Methods and apparatus for spatial light modulation

Information

  • Patent Grant
  • 7927654
  • Patent Number
    7,927,654
  • Date Filed
    Thursday, October 4, 2007
    17 years ago
  • Date Issued
    Tuesday, April 19, 2011
    13 years ago
Abstract
The invention relates to methods of manufacturing display devices which include the steps of depositing a layer of a dielectric material directly on a substantially transparent substrate, depositing a layer of metal directly on top of the dielectric material, forming a plurality of apertures in the layer of metal, forming a control matrix on top of the metal layer, and forming a plurality of light-modulating shutter assemblies on top of and in electrical communication with the control matrix such that the control matrix controls the light modulation functionality of the plurality of shutter assemblies.
Description
FIELD OF THE INVENTION

In general, the invention relates to the field of spatial light modulation, in particular, the invention relates to displays having improved backlights.


BACKGROUND OF THE INVENTION

Displays built from mechanical light modulators are an attractive alternative to displays based on liquid crystal technology. Mechanical light modulators are fast enough to display video content with good viewing angles and with a wide range of color and grey scale. Mechanical light modulators have been successful in projection display applications. Backlit displays using mechanical light modulators have not yet demonstrated sufficiently attractive combinations of brightness and low power. When operated in transmissive mode many mechanical light modulators, with aperture ratios in the range of 10 and 20%, are only capable of delivering 10 to 20% of available light from the backlight to the viewer for the production of an image. Combining the mechanical apertures with color filters reduces the optical efficiency to about 5%, i.e., no better than the efficiencies available in current color liquid crystal displays. There is a need for a low-powered display having increased luminous efficiency.


SUMMARY OF THE INVENTION

The devices and methods described herein provide for mechanical light modulators having improved luminous efficiency, making mechanical actuators attractive for use in portable and large area displays. In some cases, the transmittance or optical efficiency of mechanical modulators coupled to backlights can be improved to the 40 to 60% level, or 10 times more efficient than what is typical in a liquid crystal display. In addition, the devices and methods described herein can be incorporated into small-size, high resolution displays, regardless of the light modulation mechanism, to improve the brightness of the displays and to reduce the power requirements in a display application.


The light modulators described herein make possible portable video displays that can be both bright and low power. The light modulators can be switched fast enough to provide color images using time sequential color techniques, instead of relying on color filters. The displays can be built using as few as three functional layers to form both a mechanical shutter assembly and the electrical connections necessary for array addressing.


In one aspect, the invention relates to a method of manufacturing a display device which includes the steps of depositing a layer of a dielectric material directly on a substantially transparent substrate, depositing a layer of metal directly on top of the dielectric material, forming a plurality of apertures in the layer of metal, forming a control matrix on top of the metal layer and forming a plurality of light-modulating shutter assemblies on top of and in electrical communication with the control matrix such that the control matrix controls the light modulation functionality of the plurality of shutter assemblies. The control matrix may include a plurality of thin film components, which may include switches.


In another aspect of the invention, a method of manufacturing a display device includes the steps of depositing a first layer of a dielectric material directly on a substantially transparent substrate, depositing a second layer of a dielectric material directly on top of the first dielectric material, depositing a layer of metal directly on top of the dielectric material, forming a plurality of apertures in the layer of metal, forming a control matrix on top of the metal layer; and forming a plurality of light-modulating shutter assemblies on top of and in electrical communication with the control matrix such that the control matrix controls the light modulation functionality of the plurality of shutter assemblies. The second dielectric material may have a refractive index lower than that of the first dielectric material.


In another aspect of the invention, a method of manufacturing a display device includes the steps of depositing a high-reflectance layer on a substantially transparent glass substrate, forming a plurality of apertures in the high-reflectance layer, depositing an insulating layer directly on top of the high-reflectance layer, depositing a plurality of thin-film components on the insulating layer, and forming a plurality of light-modulating shutter assemblies above, and in electrical communication with, the plurality of thin film components such that the thin-film components form a control matrix for controlling the light modulation of the plurality of light-modulating shutter assemblies. The high-reflectance layer may have a reflectivity of greater than 85%, include a composite layer of at least one metal and at least one dielectric, or include a fine grained metal film without inclusions. The metal of the high-reflectance layer may be deposited using a sputter process or via ion plating. In addition, the method may include the step of forming a plurality of holes in the insulating layer prior to the deposition of the plurality of thin-film components.





BRIEF DESCRIPTION OF THE FIGURES

The system and methods may be better understood from the following illustrative description with reference to the following drawings in which:



FIG. 1A is an isometric conceptual view of an array of light modulators, according to an illustrative embodiment of the invention;



FIG. 1B is a cross-sectional view of a shutter assembly included in the array of light modulators of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 1C is an isometric view of the shutter layer of the shutter assembly of FIG. 1B, according to an illustrative embodiment of the invention;



FIG. 1D is a top view of the various functional layers of a light modulation array, such as the light modulation array of FIG. 1A;



FIG. 2 is a cross-sectional view of an optical cavity for use in a spatial light modulator, according to an illustrative embodiment of the invention;



FIGS. 3A-3D are cross-sectional views of alternative shutter assembly designs, according to illustrative embodiments of the invention;



FIG. 4 is a cross-sectional view of a shutter assembly having a first coated shutter, according to an illustrative embodiment of the invention;



FIG. 5 is a cross-sectional view of a shutter assembly having a second coated shutter, according to an illustrative embodiment of the invention;



FIG. 6 is a cross-sectional view of a shutter assembly having an elastic actuator for use in the light modulation array, according to an illustrative embodiment of the invention;



FIG. 7 is a cross-sectional view of a shutter assembly having a deforming shutter for use in the light modulation array, according to an illustrative embodiment of the invention;



FIGS. 8A-8B are cross-sectional views of the shutter assemblies built on opaque substrates for use in the light modulation array, according to an illustrative embodiment of the invention;



FIG. 9 is a cross-sectional view of a liquid crystal-based spatial light modulator, according to an illustrative embodiment of the invention;



FIG. 10 is a cross-sectional view of a first shutter-based spatial light modulator, according to an illustrative embodiment of the invention;



FIG. 11 is a cross-sectional view of a second shutter-based spatial light modulator, according to the illustrative embodiment of the invention;



FIGS. 12A-12D are cross-sectional views of third, fourth, fifth, and sixth illustrative shutter-based spatial light modulators, according to an embodiments of the invention;



FIG. 13 is a cross-sectional view of a seventh shutter-based spatial light modulator, according to an illustrative embodiment of the invention;



FIGS. 14A and 14B are cross-sectional views of two additional spatial light modulators, according to an illustrative embodiment of the invention;



FIG. 15 is a cross-sectional view of an additional shutter assembly, according to an illustrative embodiment of the invention;



FIG. 16 is a cross-sectional view of still a further spatial light modulator, according to an illustrative embodiment of the invention;



FIG. 17 is an illustrative transflective shutter assembly, according to an embodiment of the invention;



FIG. 18 is a second illustrative transflective shutter assembly, according to an embodiment of the invention;



FIG. 19 is a cross-sectional view of a front reflective shutter assembly, according to an illustrative embodiment of the invention; and



FIG. 20 is an isometric view of a larger scale display formed from an array of light modulation arrays, according to an illustrative embodiment of the invention.





DESCRIPTION OF CERTAIN ILLUSTRATIVE EMBODIMENTS

To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including apparatus and methods for spatially modulating light. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.



FIG. 1A is an isometric conceptual view of an array 100 of light modulators (also referred to as a “light modulation array 100”), according to an illustrative embodiment of the invention. The light modulation array 100 includes a plurality of shutter assemblies 102a-102d (generally “shutter assemblies 102”) arranged in rows and columns. In general, a shutter assembly 102 has two states, open and closed (although partial openings can be employed to impart grey scale). Shutter assemblies 102a and 102d are in the open state, allowing light to pass. Shutter assemblies 102b and 102c are in the closed state, obstructing the passage of light. By selectively setting the states of the shutter assemblies 102a-102d, the light modulation array 100 can be utilized to form an image 104 for a projection or backlit display, illuminated by lamp 105. In the light modulation array 100, each shutter assembly corresponds to a pixel 106 in the image 104. In alternative implementations, a light modulation array includes three color-specific shutter assemblies for each pixel. By selectively opening one or more of the color-specific shutter assemblies corresponding to the pixel, the shutter assembly can generate a color pixel in the image.


The state of each shutter assembly 102 can be controlled using a passive matrix addressing scheme. Each shutter assembly 102 is controlled by a column electrode 108 and two row electrodes 110a (a “row open electrode”) and 110b (a “row close electrode”). In the light modulation array 100, all shutter assemblies 102 in a given column share a single column electrode 108. All shutter assemblies in a row share a common row open electrode 110a and a common row close electrode 110b. An active matrix addressing scheme is also possible. Active matrix addressing (in which pixel and switching voltages are controlled by means of a thin film transistor array) is useful in situations in which the applied voltage must be maintained in a stable fashion throughout the period of a video frame. An implementation with active matrix addressing can be constructed with only one row electrode per pixel.


In the passive matrix addressing scheme, to change the state of a shutter assembly 102 from a closed state to an open state, i.e., to open the shutter assembly 102, the light modulation array 100 applies a potential to the column electrode 108 corresponding to the column of the light modulation array 100 in which the shutter assembly 102 is located and applies a second potential, in some cases having an opposite polarity, to the row open electrode 110a corresponding to the row in the light modulation array 100 in which the shutter assembly 102 is located. To change the state of a shutter assembly 102 from an open state to a closed state, i.e., to close the shutter assembly 102, the light modulation array 100 applies a potential to the column electrode 108 corresponding to the column of the light modulation array 100 in which the shutter assembly 102 is located and applies a second potential, in some cases having an opposite polarity, to the row close electrode 110b corresponding to the row in the light modulation array 100 in which the shutter assembly 102 is located. In one implementation, a shutter assembly changes state in response to the difference in potential applied to the column electrode and one of the row electrodes 110a or 110b exceeding a predetermined switching threshold.


To form an image, in one implementation, light modulation array 100 sets the state of each shutter assembly 102 one row at a time in sequential order. For a given row, the light modulation array 100 first closes each shutter assembly 102 in the row by applying a potential to the corresponding row close electrode 110b and a pulse of potential to all of the column electrodes 108. Then, the light modulation array 100 opens the shutter assemblies 102 through which light is to pass by applying a potential to the row open electrode 110a and applying a potential to the column electrodes 108 for the columns which include shutter assemblies in the row which are to be opened. In one alternative mode of operation, instead of closing each row of shutter assemblies 102 sequentially, after all rows in the light modulation array 100 are set to the proper position to form an image 104, the light modulation array 100 globally resets all shutter assemblies 102 at the same time by applying a potentials to all row close electrodes 110b and all column electrodes 108 concurrently. In another alternative mode of operation, the light modulation array 100 forgoes resetting the shutter assemblies 102 and only alters the states of shutter assemblies 102 that need to change state to display a subsequent image 104.


In addition to the column electrode 108 and the row electrodes 110a and 110b, each shutter assembly includes a shutter 112 and an aperture 114. To illuminate a pixel 106 in the image 104, the shutter is positioned such that it allows light to pass, without any significant obstruction, through, the aperture 114 towards a viewer. To keep a pixel unlit, the shutter 112 is positioned such that it obstructs the passage of light through the aperture 114. The aperture 114 is defined by an area etched through a reflective material in each shutter assembly, such as the column electrode 108. The aperture 114 may be filled with a dielectric material.



