Methods and apparatus for stabilizing bone

Information

  • Patent Grant
  • 11464551
  • Patent Number
    11,464,551
  • Date Filed
    Monday, June 10, 2019
    5 years ago
  • Date Issued
    Tuesday, October 11, 2022
    2 years ago
Abstract
In some embodiments, a method comprises disposing a portion of a flexible fastening band into contact with a first bone portion and into contact with a second bone portion. The portion of the flexible fastening band having a substantially uniform shape configured to substantially compliment a shape of the first bone portion and a shape of the second bone portion. The method further includes inserting the portion of the flexible fastening band into a fastener and advancing the portion of the flexible fastening band through the fastener until the first bone portion and the and the second bone portion are stabilized.
Description
BACKGROUND

Some embodiments described herein relate generally to methods and apparatus for stabilizing bone, for example, stabilizing vertebrae by securing the articular processes of the vertebrae.


Traumatic, inflammatory, and degenerative disorders of the spine can lead to severe pain and loss of mobility. One source of back and spine pain is related to degeneration of the facets of the spine or facet arthritis. Bony contact or grinding of degenerated facet joint surfaces can play a role in some pain syndromes. While many technological advances have focused on the intervertebral disc and artificial replacement or repair of the intervertebral disc, little advancement in facet repair has been made. Facet joint and disc degeneration frequently occur together. Thus, a need exists to address the clinical concerns raised by degenerative facet joints.


The current standard of care to address the degenerative problems with the facet joints is to fuse the two adjacent vertebrae. By performing this surgical procedure, the relative motion between the two adjacent vertebrae is stopped, thus stopping motion of the facets and any potential pain generated as a result thereof. Procedures to fuse two adjacent vertebrae often involve fixation and/or stabilization of the two adjacent vertebrae until the two adjacent vertebrae fuse.


Injuries and/or surgical procedure on and/or effecting other bones can also result in the desire to fixate and/or stabilize a bone until the bone, or bone portions, can fuse, for example, to stabilize a sternum after heart surgery, to stabilize a rib after a break, etc. Current procedures to fixate and/or stabilize adjacent vertebrae and/or other bones can be slow and/or complex.


Accordingly, a need exists for an apparatus and a procedure to quickly and/or easily stabilize and/or fixate a bone.


SUMMARY

In some embodiments, a method comprises forming a lumen in a first bone portion and forming a lumen in a second bone portion. The method further includes inserting a portion of a flexible fastening band through the lumen in the first bone portion and through the lumen in the second bone portion, and inserting the portion of the flexible fastening band into a fastening mechanism monolithically formed with the flexible fastening band. The method further includes advancing the portion of the flexible fastening band through the fastening mechanism until the first bone portion and the and the second bone portion are stabilized.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a lateral elevational view of a portion of the vertebral column.



FIG. 2A is a schematic superior view of an isolated thoracic vertebra.



FIG. 2B are schematic side view of an isolated thoracic vertebra.



FIG. 3A is a schematic posterior elevational view of a portion of the vertebral column.



FIG. 3B is a posterior-oblique elevational view of a portion of the vertebral column.



FIG. 4A is a schematic side view of a facet joint in the cervical vertebrae.



FIG. 4B is a schematic superior view of a facet joint in the cervical vertebrae.



FIG. 5A is a schematic side view of a facet joint in the thoracic vertebrae.



FIG. 5B is a schematic superior view of a facet joint in the thoracic vertebrae.



FIG. 6A is a schematic side view of a facet joint in the lumbar vertebrae.



FIG. 6B is a schematic superior view of a facet joint in the lumbar vertebrae.



FIG. 7 is a block diagram of a flexible fastening band according to an embodiment.



FIGS. 8-10 are posterior perspective views of a portion of the vertebral column depicting a method of stabilizing a vertebra using a flexible fastening band according to an embodiment.



FIG. 11 is a flow chart illustrating a method of using the flexible fastening band depicted FIGS. 8-10.



FIG. 12 is a perspective view of a flexible fastening band according to an embodiment.



FIG. 13 is a perspective view of a portion of the flexible fastening band depicted in FIG. 12.



FIG. 14 is a posterior perspective view of a portion of the vertebral column depicting a stabilized vertebra including the flexible fastening band of FIG. 12 according to an embodiment.



FIG. 15 is a perspective view of a spacer according to an embodiment.



FIG. 16 is a posterior perspective view of a portion of the vertebral column depicting a stabilized vertebra including a flexible fastening band and the spacer of FIG. 15 according to an embodiment.



FIG. 17 is a flow chart illustrating a method of using a flexible fastening band and the spacer of FIG. 15.



FIG. 18 is a side view of a flexible fastening band according to an embodiment.



FIG. 19 is a top view the flexible fastening band depicted in FIG. 18.



FIG. 20 is a side view of a flexible fastening band according to an embodiment.



FIG. 21 is a perspective view of a flexible fastening band according to an embodiment.



FIG. 22 is a cross-sectional side view of the flexible fastening band depicted in FIG. 21.



FIG. 23 is a cross-sectional view taken along line XXIII of the flexible fastening band depicted in FIG. 21.



FIG. 24 is a cross-sectional top view of the flexible fastening band depicted in FIG. 21 in a first configuration.



FIG. 25 is a cross-sectional top view of the flexible fastening band depicted in FIG. 21 in a second configuration.



FIG. 26 is an exploded view of a flexible fastening band according to an embodiment.



FIG. 27 is a perspective view of the flexible fastening band depicted in FIG. 26.



FIG. 28 is a cross-sectional view of the flexible fastening band depicted in FIG. 27.



FIG. 29 is a posterior perspective view of a portion of the vertebral column depicting a stabilized vertebra including two flexible fastening bands of FIG. 26.



FIG. 30 is a posterior perspective view of a portion of the vertebral column depicting a stabilized vertebra including two flexible fastening bands and two spacers according to an embodiment





DETAILED DESCRIPTION

In some embodiments, a method comprises disposing a portion of a flexible fastening band into contact with a first bone portion and into contact with a second bone portion. The portion of the flexible fastening band having a substantially uniform shape configured to substantially compliment a shape of the first bone portion and a shape of the second bone portion. The method further includes inserting the portion of the flexible fastening band into a fastener and advancing the portion of the flexible fastening band through the fastener until the first bone portion and the and the second bone portion are stabilized.


In some embodiments, an apparatus includes a flexible elongate body including a proximal end portion, a first portion, a second portion, a reinforcement portion, and a distal end portion. The distal end portion of the flexible elongate body includes a fastener configured to accept the proximal end portion and the first portion. The second portion includes a first material, and the reinforcement portion includes a second material, different from the first material and stronger than the first material. The reinforcement piece is disposed within at least a portion of the second portion.


In some embodiments, an apparatus comprises a flexible elongate body including a proximal end portion, a first portion, a second portion mutually exclusive from and distal to the first portion, and a distal end portion. The apparatus further comprises a fastener configured to accept the proximal end portion and the first portion. The first portion of the flexible elongate body having a length and a substantially uniform first shape and the second portion of the flexible elongate body having a length and a substantially uniform second shape, different from the first shape, that is configured to substantially compliment a shape of first bone portion and a shape of a second bone portion. The fastener configured to receive the first portion of the flexible elongate body when the second portion of the flexible elongate body is disposed in contact with the first bone portion and in contact with the second bone portion.


As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a ratchet” is intended to mean a single ratchet or a combination of ratchets. As used in this specification, a substance can include any biologic and/or chemical substance, including, but not limited to, medicine, adhesives, etc. While exemplary references are made with respect to vertebra, in some embodiments another bone can be involved. While specific reference may be made to a specific vertebra and/or subset and/or grouping of vertebrae, it is understood that any vertebra and/or subset and/or grouping, or combination of vertebrae can be used.


As shown in FIG. 1, the vertebral column 2 comprises a series of alternating vertebrae 4 and fibrous discs 6 that provide axial support and movement to the upper portions of the body. The vertebral column 2 typically comprises thirty-three vertebrae 4, with seven cervical (C1-C7), twelve thoracic (T1-T12), five lumbar (L1-l5), five fused sacral (S1-S5) and four fused coccygeal vertebrae. FIGS. 2A and 2B depict a typical thoracic vertebra. Each vertebra includes an anterior body 8 with a posterior arch 10. The posterior arch 10 comprises two pedicles 12 and two laminae 14 that join posteriorly to form a spinous process 16. Projecting from each side of the posterior arch 10 is a transverse 18, superior 20 and inferior articular process 22. The facets 24, 26 of the superior 20 and inferior articular processes 22 form facet joints 28 with the articular processes of the adjacent vertebrae (see FIGS. 3A and 3B). The facet joints are true synovial joints with cartilaginous surfaces and a joint capsule.


The orientation of the facet joints vary, depending on the level of the vertebral column. In the C1 and C2 vertebrae, for example the facet joints are parallel to the transverse plane. FIGS. 4A to 6B depict examples of the orientations of the facet joints at different levels of the vertebral column. In the C3 to C7 vertebrae examples shown in FIGS. 4A and 4B, the facets are oriented at a 45-degree angle to the transverse plane 30 and parallel to the frontal plane 32, respectively. This orientation allows the facet joints of the cervical vertebrae to flex, extend, lateral flex and rotate. At a 45-degree angle in the transverse plane 30, the facet joints of the cervical spine can guide, but do not limit, the movement of the cervical vertebrae. FIGS. 5A and 5B depict examples of the thoracic vertebrae, where the facets are oriented at a 60-degree angle to the transverse plane 30 and a 20-degree angle to the frontal plane 32, respectively. This orientation is capable of providing lateral flexion and rotation, but only limited flexion and extension. FIGS. 6A and 6B illustrate examples of the lumbar region, where the facet joints are oriented at 90-degree angles to the transverse plane 30 and a 45-degree angle to the frontal plane 32, respectively. The lumbar vertebrae are capable of flexion, extension and lateral flexion, but little, if any, rotation because of the 90-degree orientation of the facet joints in the transverse plane. The actual range of motion along the vertebral column can vary considerably with each individual vertebra.


