1. Field of the Invention
Embodiments of the present invention generally relate to a user-adjustable spring for use in a shock absorber.
2. Description of the Related Art
Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by a mechanical spring. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. The mechanical spring may be a helically wound spring that surrounds the damper body. Various integrated shock absorber configurations are described in U.S. Pat. Nos. 5,044,614; 5,803,443; 5,553,836; and 7,293,764; each of which is herein incorporated, in its entirety, by reference.
The spring mechanism of many shock absorbers is adjustable so that it can be preset to varying initial states of compression. In that way the shock absorber can be adjusted to accommodate heavier or lighter carried weight, or greater or lesser anticipated impact loads. In motorcycle racing, particularly off-road racing, shock absorbers may be adjusted according to certain rider preferences.
U.S. Pat. No. 5,044,614 (“the '614 patent”) shows a damper body carrying a thread 42. A helical spring 18 surrounds the damper body where the two form an integrated shock absorber. The compression in the helical spring 18 may be pre-set by means of a nut 48 and a lock nut 50. Because the nut 48 and lock nut 50 must be relatively torqued to prevent nut 50 rotation upon final adjustment, the shock absorber must typically be removed from its vehicle in order to allow torquing wrench access. Once the spring 18 is in a desired state of compression, lock nut 50 is rotated, using a wrench, up against nut 48 and tightened in a binding relation therewith.
The system described in the '614 patent requires that the user be able to access a large amount of the circumference of the shock absorber, and specifically the nut 48 and lock nut 50, with a wrench (e.g. col. 4, lines 15-17). Unfortunately many shock absorbers, as mounted on a corresponding vehicle, are fairly inaccessible, and have limited surrounding wrench space because of other surrounding vehicle hardware and/or, as in the instant case, a separate damping fluid reservoir or “piggyback.” What is needed is a shock absorber having a spring that can be readily adjusted while the shock absorber is mounted on a vehicle. What is needed is a motorcycle “monoshock” having a spring that can be easily adjusted without removing the shock from the motorcycle. What is needed is a shock absorber having a spring where the state of spring adjustment is constantly indicated and easily visible while the shock is mounted on a vehicle.
The present invention generally relates to a suspension comprising a spring assembly having a threaded member at a first end for imposing axial movement in the spring as the spring is rotated and thereby rotating the threaded member relative to a second component. In one embodiment, the system includes a damper for metering damping fluid and a rotatable spring member coaxially disposed around the damper and rotatable relative to the damper. In one embodiment an adjustment assembly includes a spring adjustment nut (e.g. follower nut) and clamp with the adjustment nut disposed on a threaded portion of the second component. When the clamp is loosened, the adjustment or “follower” nut rotates with the spring which is rotated by a user and the rotation thereby compresses or decompresses the spring as the nut moves axially (by thread pitch) along the threaded second component. In one embodiment, the clamp includes an indicator that cooperates with markings on the second component to indicate the compression state of the spring.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
One embodiment of the adjuster assembly 200 is best appreciated with reference to all of the Figures and comprises a follower nut 210 and a clamp 250. In one embodiment the follower nut 210 includes a pin 215 for fitting into a hole 216 (shown in
While the follower nut 210 is a separate component in some embodiments, it will be understood that the nut can be integral with the spring 175 whereby one end of the spring is therefore effectively threaded to the damper housing and axially adjustable upon rotation of the spring while an opposite end of the spring is axially fixed but rotationally movable relative to the damper body. In one embodiment, the clamp member can also be formed to simply include a threaded member, for instance, that interacts with the damper body to prevent rotation between the threads of the integral spring/nut/clamp and the threaded damper body. In one embodiment, the bottom portion 180 includes a cylindrical member, or body, (not shown) axially and upwardly disposed within and along the spring 175. In one embodiment the cylindrical member is threaded along an axial exterior length thereof. In one embodiment an adjustment assembly 200 is located between bottom clip or annular “lip” 180 and a lower end of the spring 175. Much as has been previously described in relation to threads 190 and the nut 210, in one embodiment the threads 211 on an inner diameter of nut 210 are engaged with threads on an outer diameter of the cylindrical member (not shown). The pin 215 engages a recess 300 at a lower end of the spring 175. As previously described, rotation of the spring 175 correspondingly rotates the nut 210, via pin 215, and the nut 210 translates axially along the cylindrical member thereby increasing or decreasing the compression in the spring 175 depending on the direction of rotation and the directional “sense” of the threads. In one embodiment the cylindrical member (not shown) has an inner diameter that is larger than the outer dimensions of the spring and is disposed axially upward along the shock and outside of the spring. A nut is threaded on an outer diameter thereof and engaged with an end of the spring and the cylinder is threaded on an inner diameter thereof and the nut, cylinder and spring cooperate as principally described herein to facilitate adjustment of compression in the spring. In one embodiment the spring includes an assembly 200 and corresponding threaded sections (e.g. 190, cylindrical member) at each of its ends. In one embodiment the threads at each end are opposite in “sense” so that rotation of the spring increases or decreases compression in the spring twice as fast as a single threaded end version. In one embodiment threads at one end are of a different pitch than threads at the other end of the spring 175.