FIG. 1B is a cross sectional diagram (see line A-A′ below in FIG. 1D) of one of the shutter assemblies 102 of FIG. 1A, illustrating additional features of the shutter assemblies 102. Referring to FIGS. 1A and 1B, the shutter assembly 102 is built on a substrate 116 which is shared with other shutter assemblies 102 of the light modulation array 100. The substrate 116 may support as many as 4,000,000 shutter assemblies, arranged in up to about 2000 rows and up to about 2000 columns.


As described above, the shutter assembly 102 includes a column electrode 108, a row open electrode 110a, a row close electrode 110b, a shutter 112, and an aperture 114. The column electrode 108 is formed from a substantially continuous layer of reflective metal, the column metal layer 118, deposited on the substrate 116. The column metal layer 118 serves as the column electrode 108 for a column of shutter assemblies 102 in the light modulation array 100. The continuity of the column metal layer 118 is broken to electrically isolate one column electrode 108 from the column electrodes 108 of shutter assemblies 102 in other columns of the light modulation array 100. As mentioned above, each shutter assembly 102 includes an aperture 114 etched through the column metal layer 118 to form a light-transmissive region.


The shutter assembly includes a row metal layer 120, separated from the column metal layer 118 by one or more intervening layers of dielectric material or metal. The row metal layer 120 forms the two row electrodes 110a and 110b shared by a row of shutter assemblies 102 in light modulation array 100. The row metal layer 120 also serves to reflect light passing through gaps in the column metal layer 118 other than over the apertures 114. The column metal layer and the row metal layer are between about 0.1 and about 2 microns thick. In alternative implementations, such as depicted in FIG. 1D (described below), the row metal layer 120 can be located below the column metal layer 118 in the shutter assembly 102.


The shutter 102 assembly includes a third functional layer, referred to as the shutter layer 122, which includes the shutter 112. The shutter layer 122 can be formed from metal or a semiconductor. Metal or semiconductor vias 124 electrically connect the column metal layer 118 and the row electrodes 110a and 110b of the row metal layer 120 to features on the shutter layer 122. The shutter layer 122 is separated from the row metal layer 120 by a lubricant, vacuum or air, providing the shutter 112 freedom of movement.



FIG. 1C is a isometric view of a shutter layer 122, according to an illustrative embodiment of the invention. Referring to both FIGS. 1B and 1C, the shutter layer 122, in addition to the shutter 112, includes four shutter anchors 126, two row anchors 128a and 128b, and two actuators 130a and 130b, each consisting of two opposing compliant beams. The shutter 112 includes an obstructing portion 132 and, optionally, as depicted in FIG. 1C, a shutter aperture 134. In the open state, the shutter 112 is either clear of the aperture 114, or the shutter aperture 134 is positioned over the aperture 134, thereby allowing light to pass through the shutter assembly 102. In the closed state, the obstructing portion 132 is positioned over the aperture, obstructing the passage of light through the shutter assembly 102. In alternative implementations, a shutter assembly 102 can include additional apertures 114 and the shutter 112 can include multiple shutter apertures 134. For instance, a shutter 112 can be designed with a series of narrow slotted shutter apertures 134 wherein the total area of the shutter apertures 134 is equivalent to the area of the single shutter aperture 134 depicted in FIG. 1C. In such implementations, the movement required of the shutter to move between open and closed states can be significantly reduced.


Each actuator 130a and 130b is formed from two opposing compliant beams. A first pair of compliant beams, shutter actuator beams 135, physically and electrically connects each end of the shutter 112 to the shutter anchors 126, located in each corner of the shutter assembly 102. The shutter anchors 126, in turn, are electrically connected to the column metal layer 118. The second pair of compliant beams, row actuator beams 136a and 136b extends from each row anchor 128a and 128b. The row anchor 128a is electrically connected by a via to the row open electrode 110a. The row anchor 128b is electrically connected by a via to the row close electrode 110b. The shutter actuator beams 135 and the row actuator beams 136a and 136b (collectively the “actuator beams 135 and 136”) are formed from a deposited metal, such as Au, Cr or Ni, or a deposited semiconductor, such as polycrystalline silicon, or amorphous silicon, or from single crystal silicon if formed on top of a buried oxide (also known as silicon on insulator). The actuator beams 135 and 136 are patterned to dimensions of about 1 to about 20 microns in width, such that the actuator beams 135 and 136 are compliant.



FIG. 1D is a top-view of the various functional layers of a light modulation array 100′, according to an illustrative embodiment of the invention. The light modulation array 100′ includes twelve shutter assemblies 102a-102l, in various stages of completion. Shutter assemblies 102a and 102b include just the column metal layer 118′ of the light modulation array 100′. Shutter assemblies 102c-102f include just the row metal layer 120′ (i.e., the row open electrode and the row-close electrode) of the light modulation array 100′. Shutter assemblies 102g and 102h include the column metal layer 118′ and the row metal layer 120′. In contrast to the shutter assembly 102 in FIG. 1B, the column metal layer 118′ is deposited on top of the row metal layer 120′. Shutter assemblies 102i-l depict all three functional layers of the shutter assemblies 102′, the row metal layer 120′, the column metal layer 118′, and a shutter metal layer 122′. The shutter assemblies 102i and 102k are closed, indicated by the column metal layer 118′ being visible through the shutter aperture 134′ included in the shutter assemblies 102i and 102k. The shutter assemblies 102j and 102l are in the open position, indicated by the aperture 114′ in the column metal layer 118′ being visible in the shutter aperture 134′.


In other alternate implementations, a shutter assembly can include multiple apertures and corresponding shutters and actuators (for example, between, 1 and 10) per pixel. In changing the state of this shutter assembly, the number of actuators activated can depend on the switching voltage that is applied or on the particular combination of row and column electrodes that are chosen for receipt of a switching voltage. Implementations are also possible in which partial openings of an aperture is made possible in an analog fashion by providing a switching voltages partway between a minimum and a maximum switching voltage. These alternative implementations provide an improved means of generating a grey scale.


With respect to actuation of shutter assemblies 102, in response to applying a potential to the column electrode 108 of the shutter assembly 102, the shutter anchors 126, the shutter 112 and the shutter actuator beams 135 become likewise energized with the applied potential. In energizing one of the row electrodes 110a or 110b, the corresponding row anchor 128a or 128b and the corresponding row actuator beam 136a or 136b also becomes energized. If the resulting potential difference between a row actuator beam 136a or 136b and its opposing shutter actuator beam 135 exceeds a predetermined switching threshold, the row actuator beam 136a or 136b attracts its opposing shutter actuator beam 135, thereby changing the state of the shutter assembly 102.


As the actuator beams 135 and 136 are pulled together, they bend or change shape. Each pair of actuator beams 135 and 136 (i.e., a row actuator beam 134a or 134b and its opposing shutter actuator beam 135) can have one of two alternate and stable forms of curvature, either drawn together with parallel shapes or curvature, or held apart in a stable fashion with opposite signs to their of curvature. Thus, each pair is mechanically bi-stable. Each pair of actuator beams 135 and 136 is stable in two positions, one with the shutter 112 in an “open” position, and a second with the shutter 112 in a “closed” position. Once the actuator beams 135 and 136 reach one of the stable positions, no power and no applied voltage need be applied to the column electrode 108 or either row electrode 110a or 110b to keep the shutter 112 in that stable position. Voltage above a predetermined threshold needs to be applied to move the shutter 112 out of the stable position.


While both the open and closed positions of the shutter assembly 102 are energetically stable, one stable position may have a lower energy state than the other stable position. In one implementation, the shutter assemblies 102 are designed such that the closed position has a lower energy state than the open position. A low energy reset pulse can therefore be applied to any or all pixels in order to return the entire array to its lowest stress state, corresponding also to an all-black image.


The light modulation array 100 and its component shutter assemblies 102 are formed using standard micromachining techniques known in the art, including lithography; etching techniques, such as wet chemical, dry, and photoresist removal; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes, such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition, such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997).


More specifically, multiple layers of material (typically alternating between metals and dielectrics) are deposited on top of a substrate forming a stack. After one or more layers of material are added to the stack, patterns are applied to a top most layer of the stack marking material either to be removed from, or to remain on, the stack. Various etching techniques, including wet and/or dry etches, are then applied to the patterned stack to remove unwanted material. The etch process may remove material from one or more layers of the stack based on the chemistry of the etch, the layers in the stack, and the amount of time the etch is applied. The manufacturing process may include multiple iterations of layering, patterning, and etching.


The process also includes a release step. To provide freedom for parts to move in the resulting device, sacrificial material is interdisposed in the stack proximate to material that will form moving parts in the completed device. An etch removes much of the sacrificial material, thereby freeing the parts to move.


After release the surfaces of the moving shutter are insulated so that charge does not transfer between moving parts upon contact. This can be accomplished by thermal oxidation and/or by conformal chemical vapor deposition of an insulator such as Al2O3, Cr2O3, TiO2, HfO2, V2O5, Nb2O5, Ta2O5, SiO2, or Si3N4 or by depositing similar materials using techniques such as atomic layer deposition. The insulated surfaces are chemically passivated to prevent problems such as stiction between surfaces in contact by chemical conversion processes such as fluoridation or hydrogenation of the insulated surfaces.



FIG. 2 is a cross-section of an optical cavity 200 for use in a spatial light modulator, according to an illustrative embodiment of the invention. The optical cavity 200 includes a front reflective surface 202 and a rear reflective surface 204. The front reflective surface 202 includes an array of light-transmissive regions 206 through which light 208 can escape the optical cavity 200. Light 208 enters the optical cavity 200 from one or more light sources 210. The light 206 reflects between the front and rear reflective surfaces 202 and 204 until it reflects through one of the light-transmissive regions 206. Additional reflective surfaces may be added along the sides of the optical cavity 200.


The front and rear reflective surfaces 202 and 204, in one implementation, are formed by depositing a metal or semiconductor onto either a glass or plastic substrate. In other implementations, the reflective surfaces 202 and 204 are formed by depositing metal or semiconductor on top of a dielectric film that is deposited as one of a series of thin films built-up on a substrate. The reflective surfaces 202 and 204 have reflectivities above about 50%. For example, the reflective surfaces 202 and 204 may have reflectivities of 70%, 85%, 96%, or higher.


Smoother substrates and finer grained metals yield higher reflectivities. Smooth surfaces may be obtained by polishing a glass substrate or by molding plastic into smooth-walled forms. Alternatively, glass or plastic can be cast such that a smooth surface is formed by the settling of a liquid/air interface. Fine grained metal films without inclusions can be formed by a number of vapor deposition techniques including sputtering, evaporation, ion plating, laser ablation, or chemical vapor deposition. Metals that are effective for this reflective application include, without limitation, Al, Cr, Au, Ag, Cu, Ni, Ta, Ti, Nd, Nb, Si, Mo and/or alloys thereof.


Alternatively, the reflective surface can be formed by interposing a dielectric material of low refractive index between a light guide in the optical cavity 200 and any of a series of thin films deposited on top of it. The change in refractive index between the light guide and the thin film leads to a condition of total internal reflection within the light guide, whereby incident light of sufficiently low incidence angle can be reflected with nearly 100% efficiency.