In addition to guiding movement of the vertebrae, the facet joints also contribute to the load-bearing ability of the vertebral column. One study by King et al. Mechanism of Spinal Injury Due to Caudocephalad Acceleration, Orthop. Clin. North Am., 6:19 1975, found facet joint load-bearing as high as 30% in some positions of the vertebral column. The facet joints may also play a role in resisting shear stresses between the vertebrae. Over time, these forces acting on the facet joints can cause degeneration and arthritis.


In some embodiments described herein, a flexible fastening band can be used to stabilize and/or fixate a first vertebra to a second vertebra to reduce the pain, to reduce further degradation of a spine, or of a specific vertebra of a spine, and/or until the first vertebra and the second vertebra have fused. FIG. 7 depicts a block diagram of a flexible fastening band (“band”) 140. Band 140 includes a flexible elongate body including a proximal end portion 142, a first portion 144, a second portion 146, and a distal end portion 148 that includes a fastening mechanism 150 (alternatively referred to herein as a fastener). In some embodiments, band 140 can include a third portion (not shown in FIG. 7). In some embodiments, band 140 can include a spacer (not shown in FIG. 7). In some embodiments, the fastening mechanism can be separate from the distal end portion (see, e.g., FIGS. 26-30). Band 140 can be configured to stabilize a first vertebra (not shown in FIG. 7) and/or a second vertebra (not shown in FIG. 7). Specifically, band 140 can be configured to stabilize the first vertebra and/or second vertebra by securing an articular process of the first vertebra to an articular process of a second vertebra. More specifically, band 140 can be configured to stabilize the first vertebra and/or a second vertebra by securing an articular process of the first vertebra to an articular process of a second vertebra by securing a facet of the articular process of the first vertebra with a facet of the articular process of the second vertebra. In some embodiments, band 140 can be removed from the vertebra, e.g. by cutting, breaking, or otherwise releasing band 140. In this manner, should a band fail, a replacement band can be inserted. Similarly, should the band be deemed ineffective for a particular patient, the band can be removed and an alternate treatment can be chosen without incurring permanent fusion of the vertebra. As will be described in more detail herein, band 140 can be monolithically formed or separately formed. Band 140 can include any biocompatible material, e.g., stainless steel, titanium, PEEK, nylon, etc.


Proximal end portion 142 is configured to pass through a lumen formed through a vertebra and a lumen formed through an adjacent vertebra, and to pass through fastening mechanism 150 of the distal end portion 148. In some embodiments, proximal end portion 142 can be shaped to increase the ease of inserting proximal end portion 142 into fastening mechanism 150, e.g., proximal end portion 142 can be tapered, rounded, and/or angled, etc, to reduce at least a portion of a cross-sectional area of proximal end portion 142.


First portion 144 can extend for a length between proximal end portion 142 and second portion 146, and can have a substantially uniform shape. The first portion 144 can have, for example, a substantially cuboidal shape, or a substantially cylindrical shape. In some embodiments, the length of first portion 144 can be more than twice the length of second portion 146. In some embodiments, the cross-sectional area of the first portion 144 can be smaller than the cross-sectional area of the second portion 146. In some embodiments, the cross-sectional area of first portion 144 can be less than a cross-sectional area of a lumen defined by the fastening mechanism 150. First portion 144 can include a gear rack (not shown in FIG. 7) configured to engage a ratchet (not shown in FIG. 7) of the fastening mechanism 150. The gear rack can be configured to allow first portion 144 to travel through fastening mechanism 150 in only one direction. First portion 144 can be monolithically formed with second portion 146. In some other embodiments, the first portion can be separately formed from the second portion. First portion 144 can be configured to be slidably disposed in a lumen of second portion 146.


Second portion 146 can have a length between first portion 144 and distal end portion 148, and can include a substantially uniform shape. In embodiments including the third portion, second portion 146 can have a length between first portion 144 and the third portion. Second portion 146 can have, for example, a substantially cuboidal shape or a substantially cylindrical shape. First portion 144 and second portion 146 can have the same or different shapes, e.g., first portion 144 and second portion 146 can both be substantially cuboidal (see, e.g., band 240 in FIG. 8), first portion 144 and second portion 146 can both be substantially cylindrical (see, e.g., band 840 in FIG. 18), first portion 144 can be substantially cuboidal while second portion 146 can be substantially cylindrical (see, e.g., band 440 in FIG. 12), or first portion 144 can be substantially cylindrical while second portion 146 can be substantially cuboidal (not shown). In some embodiments, the length of second portion 146 can be less than half the length of first portion 144. In some embodiments, the cross-sectional area of the second portion 146 can be greater than the cross-sectional area of the first portion 144. In some embodiments, the cross-sectional area of second portion 146 can be greater than a cross-sectional area of a lumen defined by the fastening mechanism 150. In this manner, as a portion of band 140 is advanced through fastening mechanism 150, the cross-sectional area of second portion 146 can prevent band 140 from advancing beyond the first portion 144. Second portion 146 can include a gear rack (not shown in FIG. 7) configured to engage the ratchet of the fastening mechanism 150. The gear rack can be configured to allow second portion 46 to travel through fastening mechanism 150 in only one direction. Second portion 146 can be monolithically formed with first portion 144. In some embodiments, the second portion can be separately formed from the first portion. Second portion 146 can define a lumen configured to slidably accept first portion 144.


Distal end portion 148 includes a fastening mechanism 150 configured to accept at least a portion of proximal end portion 142, first portion 144, and/or second portion 146. In some embodiments, distal end portion 148, second portion 146, first portion 144, and proximal end portion 142 can be monolithically formed. Fastening mechanism 150 includes a lumen (not shown in FIG. 7) configured to accept at least a portion of proximal end portion 142, a portion of first portion 142, and/or a portion of second portion 146. In some embodiments, the cross-sectional area of the lumen of fastening mechanism 150 is smaller than the cross-sectional area of second portion 146. In this manner, second portion 146 can be prevented from advancing through fastening mechanism 150. In some embodiments, fastening mechanism can include a ratchet (not shown in FIG. 7) configured to engage the gear rack of the first portion 144 and/or second portion 146. In this manner, the fastening mechanism can allow first portion 144 and/or second portion 146 to advance through fastening mechanism 150 in only one direction.


In some embodiments, at least one of distal end portion 148, second portion 146, first portion 144, and proximal end portion 142 can be formed separately from the other(s) of distal end portion 148, second portion 146, first portion 144, and proximal end portion 142. Said another way, and by way of example, distal end portion 148, first portion 144, and proximal end portion 142 can be monolithically formed together, while second portion 146 can be separately formed. In this manner, band 140 can include an initial second portion 146 configured to be replaced and/or covered with a replacement second portion 146. By way of a first example, initial second portion 146 can be monolithically formed with first portion 144 and replacement second portion 146 can be slidably disposed over initial second portion 146. By way of a second example, initial second portion 146 can be separately formed from first portion 144, can be removed from band 140, and replacement second portion 146 can be slidably disposed over first portion 144. By way of a third example, initial second portion 146 can be separately or monolithically formed from first portion 144, and replacement second portion 146 can be slidably disposed over first portion 144 and initial second portion 146. In some embodiments, initial second portion 146 and replacement second portion 146 can have the same shape, e.g., initial second portion 146 can include a substantially cylindrical shape and replacement second portion 146 can include a substantially cylindrical shape. In some embodiments, initial second portion 146 and replacement second portion 146 can have different shapes, e.g., initial second portion 146 can include a substantially cuboidal shape and replacement second portion 146 can include a substantially cylindrical shape.


In some embodiments, the shape of first portion 144 and the shape of second portion 146 can be determined based on the shape of an artificial lumen formed through a articular process of a vertebra. By way of example, if the shape of the artificial lumen is cuboidal, the shape of the of the first portion 144 and the shape of the second portion 146 can be cuboidal to allow the first portion 144 and the second portion 146 to slidably advance through the artificial lumen. By way of a second example, if the shape of the artificial lumen is cylindrical, the shape of the first portion 144 and the shape of the second portion 146 can be either cuboidal or cylindrical. Continuing with the second example, the shape of the first portion 144 can be cuboidal to allow the first portion 144 to advance easily through the artificial lumen, while the shape of the second portion 146 can be cylindrical to allow the second portion 146 to fit more tightly within the artificial lumen as compared to a cuboidal shape.


In some embodiments, the shape of the first portion 144 and the shape of the second portion 146 can be determined based on characteristics of the bone or bone portion against which the first portion 144 and the second portion 146 may contact. By way of example, while first portion 144 and/or second portion 146 can be substantially cuboidal, edges of the first portion 144 and/or the second portion 146 can be rounded, partially rounded, and/or otherwise shaped to compliment the shape of a bone or bone portion, and/or to reduce digging or grinding into the bone or bone portion. In this manner, use of band 140 may cause little or no damage to the bone or bone portions contacted by band 140.


In some embodiments, band 140 can include a third portion (not shown in FIG. 7). The third portion can have a length between second portion 146 and distal end portion 150, and can have a substantially uniform shape. In some embodiments, the third portion can have, for example, a substantially cuboidal shape or a substantially cylindrical shape. In some embodiments, the length of the third portion can be less than half the length of first portion 144. The third portion can be monolithically formed with first portion 144 and/or the second portion 146. In some other embodiments, the first portion can be separately formed from the second portion and/or the first portion.


While each of first portion 144, second portion 146, and the third portion can be a substantially uniform shape, in some embodiments any one of first portion 144, second portion 146, and the third portion can include a transition portion to transition band 140 from a first substantially uniform shape to a second substantially uniform shape. By way of example, in some embodiments, first portion 144 and the third portion can be substantially cuboidal and second portion 146 can be substantially cylindrical. In this example, second portion 146 can include an angled, conical, or other shaped transition portion (see, e.g., second portion 446 in FIG. 13).


