, CN Application No. 200980153758.6, Dec. 30, 2013, 8 pages.
“Foreign Office Action”, CN Application No. 201280033662.8, May 3, 2016, 26 pages.
“Foreign Office Action”, European Patent Application No. 09803951.4, May 24, 2012, 3 pages.
“Foreign Office Action”, European Patent Application No. 09803951.4, Dec. 13, 2012, 6 pages.
“Foreign Office Action”, JP Application No. 2011-527899, Apr. 16, 2013, 5 pages.
“Foreign Office Action”, JP Application No. 2011-527899, Nov. 6, 2012, 4 pages.
“Foreign Office Action”, JP Application No. 2011-527899, Aug. 13, 2013, 2 pages.
“Foreign Office Action”, JP Application No. 2011-544456, Jan. 29, 2013, 7 pages.
“Foreign Office Action”, JP Application No. 2011-544456, Dec. 3, 2013, 2 pages.
“Foreign Office Action”, JP Application No. 2011-544456, Jul. 9, 2013, 6 pages.
“Foreign Office Action”, KR Application No. 10-2011-7008700, Jun. 16, 2015, 13 Pages.
“IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, IEEE Std. 802.11-2007, Jun. 12, 2007, 1232 pages.
“IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Std. 802.11-2012, Mar. 29, 2012, 2793 pages.
“Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specfic Requirements”, IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Aug. 20, 1999, 531 pages.
“Intent to Grant”, EP Application No. 09803951.4, May 14, 2013, 13 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2009/067767, Mar. 26, 2010, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2009/056973, Nov. 4, 2009, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/047426, Oct. 19, 2012, 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/065290, May 2, 2013, 9 pages.
“International Search Report and Written Opinion”, PCT Application No. PCT/US2013/031545, Mar. 14, 2015, 11 pages.
“International Search Report and Written Opinion”, PCT Application No. PCT/US2014/0211295, Nov. 24, 2014, 16 pages.
“International Search Report and Written Opinion”, PCT Application No. PCT/US2014/054885, Dec. 4, 2014, 8 pages.
“International Search Report and Written Opinion”, PCT Application PCT/US2012/036236, Jul. 6, 2012, 9 pages.
“International Search Report”, Application No. PCT/US2008/078343, May 18, 2009, 5 pages.
“International Search Report”, Application No. PCT/US2008/078343, Partial International Search, Mar. 5, 2009, 2 pages.
“Invitation to Pay Additional Fees and Partial International Search Report”, PCT Application No. PCT/US2014/021295, Aug. 13, 2014, 5 pages.
“Marketing Requirements Document for Interoperability Testing & Certification of Device Provisioning Protocol”, Wi-Fi Alliance Device Provisioning Protocol Marketing Task Group; Version 1.2, 2012, 34 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/098,254, Jan. 14, 2011, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/101,668, Apr. 5, 2011, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/101,668, Aug. 9, 2012, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/125,670, Dec. 13, 2011, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/125,670, Dec. 7, 2010, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/125,670, Jun. 4, 2012, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/125,693, Oct. 3, 2011, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/125,693, Dec. 20, 2010, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/178,268, Dec. 21, 2011, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/178,268, Dec. 22, 2010, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/271,761, Oct. 3, 2011, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/541,731, Oct. 21, 2011, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/541,731, Sep. 4, 2012, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/559,987, Nov. 9, 2011, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/636,558, Jan. 10, 2012, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/636,558, May 29, 2012, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/252,416, Mar. 13, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/333,551, Apr. 6, 2012, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/462,972, May 22, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/552,421, Sep. 30, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/598,282, Oct. 16, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/657,511, Mar. 28, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/676,701, Jul. 31, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/683,056, Nov. 8, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/804,425, May 4, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/804,425, Jul. 18, 2014, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Apr. 9, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Jun. 20, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Aug. 27, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Oct. 1, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/874,201, Jun. 5, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/958,101, Apr. 8, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/958,101, Jun. 6, 2014, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/198,994, Jul. 31, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/205,196, Feb. 5, 2016, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/281,671, Nov. 22, 2016, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/281,671, Nov. 27, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/281,693, Feb. 18, 2016, 4 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/482,072, Nov. 19, 2015, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 12/098,254, Dec. 14, 2011, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 12/098,254, Sep. 28, 2011, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 12/101,668, Jan. 11, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 12/125,670, Dec. 11, 2012, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 12/178,268, Jul. 2, 2012, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 12/271,761, Jan. 3, 2012, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 12/541,731, Apr. 2, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 12/559,987, Jun. 15, 2012, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 12/636,558, Jan. 9, 2013, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/252,416, Sep. 27, 2013, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/333,551, May 30, 2012, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/552,421, May 12, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/552,421, Jun. 10, 2015, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/598,282, May 6, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/657,511, Nov. 4, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/676,701, Feb. 10, 2016, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/683,056, May 9, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/804,425, Mar. 21, 2016, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/874,201, Sep. 25, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 14/198,994, Jan. 29, 2016, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 14/281,693, Aug. 8, 2016, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/482,072, Mar. 22, 2016, 5 pages.