In the alternative, the reflective surfaces 202 or 204 can be formed from a mirror, such as a dielectric mirror. A dielectric mirror is fabricated as a stack of dielectric thin films which alternate between materials of high and low refractive index. A portion of the incident light is reflected from each interface where the refractive index changes. By controlling the thickness of the dielectric layers to some fixed fraction or multiple of the wavelength and by adding reflections from multiple parallel interfaces, it is possible to produce a net reflective surface having a reflectivity exceeding 98%. Some dielectric mirrors have reflectivities greater than 99.8%. Dielectric mirrors can be custom-designed to accept a pre-specified range of wavelengths in the visible range and to accept a pre-specified range of incident angles. Reflectivities in excess of 99% under these conditions are possible as long as the fabricator is able to control the smoothness in the dielectric film stacks. The stacks can include between about 20 and about 500 films.


In another alternative, the first and second reflective surfaces 202 or 204 are included in the optical cavity 200 as separate components. A thin sheet of polished stainless steel or aluminum can suffice for this purpose. Also, it is possible to produce a reflective metal surface or a dielectric mirror on the surface of a continuous sheet or roll of plastic. The sheet of reflective plastic can then be attached or adhered to other components in the optical cavity 200.


The light-transmissive regions 206 are arranged in an array to form pixels from which an image is formed. In the illustrative embodiment, the light-transmissive regions 206 are spaced between about 100 and about 350 microns apart. The light transmissive regions are oblong or rectangular in shape, wherein the greater dimension is between about 50 and about 300 microns while the narrower dimension is between 2 and 100 microns, though other shapes and sizes may be suitable. For projection displays the pitch can be as small as 20 microns, with aperture widths as small as 5 microns. The ratio between the area of the front reflective surface 202 taken up by light-transmissive regions 206 and the total area of the front reflective surface 202 is referred to herein as the transmissiveness ratio. Illustrative implementations of the optical cavity 200 have transmissiveness ratios of between about 5% and about 50%. Normally, spatial light modulators having such low transmissiveness ratios would emit insufficient light to form a usable image. To ensure greater light 208 emission from the optical cavity 200, the front and rear reflective surfaces 202 and 204 reflect the light 208 back and forth a number of times until the reflected light 208 passes through a light-transmissive region 206, or until the light 208 loses its energy from the reflections. Higher reflectivity surfaces result in more light 208 escaping from the optical cavity 200 to form an image. Table 1, below, lists the percentage of light 208 introduced into the optical cavity 200 that escapes through the light-transmissive regions 206 (in terms of efficiency) for several transmissiveness ratio/reflectivity pairings.











TABLE 1





Transmissiveness




Ratio
Reflectivity
Efficiency







 8%
0.97
59%



0.93
40%



0.88
30%


14%
0.97
71%



0.93
55%



0.88
43%


20%
0.97
79%



0.93
65%



0.88
53%









When the optical cavity 200 is used to form the basis of a transmissive display, one or more light sources 210 introduce light into the optical cavity 200. The light source(s) 210 may be of any suitable type, including, for example, any of the types disclosed in U.S. Pat. Nos. 4,897,771 and 5,005,108, the entire disclosures of which are incorporated herein by reference. In particular, the light source(s) 210 may be an arc lamp, an incandescent bulb which also may be colored, filtered or painted, a lens end bulb, a line light, a halogen lamp, a light emitting diode (LED), a chip from an LED, a neon bulb, a fluorescent tube, a fiber optic light pipe transmitting from a remote source, a laser or laser diode, or any other suitable light source. Additionally, the light sources may be a multiple colored LED, or a combination of multiple colored radiation sources 210 in order to provide a desired colored or white light output distribution. For example, a plurality of colored lights such as LEDs of different colors (red, blue, green) or a single LED with multiple colored chips may be employed to create white light or any other colored light output distribution by varying the intensities of each individual colored light. A reflector may be positioned proximate to the light source 210 to reflect light 208 emitted away from the optical cavity 200 towards the optical cavity 200. In one implementation, three light sources 210, one red light source 210, one green light source 210, and one blue light source 210, sequentially introduce light 208 into the optical cavity 200, alternating at frequencies in the range of 20 to 600 Hz. A rate in excess of 100 Hz is generally faster than what the human eye can detect, thus providing a color image.



FIG. 3A is a linear cross-sectional view of a shutter assembly 300 in an open position. The shutter assembly 300 is formed on transparent substrate 302 having a thickness of from about 0.3 mm to about 2 mm. The substrate 302 can be, for example, made of a glass or a plastic. Suitable glasses include borosilicate glasses, or other glasses that can withstand processing temperatures up to or exceeding 400 degrees Centigrade. Suitable plastics for the substrate 302 include, for example, polyethyleneterephthalate (PET), or polytetrafluoroethylene (PETF), or other substantially transparent plastics that can withstand processing temperatures in excess of 200° C. Other candidate substrate materials include quartz and sapphire, which are understood to withstand processing temperatures in excess of 800° C.


The lowest layer, referred to as the “column metal layer” 304, of the shutter assembly 300 serves as the front reflective surface 202 of the optical cavity of FIG. 2. During the process of manufacturing the shutter assembly 300, an aperture 306 is etched through the column metal layer 304 to form a light-transmissive region, such as the light transmissive regions 206 of FIG. 2. The aperture 306 can be generally circular, elliptical, polygonal, serpentine, or irregular in shape. The aperture occupies about 5% to about 25% of the area dedicated to the particular shutter assembly 300 in the light modulation array. Other than at the aperture 306, the column metal layer 304 is substantially unbroken. The aperture 306 is filled with a dielectric material 307. Example dielectrics suitable for inclusion in the shutter assembly 300 include SiO2, Si3N4, and Al2O3.


The next layer is composed mostly of a dielectric material 307, separating the column metal layer 304 from the row electrodes 308a and 308b disposed a layer above. The dielectric layers 316 may be between 0.3 and 10 microns thick. The top layer of the shutter assembly 300 includes a shutter anchor 312, two row anchors 313, two actuators, and a shutter 310. The beams of the actuators are not shown as the cross section of the shutter assembly 300 is taken at a position in which the row actuator beams meet the row anchors 313 and the shutter actuator beams meet the shutter 310 (see, for example, line B-B′ on FIG. 1D). The top layer is supported above the lower layers by the anchors 312 so that the shutter 310 is free to move.


In alternative implementations, the row electrodes 308a and 308b are located at a lower layer in the shutter assembly 300 than the column metal layer 304. In another implementation the shutter 310 and actuators can be located at a layer below either of the column metal layer 304 or the row electrodes 308a and 308b.


As described in relation to FIG. 1B, the actuators included in the shutter assembly may be designed to be mechanically bi-stable. Alternatively, the actuators can be designed to have only one stable position. That is, absent the application of some form of actuation force, such actuators return to a predetermined position, either open or closed. In such implementations, the shutter assembly 300 includes a single row electrode 308, which, when energized, causes the actuator to push or pull the shutter 310 out of its stable position.



FIG. 3B is a cross-sectional view of a second alternative shutter assembly 300′ in an open position according to an illustrative embodiment of the invention. The second shutter assembly 300′ includes a substrate 302′, a column metal layer 304′, an aperture 306′, row electrodes 308a′ and 308b′, a shutter 310′, two actuators, a shutter anchor 312′, and two row anchors 313′. The beams of the actuators are not shown as the cross section of the shutter assembly 300′ is taken at a position in which the row actuator beams meet the row anchors 313′ and the shutter actuator beams meet the shutter 310′. (See, for example, line B-B′ on FIG. 1D).


In the shutter assembly 300′, additional gaps are etched into the column metal layer 304′. The gaps electrically separate different portions of the column metal layer 304′ such that different voltages can be applied to each portion. For instance, in order to reduce parasitic capacitances that can arise between the column metal layer 304′ and the row electrodes 308a′ and 308b′ resulting from their overlap, a voltage can be selectively applied to the sections 314 of the column metal layer 304′ that immediately underlies the row electrodes 308a′ and 308b′ and the anchor 312′.



FIG. 3C is a cross-sectional view of another third alternative shutter assembly 300″ according to an illustrative embodiment of the invention. The shutter assembly 300″ includes a substrate 302″, a column metal layer 304″, an aperture 306″, row electrodes 308a″ and 308b″, a shutter 310″, two actuators, a shutter anchor 312″, and two row anchors 313″. The beams of the actuators are not shown as the cross section of the shutter assembly 300″ is taken at a position in which the row actuator beams meet the row anchors 313″ and the shutter actuator beams meet the shutter 310″. (See, for example, line B-B′ on FIG. 1D). The shutter assembly 300″ includes a reflective film 316 deposited on the substrate 302″. The reflective film 316 serves as a front reflective surface for an optical cavity incorporating the shutter assembly 300″. With the exception of an aperture 306″ formed in the reflective film 316 to provide a light transmissive region, the reflective film 316 is substantially unbroken. A dielectric layer 318 separates the reflective film 316 from the column metal layer 304″. At least one additional dielectric layer 318 separates the column metal layer 304″ from the two row electrodes 308a″ and 308b″. During the process of the manufacturing of the third alternative shutter assembly 300″, the column metal layer 304″ is etched to remove metal located below the row electrodes 308a″ and 308b″ to reduce potential capacitances that can form between the row electrodes 308a″ and 308b″ and the column metal layer 304″. Gaps 320 formed in the column metal layer 304″ are filled in with a dielectric.



FIG. 3D is a cross-sectional view of a further alternative shutter assembly 300′″ in a closed position according to an illustrative embodiment of the invention. The fourth alternative shutter assembly 300′″ includes a substrate 302′″, a column metal layer 304′″, an aperture 306′″, row electrodes 308a′″ and 308b′″, a shutter 310′″, two actuators, a shutter anchors 312′″, and two row anchors 313′″. The beams of the actuators are not shown as the cross section of the shutter assembly 300′″ is taken at a position in which the row actuator beams meet the row anchors 313′″ and the shutter actuator beams meet the shutter 310′″. (See, for example, line B-B′ on FIG. 1D). In contrast to the previously depicted shutter assemblies 102, 300, 300′, and 300″, much of the dielectric material used in building the fourth alternative shutter assembly 300′″ is removed by one or more etching steps.


The space previously occupied by the dielectric material can be filled with a lubricant to reduce friction and prevent stiction between the moving parts of the shutter assembly 300′″. The lubricant fluid is engineered with viscosities preferably below about 10 centipoise and with relative dielectric constant preferably above about 2.0, and dielectric breakdown strengths above about 104 V/cm. Such mechanical and electrical properties are effective at reducing the voltage necessary for moving the shutter between open and closed positions. In one implementation, the lubricant preferably has a low refractive index, preferably less than about 1.5. In another implementation the lubricant has a refractive index that matches that of the substrate 302. Suitable lubricants include, without limitation, de-ionized water, methanol, ethanol, silicone oils, fluorinated silicone oils, dimethylsiloxane, polydimethylsiloxane, hexamethyldisiloxane, and diethylbenzene.



FIG. 4 is a cross sectional view of a shutter assembly 400 with a coated shutter 402, according to an illustrative embodiment of the invention. The shutter assembly 400 is depicted as having the general structure of the shutter assembly 300 of FIG. 3A. However, the shutter assembly 400 can take the form of any of the shutter assemblies 102, 300, 300′, 300″, or 300′″ described above or any other shutter assembly described below.