In some embodiments, the band can include a spacer (not shown). The spacer can be similar to, and have similar features to the embodiments of the prosthesis shown and described in U.S. patent application Ser. No. 12/859,009; filed Aug. 18, 2010, and titled “Vertebral Facet Joint Drill and Method of Use” (referred to as “the '009 application”), and is incorporated herein by reference in its entirety. As described in the '009 patent, the spacer can be implanted and deployed to restore the space between facets of a superior articular process of a first vertebra and an inferior articular process of an adjacent vertebra. As described herein, the spacer can be implanted and deployed to help stabilize adjacent vertebrae with adhesives, and/or can be implanted and deployed to deliver a medication. In such embodiments, the spacer can be, for example, substantially disc shaped. In other embodiments, the spacer can be other shapes, e.g., square, elliptical, or any other shape. The spacer can include a first side and a second side. The first side and/or the second side can be, for example, convex, concave, or flat. Said another way, the first side of the spacer can be concave, convex, or flat, and the second side of the spacer can be concave, convex, or flat, for example, the first side can be concave and the second side concave, the first side can be concave and the second side convex, etc. The spacer can include the same materials as band 140. In some embodiments, the spacer can include substances configured to release medication and/or increase the stability of a vertebra and/or band 140. As discussed above, the substances can is include a medicine(s) and/or an adhesive(s).



FIGS. 8-10 show posterior perspective views of a portion of the vertebral column during a method for stabilizing adjacent vertebrae using a flexible fastening band (“band”) 240 according to an embodiment. As shown in FIG. 8, a band 240 can be used to stabilize a vertebra V1 and vertebra V2 via the inferior articular process IAP1A of vertebra V1 and the superior articular process SAP2A of vertebra V2. Also as shown in FIG. 8, a flexible fastening band (“band”) 340 is used to stabilize a vertebra V1 and vertebra V2 via the inferior articular process IAP1B of vertebra V1 and the superior articular process SAP2B of vertebra V2. In some embodiments, vertebra V1 and/or vertebra V2 are stabilized using only one of band 240 or band 340. In some such embodiments, one of band 240 or band 340 can be used to stabilize vertebra V1 and/or vertebra V2 via one of via the inferior articular process IAP1A of vertebra V1 and the superior articular process SAP2A of vertebra V2, or, via the inferior articular process IAP1B of vertebra V1 and the superior articular process SAP2B of vertebra V2. In other such embodiments, one of band 240 or band 340 can be used to stabilize vertebra V1 and/or vertebra V2 via both of the inferior articular process IAP1A of vertebra V1 and the superior articular process SAP2A of vertebra V2, and, the inferior articular process IAP1B of vertebra V1 and the superior articular process SAP2B of vertebra V2.


Each of band 240 and band 340 can be similar to band 140 described above and can include similar components. By way of example, band 240 includes a proximal end portion 242, a first portion 244, a second portion 246, and a distal end portion 248 including a fastening mechanism 250, and band 340 includes a proximal end portion (not shown in FIG. 8), a first portion, a second portion, and a distal end portion including a fastening mechanism. As shown in FIGS. 8-10, the shapes of first portion 244, the first portion of band 340, second portion 246, and the second portion of band 340 can all be cuboidal. As shown in FIG. 8, band 240 includes a gear rack 247 and gears 264. Each of gears 264 can be wedge shaped to allow each of gears 264 to displace the ratchet of fastening mechanism 250 in only one direction. In some embodiments, gears 264 can be other shapes, such as blocks, etc.



FIG. 11 depicts a flow chart illustrating a method 5000 of using band 240 and/or band 340. Prior to use of band 240 and/or band 340, a patient can be prepared for surgery, at 5002. Some examples of preparations for surgery are described in the '009 patent. In addition to those procedures described in the '009 application, in some embodiments, the surgical procedure can include direct visualization of the vertebra(e) to be stabilized. Said another way, the medical practitioner can perform the operation without the use of fluoroscopy, and, in this manner, may not have to rely on the inaccuracies and/or inconvenience inherent in fluoroscopic procedures. This direct visualization can be possible due to the small incision necessary for implantation of the band, for example, less than about 25 mm, and due to the ease of implanting and deploying the band. In some embodiments, the surgical procedure used can include forming an opening in body tissue substantially equidistant between a first articular process of the first vertebra and a second articular process of the first vertebra. A tube (not shown) can be inserted through the opening and a proximal end of the tube can be positioned near the lumen of superior articular process SAP2A of vertebra V2. A drill or other device can be used to form a lumen in superior articular process SAP2A of vertebra V2 and inferior articular process IAP1A of vertebra V1, at 5004. Specifically, the drill can be used to form the lumen in a facet of superior articular process SAP2A of vertebra V2 and form the lumen in a facet of inferior articular process IAP1A of vertebra V1. Methods and devices for forming lumens in vertebra are described in the '009 application. The band 240 can be positioned within the tube and can be advanced through the tube until the proximal end portion 242 is positioned near the lumen of superior articular process SAP2A of vertebra V2. In some embodiments, the proximal end of the tube can have a bend to direct the proximal end portion 242 into the lumen of superior articular process SAP2A of vertebra V2. Proximal end portion 242 is inserted into the lumen of superior articular process SAP2A of vertebra V2 and through the lumen of inferior articular process IAP1A of vertebra V1, at 5006, and a portion of first portion 244 is advanced through the lumen of superior articular process SAP2A of vertebra V2 and through the lumen of inferior articular process IAP1A of vertebra V1. The tube can be removed and/or reinserted at various points during the method 5000, including, for example, after the proximal end portion of band 240 is inserted into the lumen formed within the superior articular process SAP2A of vertebra V2, after vertebra V1 and/or Vertebra V2 has been stabilized, or at other points during method 5000. In some embodiments, first portion 244 can be advanced through the lumen of superior articular process SAP2A of vertebra V2 and through the lumen of inferior articular process IAP1A of vertebra V1 such that only second portion 246 is within the lumen of superior articular process SAP2A of vertebra V2 and through the lumen of inferior articular process IAP1A of vertebra V1. In this manner, when the shape of the second portion is substantially similar to the shape of the lumen of the superior articular process of the first vertebra and shape of the lumen of the inferior articular process of second vertebra, the lumen can only be contacted by that portion of the band, for example, the second portion, having the same shape.


As shown in FIG. 9, proximal end portion 242 is inserted into the lumen of fastening mechanism 250 of distal end portion 248, at 5008. In some embodiments, to insert proximal end portion 242 into fastening mechanism 250 of distal end portion 248, a medical practitioner can grasp proximal end 242 and distal end 248, and manually insert proximal end portion 242 into fastening mechanism 250. In other embodiments, one or both of proximal end portion 242 and distal end portion 248 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configurations, for example, the surgical tools can be configured to receive distal end 248 without obstructing the lumen of fastening mechanism 250. By way of another example, the surgical tools can be configured to grasp and manipulate proximal end portion 242 and/or first portion 244. A portion of first portion 244 is advanced through the lumen of fastening mechanism 250 of distal end portion 248 until superior articular process SAP2A of vertebra V2 and inferior articular process IAP1A of vertebra V1 are stabilized, at 5010. In some embodiments, a surgical tool can be used to advance first portion 244 through the lumen of fastening mechanism 250. In such embodiments, one portion of the surgical tool can be configured to receive distal portion 248 without obstructing the lumen through fastening mechanism 250, one portion of the surgical tool can be configured to grip and/or advance proximal end portion 242 and or first portion 244. The surgical tool can be configured to restrict the amount of force and/or torque imparted on band 240 and/or to provide an indication to a medical practitioner of the amount of force and/or torque imparted on the band. In some embodiments, the amount of force and/or torque imparted on the band, and/or the amount of force and/or torque used to provide and indication to the medical practitioner, can be adjusted by the medical practitioner and/or can be determined by the configuration of the band selected for the procedure and/or by the physiology of the patient. As each gear 264 of gear rack 247 passes over the ratchet of fastening mechanism 250, the first portion 244 is prevented from retracting out of fastening mechanism 250. A portion of first portion 244 is removed from band 240. In some embodiments, a surgical tool can be used to remove the portion of the band 240 that extends beyond fastening mechanism 250. In such embodiments, the surgical tool can be configured to maintain a grip on the portion of the band 240 that extends beyond the fastening mechanism 250 and is to be removed. In this manner, the location of the removed portion of band 240 can be controlled prior to, and after, removal. Band 340 can be substantially similar to band 240 as shown in FIG. 10, and method 270 can be used to implant and deploy band 340.



FIG. 12 depicts views of a flexible fastening band (“band”) 440, FIG. 13 depicts a view of a portion of band 440, and FIG. 14 shows a portion of the vertebral column with adjacent vertebrae stabilized using band 440 and a flexible fastening band (“band”) 540 according to an embodiment. As shown in FIG. 14, a band 440 can be used to stabilize a vertebra V3 and vertebra V4 via the inferior articular process IAP3A of vertebra V3 and the superior articular process SAP4A of vertebra V4. Also as shown in FIG. 14, a band 540 is used to stabilize a vertebra V3 and vertebra V4 via the inferior articular process IAP3B of vertebra V3 and the superior articular process SAP4B of vertebra V4. In some embodiments, vertebra V3 and/or vertebra V3 are stabilized using only one of band 440 or band 540, as described above regarding band 240 and band 340.


Each of band 440 and band 540 can be similar to bands 140, 240, and 340 described above and can include similar components. By way of example, band 440 includes a proximal end portion 442, a first portion 444, a second portion 446, and a distal end portion 448 including a fastening mechanism 450, and band 540 includes a proximal end portion (not shown in FIG. 14), a first portion 544, a second portion 546, and a distal end portion 548 including a fastening mechanism 550. In contrast to band 240 and band 340, band 440 and band 540 each includes a cylindrical second portion 446, 546, and each includes a third portion 449, 549, respectfully. As depicted in FIGS. 12-14, third portion 449 is substantially the same shape as first portion 442, and as depicted in FIG. 14, third portion 549 is substantially the same shape as first portion 542. As can be seen in FIG. 14, second portion 446 is substantially the same diameter as the diameter of the lumen of superior articular process SAP4A of vertebra V4 and the diameter of the lumen of inferior articular process IAP3A of vertebra V3, and second portion 546 is substantially the same diameter as the diameter of the lumen of superior articular process SAP4B of vertebra V4 and the diameter of the lumen of inferior articular process IAP3B of vertebra V3. When the diameter of the second portion is substantially the same as the lumen of superior articular process SAP4B of vertebra V4 and the diameter of the lumen of inferior articular process IAP3B of vertebra V3, the amount of open space within the lumen can be minimized, the amount of surface area of the second portion of the band in contact with the lumen can increase, and subsequently the movement of vertebra V3 and/or vertebra V4 can be reduced or minimized. Furthermore, when movement of vertebra V3 and/or vertebra V4 does occur, forces acting against the band can be more equally distributed throughout the second portion of the band, due at least to the increased surface area of the band in contact with the lumen. As shown in FIGS. 12 and 13, band 440 includes a gear rack 447 and gears 464. Each of gears 464 can be wedge shaped to allow each of gears 464 to displace the ratchet of fastening mechanism 450 in only one direction. In some embodiments, gears 464 can be other shapes, such as blocks, etc.