In one embodiment the indicator 255 connected on clamp 250, and rotationally fixed relative to the clamp 250, serves at least two purposes. Its curved surface 256 conforms to a portion of an exterior of the reservoir 150, thereby preventing rotation of the clamp 250 during rotation of the spring 175. As such the orientation of screw 260 is maintained relative to the shock absorber and the vehicle on which the shock absorber is mounted. Correspondingly, the screw 260 is maintained in an accessible location for tightening and loosening to facilitate spring 175 adjustment while the shock absorber remains mounted on the vehicle. Second, the indicator 255 serves to indicate axial compression state of the spring 175 relative to a scale 400 (referring to
In one example, the clamp 250 is loosened by inserting an appropriate hex or blade type wrench or screw driver (not shown) through a predetermined shock absorber access space available in the vehicle (vehicle such as a monoshock rear shock motorcycle) and rotating screw 260 counterclockwise (assuming a right hand thread screw 260) to loosen the clamp. Once the clamp 250 is loose, the spring 175 can be manually gripped, through the access space, by a user and rotated manually, for example, in one embodiment having right hand threads 190 from the top axial view of the shock absorber, clockwise as viewed from the upper end, to increase compression or pre-load in the spring 175. In that embodiment rotating the spring 175 counterclockwise as viewed from above reduces pre-load of the spring 175 (or vice versa depending on the sense of threads 190). As previously described, such rotation of the spring 175 causes rotation of the follower nut 210 and corresponding axial translation of the follower nut 210 (based on the pitch of the threads 190) relative to the damper body 120 and along threads 190. Axial movement of the follower nut 210, relative to non-axially moving bottom clip 180, increases or decreases compression pre-load in spring 175. In one embodiment, when the desired pre-load is obtained, as indicated by movement of the indicator 255, which moves axially with the nut 210, relative to the scale 400, the clamp 250 is retightened by rotating screw 260 clockwise. It should be noted that the scale 400 may be placed on any suitable and axially static component relative to the follower nut 210/clamp 250 and the indicator 255 may be structured to “point” appropriately thereto. In one embodiment the numerical markers on the scale 400 are indicative of a percentage of compression preload in the spring. In one embodiment, the scale and indicator are visible from an exterior of an assembled vehicle with the shock absorber having the scale and indictor mounted thereon. In one embodiment, the scale 400 and indicator 255 “pair” comprise a longitudinal wire coil and permanent magnet. Position of the magnet relative to the coil is indicated by a state of current through the coil and can be calibrated to correspond to a state of spring compression. In one embodiment the “scale/indicator” pair comprises a proximity sensor and a datum structure. In one embodiment an electronic “scale/indicator” pair is connected to a transmission circuit having wireless protocol capabilities, such as Garmin's ANT plus, and shock spring compression data is transmitted in real time or in packets to a user interface/output device such as for example Garmin's 705 edge GPS enabled computer. In one embodiment the shock absorber is a monoshock and is accessible and visible, while mounted in a functional position, through a limited access space of the monoshock equipped vehicle.