A reflective film 404 coats the bottom of the shutter 402 to reflect light 406 back through the shutter assembly 400 when the shutter 402 is in the closed position. Suitable reflective films 404 include, without limitation, smooth depositions of Al, Cr, or Ni. The deposition of such a film 404, if the film 404 is greater than about 0.2 microns thick, provides a reflectivity for the shutter of 95% or higher. Alternatively, amorphous or polycrystalline Si, when deposited onto a smooth dielectric surface, can provide reflectivity high enough to be useful in this application


The top of the shutter 402 is coated with a light absorbing film 408 to reduce reflection of ambient light 410 striking the top of the shutter assembly 400. The light absorbing film 408 can be formed from the deposition and/or anodization of a number of metals, such as Cr, Ni, or Au or Si in a manner that creates a rough or porous surface. Alternatively, the light absorbing film 408 can include an acrylic or vinyl resin which includes light absorbing pigments. In alternative implementations of the shutter assembly 400, the absorbing film 408 is applied to the entire, or substantially the entire top surface of the shutter assembly 400.



FIG. 5 is a cross sectional view of a shutter assembly 500 with a second coated shutter 502, according to an illustrative embodiment of the invention. The shutter assembly 500 is depicted as having the general structure of the first alternative shutter assembly 300 of FIG. 3A. However, the shutter assembly can take the form of any of the shutter assemblies describes above 102, 300, 300′, 300″, and 300′″ or any other shutter assembly described below. In the shutter assembly 500, both the top and the bottom of the shutter 502 are coated with a light absorbing film 504 such as a light absorbing film 408. The light absorbing film 504 on the bottom of the shutter 502 absorbs light impacting the shutter 502 in a closed position. For an optical cavity, such as optical cavity 200 of FIG. 2, including the shutter assembly 500, the intensity of light exiting the optical cavity is independent of the image being formed. That is, light intensity is independent of the fraction of shutters that may be in the open or the closed position.



FIG. 6 is cross-sectional view of an elastically actuated shutter assembly 600 for use in a light modulation array, such as light modulation array 102, according to an illustrative embodiment of the invention. The elastically actuated shutter assembly 600 includes a metal column layer 602, a single row electrode 604, an elastic element 606, and a shutter 608. The elastic element 606 provides a restoring force which keeps the shutter 608 in an open position, away from a corresponding aperture 610 in the column metal layer 602. In the open position, light 612 can pass through the aperture 610. Provision of a switching voltage to the single row electrode 604 counters the force of the elastic element 606, thereby putting the shutter 608 into a closed position over the aperture 610. In the closed position, the shutter 608 blocks light 612 from exiting through the aperture 610. In an alternative implementation, the shutter assembly 600 may include a latch to lock the shutter 608 into a closed position such that after the shutter 608 closes, the row electrode 604 can be de-energized without the shutter 608 opening. To open the shutter 608, the latch is released. In still another implementation of the shutter assembly 600, the elastic actuator tends to keep the shutter 608 in a closed position. Applying a voltage to the row electrode 604 moves the shutter 608 into an open position. Suitable spring-like elastic actuators for displays have been described in U.S. Pat. No. 5,062,689, the entirety of which is incorporated herein by reference.



FIG. 7 is a cross-sectional view of a shutter assembly 700 with a deformable shutter 701 for use in a light modulation array, according to an illustrative embodiment of the invention. The shutter assembly 700 includes a column metal layer 702, and one row electrode 704 formed on a substrate 708. The deforming shutter 701, instead of translating from one side of the shutter assembly 700 to the other side of the shutter assembly 700 to open and close, deforms in response to the energizing of the row electrode 704. The deforming shutter 701 is formed such that the deforming shutter 701 retains residual stress, resulting in the deforming shutter 701 tending to curl up out of the plane of the light modulation array in which it is included. By imposing a switching voltage between the row electrode 704 and the column metal layer 702, the deforming shutter 701 is attracted towards the substrate 708, thereby covering an aperture 710 formed in the column metal layer 702. Deformable or hinge type actuators have been described in the art, for instance in U.S. Pat. Nos. 4,564,836 and 6,731,492, the entireties of which are incorporated herein by reference.



FIG. 8A is a cross-sectional view of a shutter assembly 800 with an opaque substrate 802, such as silicon, for use in a light modulation array, according to an illustrative embodiment of the invention. The opaque substrate 802 has a thickness in the range of about 200 microns to about 1 mm. Though the shutter assembly 800 resembles the shutter assembly 300 of FIG. 3A, the shutter assembly 800 can take substantially the same form of any of the shutter assemblies 300, 300′, 300″, 300′″, 400, 500, 600, or 700 described in FIGS. 3-7. An aperture 804 is etched through the entirety of the opaque substrate 802. In one implementation, the aperture 804 is formed using an anisotropic dry etch such as in a CFCl3 gas with plasma or ion assist. The shutter assembly 800 may also include a reflective coating 810 deposited on the side of the opaque substrate 802 opposite the column metal layer.



FIG. 8B is a cross-sectional view of a second shutter assembly 800′ with an opaque substrate 802′ for use in a light modulation array, according to an illustrative embodiment of the invention. In comparison to the shutter assembly 800 in FIG. 8A, the underside of the opaque substrate 800′ is etched away forming cavities 806 beneath the apertures 804′ of the shutter assembly 800′. The cavities 806 allow light from a larger range of angles to escape through the aperture 804′. The larger range provides for a brighter image and a larger viewing angle.


The shutter assemblies described in FIGS. 1 and 3-8 depend on electrostatic forces for actuation. A number of alternative actuator forcing mechanisms can be designed into shutter assemblies, including without limitation the use of electromagnetic actuators, thermoelastic actuators, piezoelectric actuators, and electrostiction actuators. Other shutter motions which can be used to controllably obstruct an aperture include without limitation sliding, rotating, bending, pivoting, hinging, or flapping; all motions which are either within the plane of the reflective surface or transverse to that plane.



FIG. 9 is a cross-sectional view of a liquid crystal-based spatial light modulator 900. The liquid crystal-based spatial light modulator 900 includes an array 901 of liquid crystal cells 902. The liquid crystal cells 902 include pairs of opposing transparent electrodes 904 on either side of a layer of liquid crystal molecules 906. On one side of the liquid crystal array 901, the liquid crystal-based spatial light modulator 900 includes a polarizer 908. On the opposite side of the array 901, the liquid crystal-based spatial light modulator 900 includes an analyzer 910. Thus, without intervention, light passing through the polarizer 908 would be filtered blocked by the analyzer 910. When a voltage is imposed between the transparent electrodes 904, the liquid crystal molecules 906 between the electrodes 904 align themselves with the resultant electric field reorienting the light passing through the polarizer 908 such that it can pass through the analyzer 910. The polarizer 908 is positioned on top of a front reflective surface 911, which defines a plurality of light-transmission regions 913. The array 901 is attached to an optical cavity, such as optical cavity 200 and includes a cover plate 912. Cover plates are described in further detail in relation to FIG. 11.


Each liquid crystal cell 902 may have a corresponding red, green, or blue color specific filter. Alternatively, color differentiation can be provided by multiple lamps operating in sequence as described above in relation to FIG. 2.


Most liquid crystal displays (LCDS) are designed with resolutions of 80 to 110 dots per inch, wherein pixel widths are in the range of 250 to 330 microns. For such an LCD display, even with active matrix or thin-film transistor (TFT) addressing or switching, the transmissiveness ratio of the liquid-crystal display is in the range of 75 to 90%. For high-resolution applications (e.g. for document displays or projection displays) in which the desired image resolution is 300 to 500 dots per inch, however, and where pixels are only 50 microns in diameter, the overhead required for TFT addressing can limit the available transmissiveness ratio to about 30 or 50%. Such high-resolution displays, therefore, typically suffer from a lower luminous efficiency than their lower-resolution counterparts due to a loss of aperture ratio. By constructing the liquid crystal display using an optical cavity as described above, greater luminous efficiency can be achieved even in high-definition LCD displays.



FIG. 10 is a cross sectional view of a first shutter-based spatial light modulator 1000 according to an illustrative embodiment of the invention. The shutter-based spatial light modulator 1000 includes a light modulation array 1002, an optical cavity 1004, and a light source 1006. The light modulation array 1002 can include any of the shutter assemblies 300, 300′, 300″, 300′″, 400, 500, 600, 700, 800, or 800′ described above in FIGS. 3-8. The optical cavity 1004, in the first shutter-based spatial light modulator 1000, is formed from a light guide 1008 having front and rear surfaces. A front reflective surface 1010 is deposited directly on the front surface of the light guide 1008 and a second reflective surface 1012 is deposited directly on the rear surface of the light guide 1008.


The light guide 1008 can be formed from glass or a transparent plastic such as polycarbonate or polyethylene. The light guide 1008 is about 300 microns to about 2 mm thick. The light guide 1008 distributes light 1014 introduced into the optical cavity 1004 substantially uniformly across the surface of the front reflective surface 1010. The light guide 1008 achieves such distribution by means of a set of total internal reflections as well as by the judicial placement of light scattering elements 1016. The light scattering elements 1016 can be formed in or on the rear side of the light guide 1018 to aid in redirecting light 1014 out of the light guide 1008 and through light-transmissive regions 1019 formed in the front reflective surface 1010.



FIG. 11 is a cross sectional view of a second shutter-based spatial light modulator 1100, according to the illustrative embodiment of the invention. As with the first shutter-based spatial light modulator 1000 in FIG. 10, the second shutter-based spatial light modulator 1100 includes a light modulation array 1102, an optical cavity 1104, and a light source 1106. In addition, the second spatial light modulator includes a cover plate 1108.


The cover plate 1108 serves several functions, including protecting the light modulation array 1102 from mechanical and environmental damage. The cover plate 1108 is a thin transparent plastic, such as polycarbonate, or a glass sheet. The cover plate can be coated and patterned with a light absorbing material, also referred to as a black matrix 1110. The black matrix can be deposited onto the cover plate as a thick film acrylic or vinyl resin that contains light absorbing pigments.


The black matrix 1110 absorbs substantially all incident ambient light 1112—ambient light is light that originates from outside the spatial light modulator 1100, from the vicinity of the viewer—except in patterned light-transmissive regions 1114 positioned substantially proximate to light-transmissive regions 1116 formed in the optical cavity 1104. The black matrix 1110 thereby increases the contrast of an image formed by the spatial light modulator 1100. The black matrix 1110 can also function to absorb light escaping the optical cavity 1104 that may be emitted, in a leaky or time-continuous fashion.


In one implementation, color filters, for example, in the form of acrylic or vinyl resins are deposited on the cover plate 1108. The filters may be deposited in a fashion similar to that used to form the black matrix 1110, but instead, the filters are patterned over the open apertures light transmissive regions 1116 of the optical cavity 1104. The resins can be doped alternately with red, green, or blue pigments.


The spacing between the light modulation array 1102 and the cover plate 1108 is less than 100 microns, and may be as little as 10 microns or less. The light modulation array 1102 and the cover plate 1108 preferably do not touch, except, in some cases, at predetermined points, as this may interfere with the operation of the light modulation array 1102. The spacing can be maintained by means of lithographically defined spacers or posts, 2 to 20 microns tall, which are placed in between the individual right modulators in the light modulators array 102, or the spacing can be maintained by a sheet metal spacer inserted around the edges of the combined device.



FIG. 12A is a cross sectional view of a third shutter-based spatial light modulator 1200, according to an illustrative embodiment of the invention. The third shutter-based spatial light modulator 1200 includes an optical cavity 1202, a light source 1204, and a light modulation array 1206. In addition, the third shutter-based spatial light modulator 1204 includes a cover plate 1207, such as the cover plate 1108 described in relation to FIG. 11.