FIG. 15 depicts a perspective view of a spacer 654, and FIG. 16 depicts a portion of the vertebral column depicting a vertebra stabilized using a flexible fastening band (“band”) 640 and spacer 654, and a flexible fastening band (“band”) 740 and spacer 754 according to an embodiment. As shown in FIG. 16, a band 640 can be used to stabilize a vertebra V5 and vertebra V6 via the inferior articular process IAP5A of vertebra V5 and the superior articular process SAP6A of vertebra V5. Also as shown in FIG. 16, a band 740 is used to stabilize a vertebra V6 and vertebra V5 via the inferior articular process IAP5B of vertebra V5 and the superior articular process SAP6B of vertebra V6. In some embodiments, vertebra V5 and/or vertebra V6 are stabilized using only one of band 640 or band 740, as described above regarding band 240 and band 340.


Each of band 640 and band 740 can be similar to bands 140, 240, 340, 440, and 540 described above and can include similar components. In contrast to bands 140, 240, 340, 440, and 540, band 640 can include a spacer 654, and band 740 can include a spacer 754. While not shown, any of bands 140, 240, 340, 440, and 540, can include a spacer similar to spacer 654 and 754.


As shown in FIG. 15, spacer 654 can be substantially disc shaped. Spacer 654 can be can be similar to, and have similar features to the spacer described above and to the embodiments of the prosthesis shown and described in the '009 application. Spacer 654 can be implanted and deployed to restore the space between facets of a superior articular process of a first vertebra and an inferior articular process of an adjacent vertebra, can be implanted and deployed to help stabilize adjacent vertebrae with adhesives, and/or can be implanted and deployed to deliver a medication. In such embodiments, the spacer can be, for example, substantially disc shaped. In other embodiments, the spacer can be other shapes, e.g., square, elliptical, or any other shape. Spacer 654 include a first side 656 and a second side 658. As shown in FIG. 15, first side 656 is concave and second side 658 is convex. In some embodiments, first side 656 and/or the second side 658 can be convex, concave, or flat. Said another way, first side 656 of spacer 654 can be concave, convex, or flat, and second side 658 of spacer 654 can be concave, convex, or flat, e.g., first side 656 is concave and second side 658 is concave, first side 656 concave and second side 658 is convex, etc. In this manner, first side 656 and/or second side 658 can fit better against an articular process of a vertebra, specifically against a facet of the articular process of the vertebra. Spacer 654 can include, for example, the same materials as band 640. In some embodiments, spacer 654 can include substances configured to release medication and/or increase the stability of a vertebra and/or band 640. As discussed above, the substances can is include a medicine(s) and/or an adhesive(s).



FIG. 17 depicts a flow chart illustrating a method 6000 of using band 640 and/or band 740. Prior to use of band 640 and band 740, a patient can be prepared for surgery, at 6002. Some examples of preparations for surgery are described in the '009 application. In addition to those procedures described in the '009 application, in some embodiments, the surgical procedure can include direct visualization of the vertebra(e) to be stabilized. Said another way, the medical practitioner can perform the operation without the use of fluoroscopy, and, in this manner, may not have to rely on the inaccuracies and/or inconvenience inherent in fluoroscopic procedures. This direct visualization can be possible due to the small incision necessary for implantation of the band, for example, less than about 25 mm, and due to the ease of implanting and deploying the band. In some embodiments, the surgical procedure used can include forming an opening in body tissue substantially equidistant between a first articular process of the first vertebra and a second articular process of the first vertebra. A tube (not shown) can be inserted through the opening and a proximal end of the tube can be position near the lumen of superior articular process SAP6A of vertebra V6. A drill or other device can be used to form a lumen in superior articular process SAP6A of vertebra V6 and inferior articular process IAP5A of vertebra V5, at 6004. Specifically, the drill can be used to form the lumen in a facet of superior articular process SAP6A of vertebra V6 and to form the lumen in a facet of inferior articular process IAP5A of vertebra V5. Methods and devices for forming lumens in vertebra are described in the '009 application. The band 640 can be positioned within the tube and can be advanced through the tube until the proximal end portion is positioned near the lumen of superior articular process SAP6A of vertebra V6. In some embodiments, the proximal end of the tube can have a bend to direct the proximal end portion into the lumen of superior articular process SAP6A of vertebra V6. The proximal end portion is inserted into the lumen of superior articular process SAP6A of vertebra V6, at 6006. Spacer 654 is inserted between the superior articular process SAP6A of vertebra V6 and inferior articular process IAP5A of vertebra V5, at 6008. In some embodiments, spacer 654 can be disposed prior to inserting the proximal end portion into the lumen of superior articular process SAP6A of vertebra V6. The tube can be removed and/or reinserted at various points during the method 6000, including, for example, after the proximal end portion of band 640 is inserted into the lumen formed within the superior articular process SAP6A of vertebra V6, after vertebra V5 and/or Vertebra V6 has been stabilized, or at other points during method 6000. In some embodiments, first portion 644 can be advanced through the lumen of superior articular process SAP6A of vertebra V6 and through the lumen of inferior articular process IAP5A of vertebra V5 such that only the second portion is within the lumen of superior articular process SAP6A of vertebra V6 and through the lumen of inferior articular process IAP5A of vertebra V5. In this manner, when the shape of the second portion is substantially similar to the shape of the lumen of the superior articular process of the first vertebra and shape of the lumen of the inferior articular process of second vertebra, the lumen can only be contacted by that portion of the band, for example, the second portion, having the same shape.


The proximal end portion is inserted into the lumen of inferior articular process IAP5A of vertebra V5, at 6010. Proximal end portion 642 is inserted into the lumen of fastening mechanism 650 of distal end portion 648, at 6012. In some embodiments, to insert the proximal end portion into fastening mechanism 650 of distal end portion 648, a medical practitioner can grasp the proximal end portion and distal end 648, and manually insert the proximal end portion into fastening mechanism 650. In other embodiments, one or both of the proximal end portion and distal end portion 648 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive distal end 648 without obstructing the lumen of fastening mechanism 650. By way of another example, the surgical tools can be configured to grasp and manipulate the proximal end portion and/or first portion 644. A portion of first portion 644 is advanced through the lumen of superior articular process SAP6A of vertebra V6 and through the lumen of inferior articular process IAP5A of vertebra V5. A portion of first portion 644 is advanced through the lumen of fastening mechanism 650 of distal end portion 648 until superior articular process SAP6A of vertebra V6 and inferior articular process IAP5A of vertebra V5 are stabilized, at 6014. In some embodiments, a surgical tool can be used to advance first portion 644 through the lumen of fastening mechanism 650. In such embodiments, one portion of the surgical tool can be configured to receive distal portion 648 without obstructing the lumen through fastening mechanism 650, one portion of the surgical tool can be configured to grip and/or advance the proximal end portion and or first portion 644. The surgical tool can be configured to restrict the amount of force and/or torque imparted on band 640 and/or to provide an indication to a medical practitioner of the amount of force and/or torque imparted on the band. In some embodiments, the amount of force and/or torque imparted on the band, and/or the amount of force and/or torque required to provide and indication to the medical practitioner, can be adjusted by the medical practitioner and/or can be determined by the configuration of the band selected for the procedure and/or by the physiology of the patient. As each gear of the gear rack passes over the ratchet of the fastening mechanism, the first portion 644 is prevented from retracting out of the fastening mechanism. A portion of first portion 644 is removed from band 640. In some embodiments, a surgical tool can be used to remove the portion of the band 640 that extends beyond fastening mechanism 650. In such embodiments, the surgical tool can be configured to maintain a grip on the portion of the band 640 that extends beyond fastening mechanism 250 and is to be removed. In this manner, the location of the removed portion of band 640 can be controlled prior to, and after, removal. Band 740 and spacer 754 can be substantially similar to band 640 and spacer 654, and method 770 can be used to implant and deploy band 740 and spacer 754.



FIG. 18 is a side view and FIG. 19 is a top view of a flexible fastening band (“band”) 840 according to another embodiment. Band 840 can be similar to band 140 and band 240 described above and can include similar components. By way of example, band 840 includes a proximal end portion 842, a first portion 844 including a gear rack 847, a second portion 846, and a distal end portion 848 including a fastening mechanism 850 and a ratchet 862. In contrast to gear rack 247, a cross sectional area of each gear 864 of gear rack 847 is rectangular in shape instead of wedge shaped. Furthermore, in contrast to first portion 244, first portion 844 is cylindrical in shape instead of cuboidal in shape. In this manner, the lumen 866 of the fastening mechanism 850 is cylindrical in shape. A band according to this embodiment may be particularly useful in deployments where a single band in used to stabilize adjacent vertebrae. In this manner, the second portion can be disposed within the lumen of the first articular process of the first vertebra and a portion of the first portion can be disposed within the lumen of the second articular process of the first vertebra. In these embodiments the portion of the band within the first articular process of the first vertebra and the portion of the band within in the second articular process of the first vertebra can both have substantially the same shape as the lumen in the first articular process of the first vertebra and the lumen in the second articular process of the first vertebra. In this manner, and as described above regarding band 440, the amount of open space within the lumens can be minimized, the amount of surface area of the first portion and/or second portion of the band in contact with the lumens can increase, and subsequently the movement of the first vertebra and/or the second vertebra can be reduced or minimized. Furthermore, when movement of the first vertebra and/or the second vertebra does occur, forces acting against the band can be more equally distributed throughout the first portion and/or the second portion, due at least to the increased surface area of the band in contact with the lumens.