While the foregoing is directed to certain embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/161,552, filed Mar. 19, 2009, and U.S. provisional patent application Ser. No. 61/161,620, filed Mar. 19, 2009. Each of the aforementioned related patent applications is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1923011 | Moulton | Aug 1933 | A |
1948600 | Templeton | Feb 1934 | A |
2259437 | Dean | Oct 1941 | A |
2492331 | Spring | Dec 1949 | A |
2540525 | Howarth et al. | Feb 1951 | A |
2697600 | Gregoire | Dec 1954 | A |
2784962 | Sherburne | Mar 1957 | A |
2879971 | Demay | Mar 1959 | A |
2991804 | Merkle | Jul 1961 | A |
3085530 | Williamson | Apr 1963 | A |
3206153 | Burke | Sep 1965 | A |
3284076 | Gibson | Nov 1966 | A |
3528700 | Janu et al. | Sep 1970 | A |
3575442 | Elliott et al. | Apr 1971 | A |
3701544 | Stankovich | Oct 1972 | A |
3784228 | Hoffmann et al. | Jan 1974 | A |
3830482 | Norris | Aug 1974 | A |
4103881 | Simich | Aug 1978 | A |
4348016 | Milly | Sep 1982 | A |
4655440 | Eckert | Apr 1987 | A |
4732244 | Verkuylen | Mar 1988 | A |
4744444 | Gillingham | May 1988 | A |
4773671 | Inagaki | Sep 1988 | A |
4830395 | Foley | May 1989 | A |
4836578 | Soltis | Jun 1989 | A |
4949262 | Buma et al. | Aug 1990 | A |
4949989 | Kakizaki et al. | Aug 1990 | A |
4984819 | Kakizaki et al. | Jan 1991 | A |
5027303 | Witte | Jun 1991 | A |
5044614 | Rau | Sep 1991 | A |
5060959 | Davis et al. | Oct 1991 | A |
5074624 | Stauble et al. | Dec 1991 | A |
5094325 | Smith | Mar 1992 | A |
5105918 | Hagiwara et al. | Apr 1992 | A |
5152547 | Davis | Oct 1992 | A |
5203584 | Butsuen et al. | Apr 1993 | A |
5348112 | Vaillancourt | Sep 1994 | A |
5390949 | Naganathan et al. | Feb 1995 | A |
5553836 | Ericson | Sep 1996 | A |
5598337 | Butsuen et al. | Jan 1997 | A |
5722645 | Reitter | Mar 1998 | A |
5803443 | Chang | Sep 1998 | A |
5954318 | Kluhsman | Sep 1999 | A |
5971116 | Franklin | Oct 1999 | A |
6017047 | Hoose | Jan 2000 | A |
6035979 | Foerster | Mar 2000 | A |
6058340 | Uchiyama et al. | May 2000 | A |
6073736 | Franklin | Jun 2000 | A |
6135434 | Marking | Oct 2000 | A |
6244398 | Girvin et al. | Jun 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6311962 | Marking | Nov 2001 | B1 |
6360857 | Fox et al. | Mar 2002 | B1 |
6389341 | Davis | May 2002 | B1 |
6427812 | Crawley et al. | Aug 2002 | B2 |
6434460 | Uchino et al. | Aug 2002 | B1 |
6592136 | Becker et al. | Jul 2003 | B2 |
6732033 | LaPlante et al. | May 2004 | B2 |
6857625 | Loser et al. | Feb 2005 | B2 |
6863291 | Miyoshi | Mar 2005 | B2 |
6991076 | McAndrews | Jan 2006 | B2 |
7076351 | Hamilton et al. | Jul 2006 | B2 |
7128192 | Fox | Oct 2006 | B2 |
7135794 | Kuhnel | Nov 2006 | B2 |
7163222 | Becker et al. | Jan 2007 | B2 |
7287760 | Quick et al. | Oct 2007 | B1 |
7293764 | Fang | Nov 2007 | B2 |