The optical cavity 1202, in the third shutter-based spatial light modulator 1200, includes a light guide 1208 and the rear-facing portion of the light modulation array 1206. The light modulation array 1206 is formed on its own substrate 1210. Both the light guide 1208 and the substrate 1210 each have front and rear sides. The light modulation array 1206 is formed on the front side of the substrate 1210. A front-facing, rear-reflective surface 1212, in the form of a second metal layer, is deposited on the rear side of the light guide 1208 to form the second reflective surface of the optical cavity 1202. Alternatively, the optical cavity 1202 includes a third surface located behind and substantially facing the rear side of the light guide 1208. In such implementations, the front-facing, rear-reflective surface 1212 is deposited on the third surface facing the front of the spatial light modulator 1200, instead of directly on the rear side of the light guide 1208. The light guide 1208 includes a plurality of light scattering elements 1209, such as the light scattering elements 1016 described in relation to FIG. 10. As in FIG. 10, the light scattering elements are distributed in a predetermined pattern on the rear-facing side of the light guide 1208 to create a more uniform distribution of light throughout the optical cavity.


In one implementation, the light guide 1208 and the substrate 1210 are held in intimate contact with one another. They are preferably formed of materials having similar refractive indices so that reflections are avoided at their interface. In another implementation small standoffs or spacer materials keep the light guide 1208 and the substrate 1210 a predetermined distance apart, thereby optically de-coupling the light guide 1208 and substrate 1210 from each other. The spacing apart of the light guide 1208 and the substrate 1210 results in an air gap 1213 forming between the light guide 1208 and the substrate 1210. The air gap promotes total internal reflections within the light guide 1208 at its front-facing surface, thereby facilitating the distribution of light 1214 within the light guide before one of the light scattering elements 1209 causes the light 1214 to be directed toward the light modulator array 1206 shutter assembly. Alternatively, the gap between the light guide 1208 and the substrate 1210 can be filled by a vacuum, one or more selected gasses, or a liquid.



FIG. 12B is a cross sectional view of a fourth shutter-based spatial light modulator 1200′, according to an illustrative embodiment of the invention. As with the spatial light modulator 1200 of FIG. 12A, the fourth spatial light modulator 1200′ includes an optical cavity 1202′, a light source 1204′, a light modulation array 1206′, and a cover plate 1207′, such as the cover plate 1108 described in relation to FIG. 11. The optical cavity 1202′ includes a rear-facing reflective surface in the light modulation array 1206′, a light guide 1208′, and a front-facing rear-reflective surface 1212′. As with the third spatial light modulator 1200, the light modulation array 1206′ of the fourth spatial light modulator 1200′ is formed on a substrate 1210′, which is separate from the light guide 1208′.


In the fourth spatial light modulator 1200′, the light guide 1208′ and the substrate 1210′ are separated by a light diffuser 1218 and a brightness enhancing film 1220. The diffuser 1218 helps to randomize the optical angles of scattered light 1214′ to improve uniformity and reduce the formation of ghost images from the light source 1204 or the light modulation array 1206. In one implementation, the brightness enhancement film 1220 includes an array of optical prisms that are molded into a thin plastic sheet, and which act to funnel light into a narrow cone of illumination. The brightness enhancing film 1220 re-directs light leaving the light guide 1208′ through light-transmissive regions 1222 at an oblique angle towards the viewer, thus resulting in an apparent increases in brightness along the optical axis for the same input power.



FIG. 12C is a cross sectional view of a fifth shutter-based spatial light modulator 1200″, according to an illustrative embodiment of the invention. As with the spatial light modulator 1200 of FIG. 12A, the fifth spatial light modulator 1200″ includes an optical cavity 1202″, a light source 1204″, a light modulation array 1206″, and a cover plate 1207″, such as the cover plate 1108 described in relation to FIG. 11. The optical cavity 1202″ includes a rear-facing reflective surface in the light modulation array 1206″, a light guide 1208″, and a front-facing rear-reflective surface 1212″. As with the third spatial light modulator 1200, the light modulation array 1206″ of the fifth spatial light modulator 1200″ is formed on a substrate 1210″, which is separate from the light guide 1208″.


In the fifth spatial light modulator 1200″, the light guide 1208″ and the substrate 1210″ are separated by a microlens array 1224. The microlens array 1224 re-directs light 1214″ leaving the light guide 1208″ through light-transmissive regions 1222′ at an oblique angle towards the viewer, thus resulting in an apparent increases in brightness for the same input power.


In addition, since the light modulation array 1206″ in the fifth shutter-based spatial light modulator 1200″ is formed on its own substrate 1210″, separate from the light guide 1208″, the light guide 1208″ can be constructed of a moldable plastic, without the transition temperature of the plastic limiting the manufacturing processes available for constructing the light modulation array 1210″. Thus, the light guide 1208″ can be molded to substantially encapsulate the light source 1204″ used to introduce light 1214″ into the optical cavity 1202″. The encapsulation of the light source 1204″ into the light guide 1208″ provides improved coupling of light 1214″ into the light guide 1208″. Similarly, scattering elements 1209″ can be incorporated directly in the mold for the light guide 1208″.



FIG. 12D is a cross-sectional view of a sixth illustrative embodiment of a shutter-based light modulation array 1200′″. As with the spatial light modulator 1200 of FIG. 12A, the sixth spatial light modulator 1200′″ includes an optical cavity 1202′″, a light source 1204′″, a light modulation array 1206′″, and a cover plate 1207′″, such as the cover plate 1108 described in relation to FIG. 11. The optical cavity 1202′″ includes a rear-facing reflective surface in the light modulation array 1206′″, a light guide 1208′″, a front-facing rear-reflective surface 1212′″, a diffuser 1218′″, and a brightness enhancing film 1220′″.


The space between the light modulation array 1206′″ and the cover plate 1207′″ is filled with a lubricant 1224, such as the lubricant described in relation to FIG. 3D. The cover plate 1207′″ is attached to the shutter assembly 1206 with an epoxy 1225. The epoxy should have a curing temperature preferably below about 20° C., it should have a coefficient of thermal expansion preferably below about 50 ppm per degree C. and should be moisture resistant. An exemplary epoxy is EPO-TEK B9021-1, sold by Epoxy Technology, Inc. The epoxy also serves to seal in the lubricant 1224.


A sheet metal or molded plastic assembly bracket 1226 holds the cover plate 1207′″, the light modulation array 1206′″, and the optical cavity 1202′″ together around the edges. The assembly bracket 1226 is fastened with screws or indent tabs to add rigidity to the combined device. In some implementations, the light source 1204′″ is molded in place by an epoxy potting compound.



FIG. 13 is a cross-sectional view of a seventh shutter-based spatial light modulator 1300 according to an illustrative embodiment of the invention. The seventh shutter-based spatial light modulator 1300 includes a substrate 1302 on which a light modulation array 1304 is formed, and a light guide 1306. The light modulation array 1304 includes a front reflective surface for the optical cavity 1310 of the spatial light modulator 1300. A reflective material is deposited or adhered to the rear side of the light guide to serve as a rear reflective surface 1308. The rear side of the light guide 1306 is angled or shaped with respect to the front side of the light guide 1308 to promote uniform distribution of light in the light modulation array 1304. The rear reflective surface 1308, however, is still partially facing the front reflective surface.



FIG. 14A is a cross-sectional view of another spatial light modulator 1400, according to an illustrative embodiment of the invention. The spatial light modulator 1400 includes a substrate 1402 on which a light modulation array 1404 is formed. The light modulation array includes a reflective surface serving as a front reflective surface 1405 of an optical cavity. The spatial light modulation 1400 also includes a rear reflective surface 1406 substantially facing the rear side of the light modulation array 1404. A light source 1408 is positioned within the space formed between the substrate 1402 on which the light modulation array 1404 is formed and the rear reflective surface 1406. The space may also be filled with a substantially transparent plastic into which the light source 1408 is embedded.



FIG. 14B is a cross-sectional view of another spatial light modulator 1400′, similar to the spatial light modulator 1400 of FIG. 14A. The spatial light modulator 1400′ includes a substrate 1402′ on which a light modulation array 1404′ is formed. The light modulation array 1404′ includes a reflective surface serving as a front reflective surface 1405 of an optical cavity. The spatial light modulation 1400′ also includes a rear reflective surface 1406′. The rear reflective surface 1406′ is corrugated, textured, or shaped to promote light distribution in the optical cavity formed by the reflective surfaces (i.e., the rear reflective surface 1406′ and a reflective surface incorporated into the light modulation array 1404′ of the spatial light modulator 1400′.



FIG. 15 is a cross-sectional view of another shutter assembly 1500 for use in a light modulation array, according to an illustrative embodiment of the invention. The shutter assembly 1500 includes a metal column layer 1502, two row electrodes 1504a and 1504b, a shutter 1506, built on a substrate 1509. The shutter assembly 1500 also includes one or more light scattering elements 1508. As with other implementations of the shutter assemblies described above, an aperture 1510 is etched through the column metal layer 1502. The light scattering elements 1510 can include any change in the shape or geometry of the substrate 1509, such as by roughening, coating, or treating the surface of the substrate 1509. For example, the light scattering elements can include patterned remnants of the column metal 1502 having dimensions of about 1 to about 5 microns. The light scattering elements 1508 aid in extracting light 1512 trapped in the substrate 1508 due to total internal reflection. When such trapped light 1512 strikes one of the scattering elements 1508, the angle of the light's 1512 path changes. If the angle of the light's 1512 path becomes sufficiently acute, it passes out of the substrate 1509. If the shutter 1506 is in the open position, the scattered light 1512 can exit the aperture 1510, and proceed to a viewer as part of an image.



FIG. 16 is a cross sectional view of yet another spatial light modulator 1600 according to an illustrative embodiment of the invention. The spatial light modulator 1600 includes a light modulation array 1602 formed on the rear surface of a substrate 1604, facing the interior of an optical cavity 1606. The individual light modulation elements 1608, such as the shutter assemblies 300, 300′, 300″, 300′″, 400, 500, 600, 700, 800, and 800′ described in FIGS. 3-8 or the liquid-crystal cells 902 described in FIG. 9, making up the light modulation array 1602 are modified to reverse the sides of the light modulation elements 1608 that reflect or absorb light as compared to what is described with reference to FIGS. 4 and 5.


The optical cavity 1606 includes both a front reflective surface 1610, a rear reflective surface 1612, and a light guide 1614. Light is introduced into the optical cavity by a light source 1613. The front reflective surface 1610 is disposed on front-facing surface of the light guide 1614, providing a substantially continuous layer of high reflectivity and also defining light transmissive region 1616. The front reflective surface 1610 is separated from the light modulation array 1602 by a transparent gap 1618. The gap 1618 is preferably narrower than width of the light transmissive regions 1616, less than, for example, about 100 microns. The gap 1618 may be as narrow as about 10 microns wide, or even narrower.


In one implementation, the gap 1618 is filled with a lubricant 1620, such as the lubricant described in relation to FIG. 3D. The lubricant 1620 may have a refractive index that substantially matches that of the light guide 1614 to facilitate the extraction of light from the light guide 1614.


The spatial light modulator 1600 can optionally forego a cover plate, since the shutter assembly is protected by the environment by the substrate 1604. If a cover plate is omitted, a black matrix, such as the black matrix 1110 of FIG. 11, can be applied to the front-facing surface of the substrate 1604.