FIG. 20 is a side view a flexible fastening band (“band”) 940 according to an embodiment. Band 940 can be similar to band 140, band 240, and band 840 described above and can include similar components. By way of example, band 940 includes a proximal end portion 942, a first portion 944 including a gear rack 947, a second portion 946, and a distal end portion 948 including a fastening mechanism 950. Similar to gear rack 847, a cross sectional area of each gear 964 of gear rack 947 is rectangular in shape. In contrast to gear rack 847, each of gears 964 extend the entire circumference of first portion 944 instead of only a portion of the circumference of first portion 844. Furthermore, in contrast to first portion 244, but similar to first portion 844, first portion 944 is cylindrical in shape instead of cuboidal in shape. In this manner, the lumen 966 of the fastening mechanism 950 is cylindrical in shape. A band according to this embodiment may be particularly useful in deployments where the movement and repositioning of the band after implantation may be difficult. In this manner, because each of the gears can be the entire circumference of the first portion and/or the second portion, the first portion and/or the second portion can enter the fastening mechanism in any radial orientation and still engage the ratchet.



FIGS. 21-25 are views of a flexible fastening band (“band”) 1040 according to another embodiment. FIG. 21 is a perspective view and FIG. 22 is a cross-sectional side view of band 1040. FIG. 23 is a cross-sectional view of band 1040 taken along line XXIII FIG. 24 is a cross-sectional top view of band 1040 in a first configuration and FIG. 25 is a cross-sectional top view of band 1040 in a second configuration. Band 1040 can be similar to band 140 and band 240 described above and can include similar components. By way of example, band 1040 includes a proximal end portion (not shown), a first portion 1044 including a gear rack 1047 (see FIG. 22), a second portion 106, and a distal end portion 1048 including a fastening mechanism 1050 and a ratchet 1062. In contrast to band 140 and band 240, band 1040 includes a reinforcement piece 1072.


Reinforcement piece 1072 can include any of the materials described above for band 140. In some embodiments, reinforcement piece 1072 can include a material stronger than second portion 1046 and/or first portion 1044, for example, first portion 1044 and second portion 1046 can include PEEK and reinforcement piece 1072 can include titanium. As shown in FIG. 22, reinforcement piece 1072 can be disposed within band 1040 approximately along the entire length of second portion 1046, and a portion of reinforcement piece 1072 can be disposed within the distal end portion 1048. In some embodiments, reinforcement piece can include a length along at least a portion of the length of second portion 1046 and/or first portion 1044 but not the distal end portion. In some embodiments, reinforcement piece 1072 can be disposed only within second portion 1046. Reinforcement piece 1072 can have a length in first dimension (length), a length in a second dimension (width), and a length in a third dimension (height). As described herein, a reinforcement piece be different shapes that can include more or fewer dimensions.


The reinforcement piece can be molded within the band. Said another way, in embodiments where the first portion, the second portion, and or the distal end portion are moldable materials, the reinforcement piece can be placed in the mold and the moldable materials can be injected or otherwise put in the mold around the reinforcement piece. In other embodiments, each portion of the band (for example, the proximal end portion, the first portion, the second portion, the third portion, and/or the distal end portion) around the reinforcement piece can have a top half and a bottom half, and each of the top half and the bottom half can be placed around the reinforcement piece, and sealed. As shown in FIG. 24, reinforcement piece 1072 includes support members 1074. While FIG. 24 shows reinforcement piece 1072 including four support members 1074, in some embodiments, more or fewer support members 1074 can be used. Support members 1074 can maintain the position of reinforcement piece 1072 during the molding and/or assembly process of band 1040. As shown in FIG. 25, support members 1074 are removed before band 1040 is used.


As shown in FIG. 23, reinforcement piece 1072 can has a substantially uniform cuboidal shape. In other embodiments, reinforcement piece 1072 can have other shapes. The shape of the reinforcement piece can be selected depending on the desired bending and/or torsion characteristics of the material chosen. By way of example, a substantially planar cuboidal shape can provide a greater increase in bending strength while providing a lesser increase in torsion strength, a cylindrical shape can provide an increase in bending strength while providing very little increase in torsion strength, a substantially square and/or tubular cuboidal shape can provide similar bending and torsion increases. Any shape can be selected to achieve the desired bending and torsion strength. Combinations of materials and shapes can also be considered. For example, a material having higher torsion strength may be combined with a shape having a lower torsion strength to combine for the desired torsion strength. As shown in FIGS. 24 and 25, reinforcement piece 1072 includes holes 1076 distributed along the length of the first dimension. While FIGS. 24 and 25 shows band 1040 including many holes 1076, in some embodiments, more or fewer holes 1076 can be used. FIGS. 24 and 25 depict holes 1076 distributed substantially equally along the length of the first dimension, in some embodiments, the holes can be distributed differently or along different dimensions depending on the shape and/or material chosen, and/or whether the reinforcement piece is solid or hollow. Holes 1076 can be configured to reduce the weight of reinforcement piece 1072 while still provided band 1040 additional strength. Holes 1076 can be round, oval, square, or any other shape.



FIG. 26 is an exploded view, FIG. 27 is a perspective view, and FIG. 28 is a cross-sectional view of a flexible fastening band (“band”) 1140 according to another embodiment. Band 1140 can be similar to band 140 and band 240 described above and can include similar components. By way of example, band 1140 includes a proximal end portion 1142, a first portion 1144, a second portion 1146 including a gear rack 1147, a distal end portion 1148, a fastening mechanism 1150 and a ratchet 1162. In contrast to band 140 and band 240, the fastening mechanism 1150 of band 1140 is separately formed from band 1140. While second portion 1146 of band 1140 is shown in FIGS. 26-28 as having a substantially cuboidal shape, in some embodiments, second portion 1146 can be substantially cylindrical in shape or any other appropriate shape discussed herein. As shown in FIGS. 27 and 28, band 1140 includes a gear rack 1147 and gears 1164. Each of gears 1164 can be wedge shaped to allow each of gears 1164 to displace a ratchet 1162 of fastening mechanism 1150 in only one direction. In some embodiments, gears 1164 can be other shapes, such as blocks, or any other appropriate shape discussed herein. As shown in FIGS. 26-28, distal end portion 1148 can be substantially circular in shape and can have a diameter greater than a width of second portion 1146. In other embodiments, distal portion 1148 can have other shapes, for example, oval, rectangular, square, etc.



FIG. 29 shows a posterior perspective view of a portion of the vertebral column during a method for stabilizing adjacent vertebrae using band 1140 and a flexible fastening band (“band”) 1240 according to an embodiment. Band 1240 can be similar to band 1140 described above and can include similar components. By way of example, band 1240 includes a proximal end portion 1242, a first portion 1244, a second portion 1246, a distal end portion 1248, and a fastening mechanism 1250.


As shown in FIG. 29, a band 1140 can be used to stabilize a vertebra V11 and a vertebra V12 via the inferior articular process IAP11A of vertebra V11 and the superior articular process SAP12A of vertebra V12. Also as shown in FIG. 29, band 1240 is used to stabilize a vertebra V11 and vertebra V12 via the inferior articular process IAP11B of vertebra V11 and the superior articular process SAP12B of vertebra V12. In some embodiments, vertebra V11 and/or vertebra V12 are stabilized using only one of band 1140 or band 1240. In some such embodiments, one of band 1140 or band 1240 can be used to stabilize vertebra V11 and/or vertebra V12 via one of via the inferior articular process IAP11A of vertebra V11 and the superior articular process SAP12A of vertebra V12, or, via the inferior articular process IAP11B of vertebra V11 and the superior articular process SAP12B of vertebra V12.


Either of band 1140 and/or band 1240 can be used in accordance with any of the methods described herein. By way of example, second portion 1146 of band 1140 can be disposed in a lumen of IAP11A of vertebra V11 and in a lumen of SAP12A of vertebra V12. Proximal end portion 1142 is inserted into a lumen of fastening mechanism 1150. In some embodiments, to insert proximal end portion 1142 into fastening mechanism 1150, a medical practitioner can grasp proximal end portion 1142 and fastening mechanism 1150, and manually insert proximal end portion 1142 into fastening mechanism 1150. In other embodiments, one or both of proximal end portion 1142 and fastening mechanism 1150 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive fastening mechanism 1150 without obstructing the lumen of fastening mechanism 1150. A portion of first portion 1144 is advanced through the lumen of fastening mechanism 1150 until superior articular process SAP12A of vertebra V12 and inferior articular process IAP11A of vertebra V11 are stabilized.



FIG. 30 shows a posterior perspective view of a portion of the vertebral column during a method for stabilizing adjacent vertebrae using a flexible fastening band (“band”) 1340 and a flexible fastening band (“band”) 1440 according to an embodiment. Each of band 1340 and band 1440 can be similar to band 1140 described above and can include similar components. By way of example, band 1340 includes a proximal end portion 1342, a first portion 1344, a second portion (not shown in FIG. 30), a distal end portion 1348, and a fastening mechanism 1350; band 1440 includes a proximal end portion 1442, a first portion 1444, a second portion (not shown in FIG. 30), a distal end portion 1448, and a fastening mechanism 1450. In contrast to band 1140 and band 1240, band 1340 includes a spacer 1354, and band 1440 includes a spacer 1454. Each of spacer 1354 and spacer 1454 can be similar to can be similar to spacer 654 described above and can include similar components.


As shown in FIG. 30, a band 1340 can be used to stabilize a vertebra V13 and a vertebra V14 via the inferior articular process IAP13A of vertebra V13 and the superior articular process SAP14A of vertebra V14. Also as shown in FIG. 30, band 1440 is used to stabilize a vertebra V13 and vertebra V14 via the inferior articular process IAP13B of vertebra V13 and the superior articular process SAP14B of vertebra V14. In some embodiments, vertebra V13 and/or vertebra V14 are stabilized using only one of band 1340 or band 1440. In some such embodiments, one of band 1340 or band 1440 can be used to stabilize vertebra V13 and/or vertebra V14 via one of via the inferior articular process IAP13A of vertebra V13 and the superior articular process SAP14A of vertebra V14, or, via the inferior articular process IAP13B of vertebra V13 and the superior articular process SAP14B of vertebra V14.