“Notification Concerning Transmittal of Copy of International Preliminary Report on Patentability”, PCT Application No. PCT/US2014/021295, Sep. 17, 2015, 12 pages.
“Part 11—Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, Information Technology—Telecommunications & Information Exchange Between Systems . . . International Standard, ISO/IEC 8802-11, First Ed., 1999, pp. 1-531.
“Part 16: Air Interface for Broadband Wireless Access Systems”, IEEE Standard for Local and Metropolitan Area Networks, May 29, 2009, 2082 pages.
“Public Key Cryptography for the Financial Services Industry: Elliptic Curve Key Agreement and Key Transport Schemes”, Working Draft; Version 2.0, Jul. 5, 1998, 125 pages.
“Restriction Requirement”, U.S. Appl. No. 12/101,668, Sep. 22, 2011, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/676,701, Feb. 12, 2015, 7 pages.
“Specification of the Bluetooth System, Version 2.0: vol. 0”, Master Table of Contents & Compliance Requirements; pp. 1-74; vol. 1, “Architecture & Terminology Overview”, pp. 1-92; vol. 2, “Core System Package [Controller Volume]”, pp. 1-814; vol. 4, “Core System Package [Host Volume]”; pp. 1-250, Nov. 4, 2004, 1230 pages.
“Specification Requirements Document (SRD) for Devise Provisioning Protocol”, Wi-Fi Alliance Device Provisioning Protocol Marketing Task Group; Version 1.1, 2013, 13 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/101,668, Feb. 8, 2013, 4 Pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/333,551, Oct. 23, 2012, 2 pages.
“Wi-Fi Peer-to-Peer (P2P) Technical Specification”, Wi-Fi Alliance Technical Committee P2P Task Group; Draft Version 1.14, Jun. 25, 2010, 154 pages.
“Wi-Fi Peer-to-Peer (P2P) Technical Specification”, WiFi Alliance; Version 1.5, 2014, 183 pages.
Anderson,“HDD Based Full Disc Encryption”, In Proceedings of THIC Conference 2006, Mar. 2006, 12 pages.
Chen,“Home Network Basis: Transmission Environments and Wired/Wireless Protocols”, Prentice Hall, Jul. 2003, 19 pages.
Cooper,“Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (SRL) Profile”, Network Working Group; RFC 5280, May 2008, 152 pages.
Harada,“Project: IEEE P802.15 Working Group for Wireless Personal Area Network (WPANs)”, IEEE 802.15-07-0693-003c; Slides 24-33 as provided in U.S. Appl. No. 14/198,994 in an IDS submission filed Feb. 24, 2015, May 2007, 10 pages.
Harkins,“Synthetic Initialization Vecor (SIV) Authenticated Encryption Using the Advanced Encryption Standard (AES)”, Network Working Group; RFC 5297; Aruba Networks, Oct. 2008, 27 pages.
Hiertz,“The IEEE 802.11 Universe”, IEEE Standards in Communications and Networking; IEEE Communications Magazine, Jan. 2010, 9 pages.
Krawczyk,“HMAC-based Extract-and-Expand Key Derivation Function (HKDF)”, Internet Engineering Task Forct (IETF); RFC 5869, May 2010, 15 pages.
McGrew,“Fundamental Elliptic Curve Cryptography Algorithms”, Internet Engineering Task Force (IETF); RFC 6090; Fundamental Elliptic Cryptography Algorithms, Feb. 2011, 35 pages.
Robinson,“Wi-Fi Simple Configuration Protocol and Usability Best Practices for the Wi-Fi Protected Setup Program”, Wi-Fi Alliance; Version 2.0.1, Apr. 2011, 30 pages.
Van Beijnum “Crypto Based Host Identifiers”, Internet Draft; draft-van-beijnum-multi6-cbhi-00.K ISSN: 0000-0004; XP15036389A, Jan. 1, 2004, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/693,744, Dec. 16, 2016, 24 pages.
“Notice of Allowance”, U.S. Appl. No. 14/281,671, dated Apr. 4, 2017, 5 pages.
Perahia,“Gigabit Wireless LANs: an overview of IEEE 802.11ac and 802.11ad”, ACM Sigmobile Mobile Computing and Communications Review; vol. 15, No. 3, Nov. 29, 2011, pp. 23-33.
“Final Office Action”, U.S. Appl. No. 14/693,744, dated Jun. 13, 2017, 30 pages.
Provisional Applications (1)
Number Date Country
61825686 May 2013 US
Continuations (1)
Number Date Country
Parent 14281693 May 2014 US
Child 15362657 US