FIG. 17 is a cross-sectional view of a transflective shutter assembly 1700, according to an illustrative embodiment of the invention, which can be incorporated into the spatial light modulators 1000, 1100, 1200, 1300, 1400, and 1500 described in FIGS. 10-15. The transflective shutter assembly 1700 forms images from both light 1701 emitted by a light source positioned behind the shutter assembly 1700 and from ambient light 1703. The transflective shutter assembly 1700 includes a metal column layer 1702, two row electrodes 1704a and 1704b, and a shutter 1706. The transflective shutter assembly 1700 includes an aperture 1708 etched through the column metal layer 1702. Portions of the column metal layer 1702, having dimensions of from about 1 to about 5 microns, are left on the surface of the aperture 1708 to serve as transflection elements 1710. A light absorbing film 1712 covers the top surface of the shutter 1706.


While the shutter is in the closed position, the light absorbing film 1712 absorbs ambient light 1703 impinging on the top surface of the shutter 1706. While the shutter 1706 is in the open position as depicted in FIG. 17, the transflective shutter assembly 1700 contributes to the formation of an image both by allowing light 1701 to pass through the transflective shutter assembly originating from the dedicated light source and from reflected ambient light 1703. The small size of the transflective elements 1710 results in a somewhat random pattern of ambient light 1703 reflection.


The transflective shutter assembly 1700 is covered with a cover plate 1714, which includes a black matrix 1716. The black matrix absorbs light, thereby substantially preventing ambient light 1703 from reflecting back to a viewer unless the ambient light 1703 reflects off of an uncovered aperture 1708.



FIG. 18 is a cross-sectional view of a second transflective shutter assembly 1800 according to an illustrative embodiment of the invention, which can be incorporated into the spatial light modulators 1000, 1100, 1200, 1300, 1400, and 1500 described in FIGS. 10-15. The transflective shutter assembly 1800 includes a metal column layer 1802, two row electrodes 1804a and 1804b, and a shutter 1806. The transflective shutter assembly 1800 includes an aperture 1808 etched through the column metal layer 1702. At least one portion of the column metal layer 1802, having dimensions of from about 5 to about 20 microns, remains on the surface of the aperture 1808 to serve as a transflection element 1810. A light absorbing film 1812 covers the top surface of the shutter 1806. While the shutter is in the closed position, the light absorbing film 1812 absorbs ambient light 1803 impinging on the top surface of the shutter 1806. While the shutter 1806 is in the open position, the transflective element 1810 reflects a portion of ambient light 1803 striking the aperture 1808 back towards a viewer. The larger dimensions of the transflective element 1810 in comparison to the transflective elements 1710 yield a more specular mode of reflection, such that ambient light originating from behind the viewer is substantially reflected directly back to the viewer.


The transflective shutter assembly 1800 is covered with a cover plate 1814, which includes a black matrix 1816. The black matrix absorbs light, thereby substantially preventing ambient light 1803 from reflecting back to a viewer unless the ambient light 1803 reflects off of an uncovered aperture 1808.


Referring to both FIGS. 17 and 18, even with the transflective elements 1710 and 1810 positioned in the apertures 1708 and 1808, some portion of the ambient light 1703 and 1803 passes through the apertures 1708 and 1808 of the corresponding transflective shutter assemblies 1700 and 1800. When the transflective shutter assemblies 1700 and 1800 are incorporated into spatial light modulators having optical cavities and light sources, as described above, the ambient light 1703 and 1803 passing through the apertures 1708 and 1808 enters the optical cavity and is recycled along with the light introduced by the light source. In alternative transflective shutter assemblies, the apertures in the column metal are at least partially filled with a semi-reflective-semitransmissive material.



FIG. 19 is a cross sectional view of a front reflective shutter assembly 1900 according to an illustrative embodiment of the invention. The front reflective shutter assembly 1900 can be used in a reflective light modulation array. The front reflective shutter assembly 1900 reflects ambient light 1902 towards a viewer. Thus, use of arrays of the front reflective shutter assembly 1900 in spatial light modulators obviates the need for a dedicated light source in viewing environments having high amounts of ambient light 1902. The front reflective shutter assembly 1900 can take substantially the same form of the shutter assemblies 300, 300′, 300″, 300′″, 400, 500, 600, 700, 800 or 800′ of FIGS. 3-8. However, instead of the column metal layer of the shutter assemblies 300, 400, 500, 600, 700, or 800 including an aperture to allow passage of light, the column metal layer includes a reflective surface beneath the position of a closed shutter 1904. The front-most layer of the reflective shutter assembly 1900, including at least the front surface of the shutter 1904, is coated in a light absorbing film 1908. Thus, when the shutter 1904 is closed, light 1902 impinging on the reflective shutter assembly 1900 is absorbed. When the shutter 1904 is open, at least a fraction of the light 1902 impinging on the reflective shutter assembly 1900 reflects off the exposed column metal layer 1910 back towards a viewer. Alternately the column metal layer 1910 can be covered with an absorbing film while the front surface of shutter 1908 can be covered in a reflective film. In this fashion light is reflected back to the viewer only when the shutter is closed.


As with the other shutter assemblies and light modulators described above, the reflective shutter assembly 1900 can be covered with a cover plate 1910 having a black matrix 1912 applied thereto. The black matrix 1912 covers portions of the cover plate 1910 not opposing the open position of the shutter.



FIG. 20 is an isometric view of a spatial light modulator 2000 including multiple light modulation arrays 2002, according to an illustrative embodiment of the invention. The size of several of the light modulation arrays 2002 described above is limited, somewhat, by the semiconductor manufacturing techniques used to construct them. However, light guides 2004 and reflective films 2006 can be formed on a significantly larger scale. A spatial light modulator which includes multiple, adjacently disposed light modulation arrays 2002, arranged over one or more light guides 2004, can generate a larger image, thereby circumventing these limitations.


The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The forgoing embodiments are therefore to be considered in all respects illustrative, rather than limiting of the invention.

Claims
  • 1. A method of manufacturing a display device comprising: depositing a layer of a dielectric material directly on a substantially transparent substrate;depositing a layer of metal directly on top of the dielectric material;forming a plurality of apertures in the layer of metal;forming a control matrix on top of the metal layer; andforming a plurality of light-modulating shutter assemblies on top of and in electrical communication with the control matrix such that the control matrix controls the light modulation functionality of the plurality of shutter assemblies, wherein the plurality of apertures allows light to pass through the layer of metal for modulation by the plurality of light-modulating shutter assemblies.
  • 2. The method of claim 1, wherein the control matrix includes a plurality of thin film components.
  • 3. The method of claim 2, wherein the thin-film components comprise switches.
  • 4. A method of manufacturing a display device comprising: depositing a first layer of a dielectric material directly on a substantially transparent substrate;depositing a second layer of a dielectric material directly on top of the first dielectric material depositing a layer of metal directly on top of the dielectric material;forming a plurality of apertures in the layer of metal;forming a control matrix on top of the metal layer; andforming a plurality of light-modulating shutter assemblies on top of and in electrical communication with the control matrix such that the control matrix controls the light modulation functionality of the plurality of shutter assemblies, wherein the plurality of apertures allows light to pass through the layer of metal for modulation by the plurality of light-modulating shutter assemblies.
  • 5. A method of claim 4, wherein the second dielectric material has a refractive index lower than that of the first dielectric material.
  • 6. A method of manufacturing a display device comprising: depositing a high-reflectance layer on a substantially transparent glass substrate;forming a plurality of apertures in the high-reflectance layer;depositing an insulating layer directly on top of the high-reflectance layer;depositing a plurality of thin-film components on the insulating layer;forming a plurality of light-modulating shutter assemblies above, and in electrical communication with, the plurality of thin film components such that the thin-film components form a control matrix for controlling the light modulation of the plurality of light-modulating shutter assemblies, wherein the plurality of apertures allows light to pass through the highly-reflective layer for modulation by the plurality of light-modulating shutter assemblies.
  • 7. The method of claim 6, wherein the high-reflectance layer has a reflectivity of greater than 85%.
  • 8. The method of claim 6, wherein the high-reflectance layer comprises a composite layer of at least one metal and at least one dielectric.
  • 9. The method of claim 6, wherein the high-reflectance layer comprises a fine grained metal film without inclusions.
  • 10. The method of claim 9, comprising depositing the metal of the high-reflectance layer using a sputter process.
  • 11. The method of claim 9, comprising depositing the metal of the high-reflectance layer via ion plating.
  • 12. The method of claim 6, comprising forming a plurality of via holes in the insulating layer prior to the deposition of the plurality of thin-film components.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/218,690, filed Sep. 2, 2005, which claims priority to and the benefit of U.S. Provisional Patent Application No. 60/676,053, filed on Apr. 29, 2005 and U.S. Provisional Patent Application No. 60/655,827, filed on Feb. 23, 2005. The disclosure of each of the foregoing applications is incorporated herein by reference.