Either of band 1340 and/or band 1440 can be used in accordance with any of the methods described herein. By way of example, the second portion of band 1340 can be disposed in a lumen of IAP13A of vertebra V13, spacer 1354 can be disposed between IAP13A and SAP14A, and the second portion of band 1340 can be disposed in a lumen of SAP14A of vertebra V14. Proximal end portion 1342 is inserted into a lumen of fastening mechanism 1350. In some embodiments, to insert proximal end portion 1342 into fastening mechanism 1350, a medical practitioner can grasp proximal end portion 1342 and fastening mechanism 1350, and manually insert proximal end portion 1342 into fastening mechanism 1350. In other embodiments, one or both of proximal end portion 1342 and fastening mechanism 1350 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive fastening mechanism 1350 without obstructing the lumen of fastening mechanism 1350. A portion of first portion 1344 is advanced through the lumen of fastening mechanism 1350 until superior articular process SAP14A of vertebra V14 and inferior articular process IAP13A of vertebra V13 are stabilized.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. For example, while the descriptions given are with reference to stabilizing vertebra, another bone(s), such as, for example, a sternum and/or a rib(s) could be stabilized using the flexible fastening bands described herein. In another example, a flexible fastening band can be used to stabilize and/or fixate an intramedullary (IM) rod or nail. For example, the flexible fastening band can be used at different longitudinal locations along an IM rod or nail, and used to couple adjacent bone portions to the IM rod or nail. In such situations, a given flexible fastening band can fix a first bone portion, the IM rod or nail, and a second bone portion, all of which are positioned between the distal portion and the proximal portion of the flexible fastening band. In yet another example, a flexible fastening band can be used to stabilize and/or fixate a bone fragment. While various embodiments have been described above with regard to natural bone spaces, (e.g., the space between an inferior articulate process and a superior articulate process), in other embodiments, the bone spacing can be man-made (e.g., sternum split during a heart procedure), and/or due to an injury (e.g., broken bone).


Where methods described above indicate certain events occurring in certain order, the ordering of certain events can be modified. Additionally, certain of the events can be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different embodiments described. For example, FIGS. 18 and 19 depict band 840 including a single ratchet 862, and FIG. 20 depicts band 940 including a single ratchet 962, however, in some embodiments, any of bands 140-1440 can include any number of ratchets. Similarly, any of bands 140-1440 can include a reinforcement piece and/or a spacer.

Claims
  • 1. A method of treating bone portions, the method comprising: disposing a proximal portion of a flexible fastening band into contact with a first bone portion, wherein a distal portion of the flexible fastening band comprises a fastener, the fastener defining a lumen sized to receive the proximal portion of the flexible fastening band, the lumen transverse to a longitudinal axis extending from the proximal portion to the distal portion when the flexible fastening band is flat;disposing the proximal portion of the flexible fastening band into contact with a second bone portion;inserting the proximal portion of the flexible fastening band into the lumen of the fastener to form a loop after disposing the proximal portion of the flexible fastening band into contact with the first bone portion and into contact with the second bone portion; andadvancing the proximal portion of the flexible fastening band through the lumen of the fastener to tighten the loop, wherein a surgical tool grasps and advances the proximal portion through the lumen of the fastener, wherein the surgical tool is configured to restrict the amount of force or torque imparted on the flexible fastening band.
  • 2. The method of claim 1, wherein the flexible fastening band comprises a reinforcement portion.
  • 3. The method of claim 1, wherein the flexible fastening band comprises different torsion strength along the length of the flexible fastening band.
  • 4. The method of claim 1, wherein the flexible fastening band comprises different bending strength along the length of the flexible fastening band.
  • 5. The method of claim 1, wherein the proximal portion and the distal portion of the flexible fastening band comprise the same material.
  • 6. The method of claim 1, further comprising disposing an implant between the first bone portion and the second bone portion.
  • 7. The method of claim 1, further comprising forming a lumen in the first bone portion, wherein disposing the proximal portion of the flexible fastening band into contact with the first bone portion comprises disposing the proximal portion of the flexible fastening band through the lumen of the first bone portion.
  • 8. The method of claim 7, further comprising forming a lumen in the second bone portion, wherein disposing the proximal portion of the flexible fastening band into contact with the second bone portion comprises disposing the proximal portion of the flexible fastening band through the lumen of the second bone portion.
  • 9. The method of claim 1, further comprising removing an excess portion of the proximal portion after advancing the proximal portion of the flexible fastening band through the lumen of the fastener.
  • 10. The method of claim 1, wherein the first bone portion is an articular process of a first vertebra and the second bone portion is an articular process of a second vertebra.
  • 11. The method of claim 1, further comprising: disposing a proximal portion of a second flexible fastening band into contact with the first bone portion and into contact with the second bone portion, wherein a distal portion of the second flexible fastening band comprises a second fastener; andadvancing the proximal portion of the second flexible fastening band through the second fastener.
  • 12. The method of claim 1, wherein advancing the proximal portion of the flexible fastening band comprises advancing the proximal portion over a ratchet in the fastener.
  • 13. The method of claim 12, wherein advancing the proximal portion of the flexible fastening band comprises advancing gears of a gear rack on the flexible fastening band over the ratchet in the fastener.
  • 14. A method of treating a facet joint, the method comprising: forming a lumen in a first bone portion;forming a lumen in a second bone portion;disposing a proximal portion of a flexible fastening band through the lumen of the first bone portion, wherein a distal portion of the flexible fastening band comprises a fastener, wherein the flexible fastening band comprises a middle portion spaced from the proximal portion and the distal portion;disposing the proximal portion of the flexible fastening band through the lumen of the second bone portion;inserting the proximal portion of the flexible fastening band into the fastener to form a loop, after disposing the proximal portion of the flexible fastening band through the lumen of the first bone portion and the lumen of the second bone portion, wherein the flexible fastening band comprises different torsional or bending characteristics along the length of the middle portion, wherein the middle portion closer to the distal portion is stronger than the middle portion closer to the proximal portion; andadvancing the proximal portion of the flexible fastening band through the fastener to tighten the loop.
  • 15. The method of claim 14, further comprising inserting the proximal portion of the flexible fastening band through an implant.
  • 16. The method of claim 14, further comprising disposing an implant between the first bone portion and the second bone portion.
  • 17. The method of claim 14, wherein the flexible fastening band comprises a reinforcement portion.
  • 18. A method of treating bone portions, the method comprising: disposing a proximal portion of a flexible fastening band into contact with a first bone portion, wherein a distal portion of the flexible fastening band comprises a fastener;disposing the proximal portion of the flexible fastening band into contact with a second bone portion;inserting the proximal portion of the flexible fastening band into the fastener to form a loop, after disposing the proximal portion of the flexible fastening band into contact with the first bone portion and into contact with the second bone portion; andadvancing the proximal portion of the flexible fastening band through the fastener to tighten the loop, wherein a surgical tool grasps and advances the proximal portion through the lumen of the fastener, wherein the surgical tool is configured to provide an indication of the amount of force or torque imparted on the flexible fastening band.
  • 19. The method of claim 18, further comprising inserting the proximal portion of the flexible fastening band through an implant.
  • 20. The method of claim 18, wherein the flexible fastening band comprises a reinforcement portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 15/726,775, filed Oct. 6, 2017, which is a continuation of U.S. application Ser. No. 14/869,793, filed Sep. 29, 2015, which is a continuation of U.S. application Ser. No. 14/256,532, filed Apr. 18, 2014, which is a divisional of U.S. application Ser. No. 13/033,791, filed Feb. 24, 2011, the disclosures of each of these applications are incorporated by reference herein in their entirety.