7316406 | Kimura et al. | Jan 2008 | B2 |
7363129 | Barnicle et al. | Apr 2008 | B1 |
7374028 | Fox | May 2008 | B2 |
7397355 | Tracy | Jul 2008 | B2 |
7469910 | Münster et al. | Dec 2008 | B2 |
7484603 | Fox | Feb 2009 | B2 |
7490705 | Fox | Feb 2009 | B2 |
7631882 | Hirao et al. | Dec 2009 | B2 |
7694987 | McAndrews | Apr 2010 | B2 |
7703585 | Fox | Apr 2010 | B2 |
7857325 | Copsey et al. | Dec 2010 | B2 |
7872764 | Higgins-Luthman et al. | Jan 2011 | B2 |
8087676 | McIntyre | Jan 2012 | B2 |
8127900 | Inoue | Mar 2012 | B2 |
8210106 | Tai et al. | Jul 2012 | B2 |
8262100 | Thomas | Sep 2012 | B2 |
8285447 | Bennett et al. | Oct 2012 | B2 |
8336683 | McAndrews et al. | Dec 2012 | B2 |
8458080 | Shirai | Jun 2013 | B2 |
8550551 | Shirai | Oct 2013 | B2 |
8622180 | Wootten et al. | Jan 2014 | B2 |
8763770 | Marking | Jul 2014 | B2 |
8936139 | Franklin et al. | Jan 2015 | B2 |
20020032508 | Uchino et al. | Mar 2002 | A1 |
20020089107 | Koh | Jul 2002 | A1 |
20020113347 | Robbins et al. | Aug 2002 | A1 |
20030001358 | Becker et al. | Jan 2003 | A1 |
20030065430 | Lu et al. | Apr 2003 | A1 |
20030160369 | LaPlante et al. | Aug 2003 | A1 |
20040256778 | Verriet | Dec 2004 | A1 |
20050110229 | Kimura et al. | May 2005 | A1 |
20060064223 | Voss | Mar 2006 | A1 |
20060163787 | Munster et al. | Jul 2006 | A1 |
20060185951 | Tanaka | Aug 2006 | A1 |
20060289258 | Fox | Dec 2006 | A1 |
20070008096 | Tracy | Jan 2007 | A1 |
20080018065 | Hirao et al. | Jan 2008 | A1 |
20080093820 | McAndrews | Apr 2008 | A1 |
20080116622 | Fox | May 2008 | A1 |
20090121398 | Inoue | May 2009 | A1 |
20090236807 | Wootten et al. | Sep 2009 | A1 |
20090261542 | McIntyre | Oct 2009 | A1 |
20090277736 | McAndrews et al. | Nov 2009 | A1 |
20100010709 | Song | Jan 2010 | A1 |
20100044975 | Yablon et al. | Feb 2010 | A1 |
20100244340 | Wootten et al. | Sep 2010 | A1 |
20100252972 | Cox et al. | Oct 2010 | A1 |
20100276906 | Galasso et al. | Nov 2010 | A1 |
20110109060 | Earle et al. | May 2011 | A1 |
20110257848 | Shirai | Oct 2011 | A1 |
20120253599 | Shirai | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
202010012738 | Dec 2010 | DE |
304801 | Mar 1989 | EP |
1241087 | Sep 2002 | EP |
1355209 | Oct 2003 | EP |
57173632 | Nov 1982 | JP |
57182506 | Nov 1982 | JP |
01106721 | Apr 1989 | JP |
04-203540 | Jul 1992 | JP |
05-149364 | Jun 1993 | JP |
9840231 | Sep 1998 | WO |
9906231 | Feb 1999 | WO |
Entry |
---|
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2. |
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, Sep. 24, 2014, 6 Pages. |
European Search Report, European Patent Application No. 14189773.6, May 4, 2015, 4 Pages. |
Number | Date | Country | |
---|---|---|---|
20100252972 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61161552 | Mar 2009 | US | |
61161620 | Mar 2009 | US |