US Referenced Citations (495)
Number Name Date Kind
4067043 Perry Jan 1978 A
4074253 Nadir Feb 1978 A
4559535 Watkins et al. Dec 1985 A
4564836 Vuilleumier et al. Jan 1986 A
4582396 Bos et al. Apr 1986 A
4673253 Tanabe et al. Jun 1987 A
4744640 Phillips May 1988 A
4958911 Beiswenger et al. Sep 1990 A
4991941 Kalmanash Feb 1991 A
5005108 Pristash et al. Apr 1991 A
5042900 Parker Aug 1991 A
5050946 Hathaway et al. Sep 1991 A
5061049 Hornbeck Oct 1991 A
5062689 Koehler Nov 1991 A
5078479 Vuilleumier Jan 1992 A
5093652 Bull et al. Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5128787 Blonder Jul 1992 A
5136480 Pristash et al. Aug 1992 A
5136751 Coyne et al. Aug 1992 A
5142405 Hornbeck Aug 1992 A
5198730 Vancil Mar 1993 A
5202950 Arego et al. Apr 1993 A
5233385 Sampsell Aug 1993 A
5233459 Bozler et al. Aug 1993 A
5278652 Urbanus et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5319491 Selbrede Jun 1994 A
5339116 Urbanus et al. Aug 1994 A
5339179 Rudisill et al. Aug 1994 A
5359345 Hunter Oct 1994 A
5379135 Nakagaki et al. Jan 1995 A
5396350 Beeson et al. Mar 1995 A
5416631 Yagi May 1995 A
5440197 Gleckman Aug 1995 A
5452024 Sampsell Sep 1995 A
5461411 Florence et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467104 Furness, III et al. Nov 1995 A
5477086 Rostoker et al. Dec 1995 A
5479279 Barbier et al. Dec 1995 A
5493439 Engle Feb 1996 A
5497172 Doherty Mar 1996 A
5504389 Dickey Apr 1996 A
5510824 Nelson Apr 1996 A
5519565 Kalt et al. May 1996 A
5523803 Urbanus et al. Jun 1996 A
5526051 Gove et al. Jun 1996 A
5528262 McDowall et al. Jun 1996 A
5548301 Kornher et al. Aug 1996 A
5559389 Spindt et al. Sep 1996 A
5568964 Parker et al. Oct 1996 A
5578185 Bergeron et al. Nov 1996 A
5579035 Beiswenger Nov 1996 A
5579240 Buus Nov 1996 A
5596339 Furness, III et al. Jan 1997 A
5613751 Parker et al. Mar 1997 A
5618096 Parker et al. Apr 1997 A
5619266 Tomita et al. Apr 1997 A
5655832 Pelka et al. Aug 1997 A
5659327 Furness, III et al. Aug 1997 A
5666226 Ezra et al. Sep 1997 A
5684354 Gleckman Nov 1997 A
5724062 Hunter Mar 1998 A
5731802 Aras et al. Mar 1998 A
5745193 Urbanus et al. Apr 1998 A
5745203 Valliath et al. Apr 1998 A
5745281 Yi et al. Apr 1998 A
5771321 Stern Jun 1998 A
5781331 Carr et al. Jul 1998 A
5784189 Bozler et al. Jul 1998 A
5794761 Renaud et al. Aug 1998 A
5801792 Smith et al. Sep 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5854872 Tai Dec 1998 A
5867302 Fleming Feb 1999 A
5876107 Parker et al. Mar 1999 A
5884872 Greenhalgh Mar 1999 A
5889625 Chen et al. Mar 1999 A
5894686 Parker et al. Apr 1999 A
5895115 Parker et al. Apr 1999 A
5921652 Parker et al. Jul 1999 A
5936596 Yoshida et al. Aug 1999 A
5953469 Zhou Sep 1999 A
5975711 Parker et al. Nov 1999 A
5986628 Tuenge et al. Nov 1999 A
5986796 Miles Nov 1999 A
5990990 Crabtree Nov 1999 A
6008781 Furness, III et al. Dec 1999 A
6008929 Akimototo et al. Dec 1999 A
6028656 Buhrer et al. Feb 2000 A
6030089 Parker et al. Feb 2000 A
6034807 Little et al. Mar 2000 A
6040796 Matsugatani et al. Mar 2000 A
6040937 Miles Mar 2000 A
6046840 Huibers Apr 2000 A
6055090 Miles Apr 2000 A
6079838 Parker et al. Jun 2000 A
6154586 MacDonald et al. Nov 2000 A
6158867 Parker et al. Dec 2000 A
6162657 Schiele et al. Dec 2000 A
6168395 Quenzer et al. Jan 2001 B1
6172657 Kamakura et al. Jan 2001 B1
6172797 Huibers Jan 2001 B1
6174064 Kalantar et al. Jan 2001 B1
6201633 Peeters et al. Mar 2001 B1
6201664 Le et al. Mar 2001 B1
6206550 Fukushima et al. Mar 2001 B1
6219119 Nakai Apr 2001 B1
6249269 Blalock et al. Jun 2001 B1
6249370 Takeuchi et al. Jun 2001 B1
6266240 Urban et al. Jul 2001 B1
6282951 Loga et al. Sep 2001 B1
6285270 Lane et al. Sep 2001 B1
6288824 Kastalsky Sep 2001 B1
6296383 Henningsen Oct 2001 B1
6300154 Clark et al. Oct 2001 B2
6300294 Robbins et al. Oct 2001 B1
6317103 Furness, III et al. Nov 2001 B1
6323834 Colgan et al. Nov 2001 B1
6329967 Little et al. Dec 2001 B1
6367940 Parker et al. Apr 2002 B1
6388661 Richards May 2002 B1
6402335 Kalantar et al. Jun 2002 B1
6404942 Edwards et al. Jun 2002 B1
6411423 Ham et al. Jun 2002 B2
6424329 Okita Jul 2002 B1
6429625 LeFevre et al. Aug 2002 B1
6471879 Hanson et al. Oct 2002 B2
6473220 Clikeman et al. Oct 2002 B1
6476886 Krusius et al. Nov 2002 B2
6483613 Woodgate et al. Nov 2002 B1
6498685 Johnson Dec 2002 B1
6504985 Parker et al. Jan 2003 B2
6507138 Rodgers et al. Jan 2003 B1
6508563 Parker et al. Jan 2003 B2
6523961 Ilkov et al. Feb 2003 B2
6529265 Henningsen Mar 2003 B1
6531947 Weaver et al. Mar 2003 B1
6535256 Ishihara et al. Mar 2003 B1
6535311 Lindquist Mar 2003 B1
6556258 Yoshida et al. Apr 2003 B1
6556261 Krusius et al. Apr 2003 B1
6559827 Mangerson May 2003 B1
6567063 Okita May 2003 B1
6567138 Krusius et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6576887 Whitney et al. Jun 2003 B2
6582095 Toyoda Jun 2003 B1
6583915 Hong et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6591049 Williams et al. Jul 2003 B2
6593677 Behin et al. Jul 2003 B2
6600474 Heines et al. Jul 2003 B1
6633301 Dallas et al. Oct 2003 B1
6639570 Furness, III et al. Oct 2003 B2
6639572 Little et al. Oct 2003 B1
6650455 Miles Nov 2003 B2
6650822 Zhou Nov 2003 B1
6666561 Blakley Dec 2003 B1
6671078 Flanders et al. Dec 2003 B2
6674562 Miles Jan 2004 B1
6677709 Ma et al. Jan 2004 B1
6678029 Suzuki et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6690422 Daly et al. Feb 2004 B1
6701039 Bourgeois et al. Mar 2004 B2
6707176 Rodgers Mar 2004 B1
6710538 Ahn et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6710920 Mashitani et al. Mar 2004 B1
6712481 Parker et al. Mar 2004 B2
6731355 Miyashita May 2004 B2
6731492 Goodwin-Johansson May 2004 B2
6733354 Cathey et al. May 2004 B1
6738177 Gutierrez et al. May 2004 B1
6741377 Miles May 2004 B2
6746886 Duncan et al. Jun 2004 B2
6749312 Parker et al. Jun 2004 B2
6750930 Yoshii et al. Jun 2004 B2
6752505 Parker et al. Jun 2004 B2
6755547 Parker Jun 2004 B2
6762743 Yoshihara et al. Jul 2004 B2
6762868 Liu et al. Jul 2004 B2
6764796 Fries Jul 2004 B2
6774964 Funamoto et al. Aug 2004 B2
6775048 Starkweather et al. Aug 2004 B1
6785454 Abe Aug 2004 B2
6787969 Grade et al. Sep 2004 B2
6788371 Tanada et al. Sep 2004 B2
6794119 Miles Sep 2004 B2
6795064 Walker et al. Sep 2004 B2
6796668 Parker et al. Sep 2004 B2
6798935 Bourgeois et al. Sep 2004 B2
6809851 Gurcan Oct 2004 B1
6819386 Roosendaal et al. Nov 2004 B2
6819465 Clikeman et al. Nov 2004 B2
6825470 Bawolek et al. Nov 2004 B1
6827456 Parker et al. Dec 2004 B2
6831678 Travis Dec 2004 B1
6835111 Ahn et al. Dec 2004 B2
6844959 Huibers et al. Jan 2005 B2
6846082 Glent-Madsen et al. Jan 2005 B2
6847425 Tanada et al. Jan 2005 B2
6857751 Penn et al. Feb 2005 B2
6863219 Jacobsen et al. Mar 2005 B1
6864618 Miller et al. Mar 2005 B2
6867896 Miles Mar 2005 B2
6873311 Yoshihara et al. Mar 2005 B2
6879307 Stern Apr 2005 B1
6886956 Parker et al. May 2005 B2
6887202 Currie et al. May 2005 B2
6888678 Nishiyama et al. May 2005 B2
6889565 DeConde et al. May 2005 B2
6897164 Baude et al. May 2005 B2
6900072 Patel et al. May 2005 B2
6906847 Huibers et al. Jun 2005 B2
6911891 Qiu et al. Jun 2005 B2
6911964 Lee et al. Jun 2005 B2
6919981 Clikeman et al. Jul 2005 B2
6934080 Saccomanno et al. Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6939013 Asao Sep 2005 B2
6940631 Ishikawa Sep 2005 B2
6947107 Yoshii et al. Sep 2005 B2
6947195 Ohtaka et al. Sep 2005 B2
6953375 Ahn et al. Oct 2005 B2
6961167 Prins et al. Nov 2005 B2
6962419 Huibers Nov 2005 B2
6965375 Gettemy et al. Nov 2005 B1
6967698 Tanoue et al. Nov 2005 B2
6969635 Patel et al. Nov 2005 B2
6970227 Kida et al. Nov 2005 B2
6980349 Huibers et al. Dec 2005 B1
6992375 Robbins et al. Jan 2006 B2
7004610 Yamashita et al. Feb 2006 B2
7004611 Parker et al. Feb 2006 B2
7012726 Miles Mar 2006 B1
7012732 Miles Mar 2006 B2
7014349 Shinohara et al. Mar 2006 B2
7042618 Selbrede et al. May 2006 B2
7042643 Miles May 2006 B2
7046221 Malzbender May 2006 B1
7046905 Gardiner et al. May 2006 B1
7050035 Iisaka et al. May 2006 B2
7050141 Yokoue et al. May 2006 B2
7050219 Kimura May 2006 B2
7057790 Selbrede Jun 2006 B2
7060895 Kothari et al. Jun 2006 B2
7071611 Yonekubo et al. Jul 2006 B2
7075702 Huibers et al. Jul 2006 B2
7110158 Miles Sep 2006 B2
7116464 Osawa et al. Oct 2006 B2
7119944 Patel et al. Oct 2006 B2
7123216 Miles Oct 2006 B1
7123796 Steckl et al. Oct 2006 B2
7126738 Miles Oct 2006 B2
7161094 Kothari et al. Jan 2007 B2
7164250 Boscolo et al. Jan 2007 B2
7184202 Miles et al. Feb 2007 B2
7198982 Patel et al. Apr 2007 B2
7215459 Huibers et al. May 2007 B2
7227677 Ravnkilde et al. Jun 2007 B2
7271945 Hagood et al. Sep 2007 B2
7274416 Feenstra et al. Sep 2007 B2
7304785 Hagood et al. Dec 2007 B2
7304786 Hagood et al. Dec 2007 B2
7315294 Richards Jan 2008 B2
7391552 Barton et al. Jun 2008 B2
7417782 Hagood et al. Aug 2008 B2
7463227 Van Gorkom Dec 2008 B2
20010001260 Parker et al. May 2001 A1
20010028993 Sanford Oct 2001 A1
20010040538 Quanrud Nov 2001 A1