US Referenced Citations (590)
Number Name Date Kind
86016 Howell Jan 1869 A
1630239 Binkley et al. May 1927 A
1822280 Ervay Sep 1931 A
1822330 Anslie Sep 1931 A
2486303 Longfellow Oct 1949 A
2706023 Merritt Apr 1955 A
2967282 Schwartz et al. Jan 1961 A
3111945 Von Solbrig Nov 1963 A
3149808 Weckesser Sep 1964 A
3570497 Lemole Mar 1971 A
3867728 Stubstad et al. Feb 1975 A
3875595 Froning Apr 1975 A
3879767 Stubstad Apr 1975 A
4001896 Arkangel Jan 1977 A
4037603 Wendorff Jul 1977 A
4085466 Goodfellow et al. Apr 1978 A
4119091 Partridge Oct 1978 A
4156296 Johnson et al. May 1979 A
4164793 Swanson Aug 1979 A
4166292 Bokros Sep 1979 A
4231121 Lewis Nov 1980 A
D261935 Halloran Nov 1981 S
4312337 Donohue Jan 1982 A
4323217 Dochterman Apr 1982 A
4349921 Kuntz Sep 1982 A
4502161 Wall Mar 1985 A
D279502 Halloran Jul 1985 S
D279503 Halloran Jul 1985 S
4535764 Ebert Aug 1985 A
4570618 Wu Feb 1986 A
4573458 Lower Mar 1986 A
4573459 Litton Mar 1986 A
4634445 Helal Jan 1987 A
4643178 Nastari et al. Feb 1987 A
4662371 Whipple et al. May 1987 A
4706659 Matthews et al. Nov 1987 A
4714469 Kenna Dec 1987 A
4722331 Fox Feb 1988 A
4730615 Sutherland et al. Mar 1988 A
4759766 Buettner-Janz et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4772287 Ray et al. Sep 1988 A
4773402 Asher et al. Sep 1988 A
4834757 Brantigan May 1989 A
4863477 Monson Sep 1989 A
4880429 Stone Nov 1989 A
4904260 Ray et al. Feb 1990 A
4907577 Wu Mar 1990 A
4911718 Lee et al. Mar 1990 A
4919667 Richmond Apr 1990 A
4923471 Morgan May 1990 A
4936848 Bagby Jun 1990 A
4941466 Romano Jul 1990 A
4955913 Robinson Sep 1990 A
4959065 Arnett et al. Sep 1990 A
4969909 Barouk Nov 1990 A
5000165 Watanabe Mar 1991 A
5002546 Romano Mar 1991 A
5011484 Bréard Apr 1991 A
5015255 Kuslich May 1991 A
5047055 Bao et al. Sep 1991 A
5062845 Kuslich Nov 1991 A
5071437 Steffee Dec 1991 A
5092866 Breard et al. Mar 1992 A
5092868 Mehdian Mar 1992 A
5112013 Tolbert et al. May 1992 A
5112346 Hiltebrandt et al. May 1992 A
5127912 Ray et al. Jul 1992 A
5135188 Anderson et al. Aug 1992 A
5147404 Downey Sep 1992 A
5171280 Baumgartner Dec 1992 A
5192326 Bao et al. Mar 1993 A
5192327 Brantigan Mar 1993 A
5209755 Abrahan et al. May 1993 A
5258031 Salib et al. Nov 1993 A
5282861 Kaplan Feb 1994 A
5286249 Thibodaux Feb 1994 A
5300073 Ray et al. Apr 1994 A
5304178 Stahurski Apr 1994 A
5306275 Bryan Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5326364 Clift, Jr. et al. Jul 1994 A
5330479 Whitmore Jul 1994 A
5360431 Puno et al. Nov 1994 A
5368596 Burkhart Nov 1994 A
5370697 Baumgartner Dec 1994 A
5372598 Luhr et al. Dec 1994 A
5400784 Durand et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5413576 Rivard May 1995 A
5415661 Holmes May 1995 A
5425773 Boyd et al. Jun 1995 A
5437672 Alleyne Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5458642 Beer et al. Oct 1995 A
5458643 Oka et al. Oct 1995 A
5462542 Alesi, Jr. Oct 1995 A
5487756 Kallesoe et al. Jan 1996 A
5491882 Walston et al. Feb 1996 A
5496142 Fodor et al. Mar 1996 A
5496318 Howland et al. Mar 1996 A
5507823 Walston et al. Apr 1996 A
5509918 Romano Apr 1996 A
5514180 Heggeness et al. May 1996 A
5527312 Ray Jun 1996 A
5527314 Brumfield et al. Jun 1996 A
5534028 Bao et al. Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5540698 Preissman Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5545229 Parsons et al. Aug 1996 A
5549619 Peters et al. Aug 1996 A
5556431 Buttner-Janz Sep 1996 A
5562738 Boyd et al. Oct 1996 A
5571105 Gundolf Nov 1996 A
5571131 Ek et al. Nov 1996 A
5571189 Kuslich Nov 1996 A
5571191 Fitz Nov 1996 A
5577995 Walker et al. Nov 1996 A
5586989 Bray, Jr. Dec 1996 A
5591165 Jackson Jan 1997 A
5603713 Aust et al. Feb 1997 A
5638700 Shechter Jun 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5649947 Auerbach et al. Jul 1997 A
5653762 Pisharodi Aug 1997 A
5674295 Ray et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5683464 Wagner et al. Nov 1997 A
5683466 Vitale Nov 1997 A
5700265 Romano Dec 1997 A
5702450 Bisserie Dec 1997 A
5707373 Sevrain et al. Jan 1998 A
5713542 Benoit Feb 1998 A
5716415 Steffee Feb 1998 A
5725582 Bevan et al. Mar 1998 A
5741260 Songer et al. Apr 1998 A
5741261 Moskovitz et al. Apr 1998 A
D395138 Ohata Jun 1998 S
5766251 Koshino Jun 1998 A
5766253 Brosnahan Jun 1998 A
5772663 Whiteside et al. Jun 1998 A
5797916 McDowell Aug 1998 A
5810854 Beach Sep 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5851208 Trott Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5865846 Bryan et al. Feb 1999 A
5868745 Alleyne Feb 1999 A
5876404 Zucherman et al. Mar 1999 A
5879396 Walston et al. Mar 1999 A
5888203 Goldberg Mar 1999 A
5893889 Harrington Apr 1999 A
5895428 Berry Apr 1999 A
RE36221 Breard et al. Jun 1999 E
5918604 Whelan Jul 1999 A
5951555 Rehak et al. Sep 1999 A
5964765 Fenton et al. Oct 1999 A
5993452 Vandewalle Nov 1999 A
5997542 Burke Dec 1999 A
6001130 Bryan et al. Dec 1999 A
6014588 Fitz Jan 2000 A
6019763 Nakamura et al. Feb 2000 A
6019768 Wenstrom, Jr. et al. Feb 2000 A
6019792 Cauthen Feb 2000 A
6039763 Shelokov Mar 2000 A
6048342 Zucherman et al. Apr 2000 A
6050998 Fletcher Apr 2000 A
6063121 Xavier et al. May 2000 A
6066325 Wallace et al. May 2000 A
6068630 Zucherman et al. May 2000 A
RE36758 Fitz Jun 2000 E
6080157 Cathro et al. Jun 2000 A
6099531 Bonutti Aug 2000 A
6102347 Benoit Aug 2000 A
6106558 Picha Aug 2000 A
6113637 Gill et al. Sep 2000 A
6132464 Martin Oct 2000 A
6132465 Ray et al. Oct 2000 A
6146422 Lawson Nov 2000 A
6156067 Bryan et al. Dec 2000 A
6179839 Weiss et al. Jan 2001 B1
D439340 Michelson Mar 2001 S
6200322 Branch et al. Mar 2001 B1
6293949 Justis et al. Sep 2001 B1
D450122 Michelson Nov 2001 S
6325803 Schumacher et al. Dec 2001 B1
D454953 Michelson Mar 2002 S
6368325 McKinley et al. Apr 2002 B1
6368350 Erickson et al. Apr 2002 B1
6371958 Overaker Apr 2002 B1
6375573 Romano Apr 2002 B2
6379386 Resch et al. Apr 2002 B1
6409765 Bianchi et al. Jun 2002 B1
D460188 Michelson Jul 2002 S
D460189 Michelson Jul 2002 S
6419678 Asfora Jul 2002 B1
6419703 Fallin et al. Jul 2002 B1
6423071 Lawson Jul 2002 B1
6436099 Drewry et al. Aug 2002 B1
6436101 Hamada et al. Aug 2002 B1
6436146 Hassler et al. Aug 2002 B1
D463560 Michelson Sep 2002 S
6447544 Michelson Sep 2002 B1
6470207 Simon et al. Oct 2002 B1
6475220 Whiteside Nov 2002 B1
6565605 Goble et al. May 2003 B2
6572617 Senegas Jun 2003 B1
6579318 Varga et al. Jun 2003 B2
6579319 Goble et al. Jun 2003 B2
6589244 Sevrain et al. Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6607530 Carl et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
D479331 Pike et al. Sep 2003 S
6626944 Taylor Sep 2003 B1
6641614 Wagner et al. Nov 2003 B1
6656178 Veldhuizen et al. Dec 2003 B1
6656195 Peters et al. Dec 2003 B2
6669697 Pisharodi Dec 2003 B1
6669729 Chin Dec 2003 B2
6679914 Gabbay Jan 2004 B1
6706068 Ferree Mar 2004 B2
6743232 Overaker et al. Jun 2004 B2
6761720 Senegas Jul 2004 B1
6764491 Frey et al. Jul 2004 B2
6770095 Grinberg et al. Aug 2004 B2
6783527 Drewry et al. Aug 2004 B2
6790210 Cragg et al. Sep 2004 B1
6802863 Lawson et al. Oct 2004 B2
6811567 Reiley Nov 2004 B2
6902566 Zucherman et al. Jun 2005 B2
6908484 Zubok et al. Jun 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
6974479 Trieu Dec 2005 B2
7004971 Serhan et al. Feb 2006 B2
D517404 Schluter Mar 2006 S
7008429 Golobek Mar 2006 B2
7013675 Marquez-Pickering Mar 2006 B2
7051451 Augostino et al. May 2006 B2
7074238 Stinson et al. Jul 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7223269 Chappuis May 2007 B2
D565180 Schluter Mar 2008 S
7371238 Sololeski et al. May 2008 B2
7458981 Fielding et al. Dec 2008 B2
7517358 Petersen Apr 2009 B2
7537611 Lee May 2009 B2
7559940 McGuire et al. Jul 2009 B2
7563286 Gerber et al. Jul 2009 B2
7585300 Cha Sep 2009 B2
7608104 Yuan et al. Oct 2009 B2
7695472 Young Apr 2010 B2
7799077 Lang et al. Sep 2010 B2
7806895 Weier et al. Oct 2010 B2
7846183 Blain Dec 2010 B2
7862590 Lim et al. Jan 2011 B2
7935136 Alamin et al. May 2011 B2
D643121 Milford et al. Aug 2011 S
7993370 Jahng Aug 2011 B2
7998172 Blain Aug 2011 B2
8052728 Hestad Nov 2011 B2
8109971 Hale Feb 2012 B2
8133225 Pieske Mar 2012 B2
8163016 Linares Apr 2012 B2
8172877 Winslow et al. May 2012 B2
8177810 Ferree May 2012 B2
8192468 Biedermann et al. Jun 2012 B2
8216275 Fielding et al. Jul 2012 B2
8231661 Carls Jul 2012 B2
8246655 Jackson et al. Aug 2012 B2
8267966 McCormack et al. Sep 2012 B2
8292954 Robinson et al. Oct 2012 B2