20010043208 Furness, III et al. Nov 2001 A1
20010048265 Miller et al. Dec 2001 A1
20010053075 Parker et al. Dec 2001 A1
20020001051 Krusius et al. Jan 2002 A1
20020009275 Williams et al. Jan 2002 A1
20020015215 Miles Feb 2002 A1
20020024641 Ilkov et al. Feb 2002 A1
20020024711 Miles Feb 2002 A1
20020047172 Reid Apr 2002 A1
20020054424 Miles May 2002 A1
20020054487 Parker et al. May 2002 A1
20020056900 Liu et al. May 2002 A1
20020063661 Comiskey et al. May 2002 A1
20020070931 Ishikawa Jun 2002 A1
20020075555 Miles Jun 2002 A1
20020080598 Parker et al. Jun 2002 A1
20020113281 Cunningham et al. Aug 2002 A1
20020126364 Miles Sep 2002 A1
20020126387 Ishikawa et al. Sep 2002 A1
20020132389 Patel et al. Sep 2002 A1
20020141174 Parker et al. Oct 2002 A1
20020149828 Miles et al. Oct 2002 A1
20020163482 Sullivan Nov 2002 A1
20020163484 Furness, III et al. Nov 2002 A1
20020163709 Mirza Nov 2002 A1
20020171327 Miller et al. Nov 2002 A1
20020185699 Reid Dec 2002 A1
20020191267 Flanders et al. Dec 2002 A1
20020196522 Little et al. Dec 2002 A1
20030007344 Parker Jan 2003 A1
20030009898 Slocum et al. Jan 2003 A1
20030029705 Qiu et al. Feb 2003 A1
20030036215 Reid Feb 2003 A1
20030043157 Miles Mar 2003 A1
20030048036 Lemkin Mar 2003 A1
20030058543 Sheedy et al. Mar 2003 A1
20030063233 Takagi Apr 2003 A1
20030068118 Bourgeois et al. Apr 2003 A1
20030072070 Miles Apr 2003 A1
20030076649 Speakman Apr 2003 A1
20030085650 Cathey et al. May 2003 A1
20030085867 Grabert May 2003 A1
20030095081 Furness, III et al. May 2003 A1
20030095398 Parker et al. May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030123245 Parker et al. Jul 2003 A1
20030123246 Parker Jul 2003 A1
20030123247 Parker et al. Jul 2003 A1
20030133284 Chipchase et al. Jul 2003 A1
20030137499 Iisaka Jul 2003 A1
20030152872 Miles Aug 2003 A1
20030174422 Miller et al. Sep 2003 A1
20030174931 Rodgers et al. Sep 2003 A1
20030183008 Bang et al. Oct 2003 A1
20030184189 Sinclair Oct 2003 A1
20030190535 Fries Oct 2003 A1
20030190536 Fries Oct 2003 A1
20030202338 Parker Oct 2003 A1
20030231160 Yoshihara et al. Dec 2003 A1
20040012946 Parker et al. Jan 2004 A1
20040027636 Miles Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040080240 Miller et al. Apr 2004 A1
20040080484 Heines et al. Apr 2004 A1
20040080927 Parker et al. Apr 2004 A1
20040085749 Parker et al. May 2004 A1
20040090144 Miller et al. May 2004 A1
20040095739 Parker et al. May 2004 A1
20040100677 Huibers et al. May 2004 A1
20040114346 Parker et al. Jun 2004 A1
20040122328 Wang et al. Jun 2004 A1
20040125346 Huibers Jul 2004 A1
20040135273 Parker et al. Jul 2004 A1
20040135951 Stumbo et al. Jul 2004 A1
20040136204 Asao Jul 2004 A1
20040145580 Perlman Jul 2004 A1
20040145854 Tamura Jul 2004 A1
20040157664 Link Aug 2004 A1
20040165372 Parker Aug 2004 A1
20040171206 Rodgers Sep 2004 A1
20040179146 Nilsson Sep 2004 A1
20040196215 Duthaler et al. Oct 2004 A1
20040207768 Liu Oct 2004 A1
20040218149 Huibers Nov 2004 A1
20040218154 Huibers Nov 2004 A1
20040218292 Huibers Nov 2004 A1
20040218293 Huibers Nov 2004 A1
20040223088 Huibers Nov 2004 A1
20040223240 Huibers Nov 2004 A1
20040227428 Sinclair Nov 2004 A1
20040233392 Huibers Nov 2004 A1
20040240032 Miles Dec 2004 A1
20040246275 Yoshihara et al. Dec 2004 A1
20040263502 Dallas et al. Dec 2004 A1
20040263944 Miles et al. Dec 2004 A1
20050002082 Miles Jan 2005 A1
20050002086 Starkweather et al. Jan 2005 A1
20050007759 Parker Jan 2005 A1
20050012197 Smith et al. Jan 2005 A1
20050024849 Parker et al. Feb 2005 A1
20050059184 Sniegowski et al. Mar 2005 A1
20050062708 Yoshihara et al. Mar 2005 A1
20050063037 Selebrede et al. Mar 2005 A1
20050072032 McCollum et al. Apr 2005 A1
20050073471 Selbrede Apr 2005 A1
20050088404 Heines et al. Apr 2005 A1
20050093465 Yonekubo et al. May 2005 A1
20050094240 Huibers et al. May 2005 A1
20050094418 Parker May 2005 A1
20050104804 Feenstra et al. May 2005 A1
20050111238 Parker May 2005 A1
20050111241 Parker May 2005 A1
20050116798 Bintoro et al. Jun 2005 A1
20050122560 Sampsell et al. Jun 2005 A1
20050122591 Parker et al. Jun 2005 A1
20050123243 Steckl et al. Jun 2005 A1
20050128370 Moon Jun 2005 A1
20050134805 Conner et al. Jun 2005 A1
20050141076 Bausenwein et al. Jun 2005 A1
20050151940 Asao Jul 2005 A1
20050157365 Ravnkilde et al. Jul 2005 A1
20050157376 Huibers et al. Jul 2005 A1
20050168431 Chui Aug 2005 A1
20050168789 Glent-Madsen Aug 2005 A1
20050171408 Parker Aug 2005 A1
20050179977 Chui et al. Aug 2005 A1
20050195467 Kothari et al. Sep 2005 A1
20050195468 Sampsell Sep 2005 A1
20050206991 Chui et al. Sep 2005 A1
20050207154 Parker Sep 2005 A1
20050207178 Parker Sep 2005 A1
20050212734 Kimura Sep 2005 A1
20050212738 Gally Sep 2005 A1
20050213183 Miles Sep 2005 A9
20050213322 Parker Sep 2005 A1
20050213323 Parker Sep 2005 A1
20050213349 Parker Sep 2005 A1
20050219679 Ishikawa Oct 2005 A1
20050219680 Ishikawa Oct 2005 A1
20050225501 Srinivasan et al. Oct 2005 A1
20050225519 Naugler, Jr. Oct 2005 A1
20050225732 Conner et al. Oct 2005 A1
20050225827 Kastalsky Oct 2005 A1
20050237596 Selbrede Oct 2005 A1
20050242710 Yamazaki et al. Nov 2005 A1
20050243023 Reddy et al. Nov 2005 A1
20050244099 Pasch et al. Nov 2005 A1
20050244949 Miles Nov 2005 A1
20050245313 Yoshino et al. Nov 2005 A1
20050247477 Kothari et al. Nov 2005 A1
20050249966 Tung et al. Nov 2005 A1
20050253779 Feenstra et al. Nov 2005 A1
20050254115 Palmateer et al. Nov 2005 A1
20050258571 Dumond et al. Nov 2005 A1
20050259198 Lubart et al. Nov 2005 A1
20050275072 Haluzak et al. Dec 2005 A1
20050285816 Glass Dec 2005 A1
20050286113 Miles Dec 2005 A1
20050286114 Miles Dec 2005 A1
20060001942 Chui et al. Jan 2006 A1
20060007701 Schoellmann Jan 2006 A1
20060028708 Miles Feb 2006 A1
20060028817 Parker Feb 2006 A1
20060028840 Parker Feb 2006 A1
20060028841 Parker Feb 2006 A1
20060028843 Parker Feb 2006 A1
20060028844 Parker Feb 2006 A1
20060033676 Faaase Feb 2006 A1
20060033975 Miles Feb 2006 A1
20060044246 Mignard Mar 2006 A1
20060044298 Mignard et al. Mar 2006 A1
20060044928 Chui et al. Mar 2006 A1
20060061559 King Mar 2006 A1
20060066934 Selbrede Mar 2006 A1
20060066937 Chui Mar 2006 A1
20060077125 Floyd Apr 2006 A1
20060077153 Cummings et al. Apr 2006 A1
20060077533 Miles et al. Apr 2006 A1
20060092490 McCollum et al. May 2006 A1
20060132383 Gally et al. Jun 2006 A1
20060132404 Hayes et al. Jun 2006 A1
20060139734 Selebrede et al. Jun 2006 A1
20060146389 Selbrede Jul 2006 A1
20060152476 Van Gorkom et al. Jul 2006 A1
20060172745 Knowles Aug 2006 A1
20060187190 Hagood et al. Aug 2006 A1
20060187191 Hagood et al. Aug 2006 A1
20060187528 Hagood et al. Aug 2006 A1
20060238443 Derichs Oct 2006 A1
20060250325 Hagood et al. Nov 2006 A1
20060250676 Hagood Nov 2006 A1
20060256039 Hagood et al. Nov 2006 A1
20060262060 Amundson Nov 2006 A1
20060262380 Miles Nov 2006 A1
20060268386 Selbrede et al. Nov 2006 A1
20060270179 Yang Nov 2006 A1
20060291034 Patry et al. Dec 2006 A1
20060291771 Braunisch Dec 2006 A1
20070002156 Hagood et al. Jan 2007 A1
20070002413 Psaltis et al. Jan 2007 A1
20070007889 Bongaerts et al. Jan 2007 A1
20070030555 Barton Feb 2007 A1
20070031097 Heikenfeld et al. Feb 2007 A1
20070035808 Amundson et al. Feb 2007 A1
20070040982 Nakano et al. Feb 2007 A1
20070047051 Selbrede et al. Mar 2007 A1
20070047887 Selbrede Mar 2007 A1
20070052660 Montbach et al. Mar 2007 A1
20070053652 Mignard et al. Mar 2007 A1
20070086078 Hagood Apr 2007 A1
20070091011 Selbrede Apr 2007 A1
20070091038 Hagood et al. Apr 2007 A1
20070150813 Selebrede et al. Jun 2007 A1
20070159679 Hagood et al. Jul 2007 A1
20070172171 Van Ostrand et al. Jul 2007 A1
20070195026 Hagood et al. Aug 2007 A1
20070205969 Hagood et al. Sep 2007 A1
20070216987 Hagood et al. Sep 2007 A1
20070223080 Hagood Sep 2007 A1
Foreign Referenced Citations (37)
Number Date Country
0366847 May 1990 EP
359 450 Nov 1994 EP
0 495 273 Sep 1996 EP
0 415 625 Jan 1997 EP
0 884 525 Dec 1998 EP
0 751 340 May 2000 EP
1 091 342 Apr 2001 EP
1 093 142 Apr 2001 EP
1 202 096 May 2002 EP
1 426 190 Jun 2004 EP
1674893 Jun 2006 EP
2 726 135 Oct 1994 FR
03-142409 Jun 1991 JP
04-249203 Sep 1992 JP
09-198906 Jul 1997 JP
11-015393 Jan 1999 JP
2002-318564 Oct 2002 JP
2003-162904 Jun 2003 JP
WO 9401716 Jan 1994 WO
WO 9804950 Feb 1998 WO
WO 9901696 Jan 1999 WO
WO 0050807 Aug 2000 WO
WO 03008860 Jan 2003 WO
WO 03050448 Jul 2003 WO
WO 03061329 Jul 2003 WO
WO-03081315 Oct 2003 WO
WO 2004019120 Mar 2004 WO
WO 2004086098 Oct 2004 WO
WO-2004088629 Oct 2004 WO
WO 2005001892 Jan 2005 WO
WO 2005062908 Jul 2005 WO
WO-2006017129 Feb 2006 WO
WO 2006023077 Mar 2006 WO
WO 2006039315 Apr 2006 WO
WO 2006052755 May 2006 WO
WO-2006091791 Aug 2006 WO
WO-2007145973 Dec 2007 WO
Related Publications (1)
Number Date Country
20080145527 A1 Jun 2008 US
Provisional Applications (2)
Number Date Country
60676053 Apr 2005 US
60655827 Feb 2005 US
Continuations (1)
Number Date Country
Parent 11218690 Sep 2005 US
Child 11973002 US