8306307 Koike et al. Nov 2012 B2
8382801 Lamborne et al. Feb 2013 B2
8394125 Assell Mar 2013 B2
8460346 Ralph et al. Jun 2013 B2
8486078 Carl et al. Jul 2013 B2
8496691 Blain Jul 2013 B2
8579903 Carl Nov 2013 B2
8652137 Blain et al. Feb 2014 B2
8740942 Blain Jun 2014 B2
8740949 Blain Jun 2014 B2
8753345 McCormack et al. Jun 2014 B2
8784423 Kowarsch et al. Jul 2014 B2
8858597 Blain Oct 2014 B2
8882804 Blain Nov 2014 B2
8961613 Assell et al. Feb 2015 B2
D724733 Blain et al. Mar 2015 S
8974456 Allen et al. Mar 2015 B2
8979529 Marcus Mar 2015 B2
8992533 Blain et al. Mar 2015 B2
8998953 Blain Apr 2015 B2
9017389 Assell et al. Apr 2015 B2
9060787 Blain et al. Jun 2015 B2
9101410 Urrea Aug 2015 B1
D739935 Blain et al. Sep 2015 S
9149283 Assell et al. Oct 2015 B2
9161763 Assell et al. Oct 2015 B2
9179943 Blain Nov 2015 B2
9220547 Blain et al. Dec 2015 B2
D748262 Blain Jan 2016 S
9233006 Assell et al. Jan 2016 B2
D748793 Blain Feb 2016 S
9265546 Blain Feb 2016 B2
9271765 Blain Mar 2016 B2
9301786 Blain Apr 2016 B2
9314277 Assell et al. Apr 2016 B2
9345488 Assell et al. May 2016 B2
9421044 Blain et al. Aug 2016 B2
D765853 Blain et al. Sep 2016 S
D765854 Blain et al. Sep 2016 S
9439686 Rooney et al. Sep 2016 B2
9456855 Blain et al. Oct 2016 B2
9517077 Blain et al. Dec 2016 B2
D777921 Blain et al. Jan 2017 S
D780315 Blain et al. Feb 2017 S
9572602 Blain et al. Feb 2017 B2
9615861 Perez-Cruet et al. Apr 2017 B2
D790062 Blain et al. Jun 2017 S
9675387 Blain Jun 2017 B2
9743937 Blain et al. Aug 2017 B2
9808294 Blain Nov 2017 B2
9820784 Blain et al. Nov 2017 B2
9839450 Blain et al. Dec 2017 B2
D810942 Blain et al. Feb 2018 S
D812754 Blain et al. Mar 2018 S
9936984 Blain Apr 2018 B2
10022161 Blain Jul 2018 B2
10085776 Blain Oct 2018 B2
D834194 Blain et al. Nov 2018 S
10194955 Blain et al. Feb 2019 B2
10251679 Blain et al. Apr 2019 B2
D857900 Blain et al. Aug 2019 S
10368921 Blain Aug 2019 B2
10426524 Blain Oct 2019 B2
10624680 Blain Apr 2020 B2
D884896 Blain et al. May 2020 S
10758361 Blain Sep 2020 B2
D926982 Blain et al. Aug 2021 S
11272961 Blain et al. Mar 2022 B2
11304733 Blain et al. Apr 2022 B2
20010018614 Bianchi Aug 2001 A1
20020018799 Spector et al. Feb 2002 A1
20020019637 Frey et al. Feb 2002 A1
20020029039 Zucherman et al. Mar 2002 A1
20020040227 Harari Apr 2002 A1
20020065557 Goble et al. May 2002 A1
20020072800 Goble et al. Jun 2002 A1
20020077700 Varga et al. Jun 2002 A1
20020086047 Mueller et al. Jul 2002 A1
20020120335 Angelucci et al. Aug 2002 A1
20020123806 Reiley Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20020173800 Dreyfuss et al. Nov 2002 A1
20020173813 Peterson et al. Nov 2002 A1
20020198527 Muckter Dec 2002 A1
20030004572 Goble et al. Jan 2003 A1
20030028250 Reiley et al. Feb 2003 A1
20030040797 Fallin et al. Feb 2003 A1
20030093152 Pedersen et al. May 2003 A1
20030093154 Estes et al. May 2003 A1
20030120343 Whelan Jun 2003 A1
20030176919 Schmieding Sep 2003 A1
20030176922 Lawson et al. Sep 2003 A1
20030187454 Gill et al. Oct 2003 A1
20030191532 Goble et al. Oct 2003 A1
20030204259 Goble et al. Oct 2003 A1
20030216669 Lang et al. Nov 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20040006391 Reiley Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040024462 Ferree et al. Feb 2004 A1
20040049271 Biedermann et al. Mar 2004 A1
20040049272 Reiley Mar 2004 A1
20040049273 Reiley Mar 2004 A1
20040049274 Reiley Mar 2004 A1
20040049275 Reiley Mar 2004 A1
20040049276 Reiley Mar 2004 A1
20040049277 Reiley Mar 2004 A1
20040049278 Reiley Mar 2004 A1
20040049281 Reiley Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040087954 Allen et al. May 2004 A1
20040116927 Graf Jun 2004 A1
20040127989 Dooris et al. Jul 2004 A1
20040143264 McAfee Jul 2004 A1
20040176844 Zubok et al. Sep 2004 A1
20040195727 Stoy Oct 2004 A1
20040199166 Schmieding et al. Oct 2004 A1
20040215341 Sybert et al. Oct 2004 A1
20040230201 Yuan et al. Nov 2004 A1
20040230304 Yuan et al. Nov 2004 A1
20050010291 Stinson et al. Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050043797 Lee Feb 2005 A1
20050043799 Reiley Feb 2005 A1
20050049705 Hale et al. Mar 2005 A1
20050055096 Serhan et al. Mar 2005 A1
20050059972 Biscup Mar 2005 A1
20050107879 Christensen et al. May 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050143818 Yuan et al. Jun 2005 A1
20050154463 Trieu Jul 2005 A1
20050159746 Grab et al. Jul 2005 A1
20050171547 Aram Aug 2005 A1
20050197700 Boehem et al. Sep 2005 A1
20050204515 Hewes Sep 2005 A1
20050216017 Fielding et al. Sep 2005 A1
20050240201 Yeung Oct 2005 A1
20050251256 Reiley Nov 2005 A1
20050256494 Datta Nov 2005 A1
20060004367 Alamin et al. Jan 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060041311 McLeer Feb 2006 A1
20060084985 Kim Apr 2006 A1
20060085006 Ek et al. Apr 2006 A1
20060085072 Funk et al. Apr 2006 A1
20060111782 Petersen May 2006 A1
20060116684 Whelan Jun 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060149375 Yuan et al. Jul 2006 A1
20060190081 Kraus et al. Aug 2006 A1
20060200137 Soboleski et al. Sep 2006 A1
20060241597 Mitchell et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241758 Peterman et al. Oct 2006 A1
20060241778 Ogilvie Oct 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060293691 Mitra et al. Dec 2006 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055252 Blain et al. Mar 2007 A1
20070055373 Hudgins et al. Mar 2007 A1
20070073293 Martz et al. Mar 2007 A1
20070078464 Jones et al. Apr 2007 A1
20070100452 Prosser May 2007 A1
20070118218 Hooper May 2007 A1
20070123863 Winslow et al. May 2007 A1
20070135814 Farris Jun 2007 A1
20070149976 Hale et al. Jun 2007 A1
20070179619 Grab Aug 2007 A1
20070250166 McKay Oct 2007 A1
20070255414 Melkent et al. Nov 2007 A1
20070270812 Peckham Nov 2007 A1
20080009866 Alamin et al. Jan 2008 A1
20080046083 Hewko Feb 2008 A1
20080058929 Whelan Mar 2008 A1
20080082103 Hutton et al. Apr 2008 A1
20080161853 Arnold et al. Jul 2008 A1
20080177264 Alamin et al. Jul 2008 A1
20080177326 Thompson Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080255664 Hogendijk et al. Oct 2008 A1
20080262549 Bennett et al. Oct 2008 A1
20080287996 Soholeski et al. Nov 2008 A1
20090005818 Chin et al. Jan 2009 A1
20090005873 Slivka et al. Jan 2009 A1
20090018662 Pasquet et al. Jan 2009 A1
20090024166 Carl et al. Jan 2009 A1
20090036926 Hestad Feb 2009 A1
20090072006 Clauson et al. Mar 2009 A1
20090076617 Ralph et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090125066 Kraus et al. May 2009 A1
20090138048 Baccelli et al. May 2009 A1
20090171360 Whelan Jul 2009 A1
20090198282 Fielding et al. Aug 2009 A1
20090198339 Kleiner et al. Aug 2009 A1
20090248077 Johns Oct 2009 A1
20090248082 Crook Oct 2009 A1
20090264928 Blain Oct 2009 A1
20090264929 Alamin et al. Oct 2009 A1
20090270918 Attia et al. Oct 2009 A1
20090270929 Suddaby Oct 2009 A1
20090306716 Beger et al. Dec 2009 A1
20090326589 Lemoine et al. Dec 2009 A1
20100010548 Hermida Ochoa Jan 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076503 Beyar et al. Mar 2010 A1
20100087859 Jackson, Jr. Apr 2010 A1
20100131008 Overes et al. May 2010 A1
20100168864 White et al. Jul 2010 A1
20100179553 Ralph et al. Jul 2010 A1
20100185241 Malandain et al. Jul 2010 A1
20100191286 Butler Jul 2010 A1
20100204700 Falahee Aug 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
20100234894 Alamin et al. Sep 2010 A1
20100274289 Carls et al. Oct 2010 A1
20100292698 Hulliger et al. Nov 2010 A1
20100298829 Schaller et al. Nov 2010 A1
20100318133 Tornier Dec 2010 A1
20110015744 Squires et al. Jan 2011 A1
20110022050 McClellan et al. Jan 2011 A1
20110022089 Assell et al. Jan 2011 A1
20110034956 Mazda et al. Feb 2011 A1
20110060366 Heim et al. Mar 2011 A1
20110082504 Singhatat et al. Apr 2011 A1
20110098816 Jacob et al. Apr 2011 A1
20110106163 Hochschuler et al. May 2011 A1
20110106259 Lindenmann et al. May 2011 A1
20110160772 Arcenio et al. Jun 2011 A1
20110172712 Chee et al. Jul 2011 A1
20110245875 Karim Oct 2011 A1
20110295318 Alamin et al. Dec 2011 A1
20110301644 Belliard Dec 2011 A1
20120022591 Baccelli et al. Jan 2012 A1
20120022649 Robinson et al. Jan 2012 A1
20120035658 Goble et al. Feb 2012 A1
20120041441 Bernstein et al. Feb 2012 A1
20120046749 Tatsumi Feb 2012 A1
20120101502 Kartalian et al. Apr 2012 A1
20120150231 Alamin et al. Jun 2012 A1
20120221048 Blain Aug 2012 A1
20120221049 Blain Aug 2012 A1
20120221060 Blain Aug 2012 A1
20120245586 Lehenkari et al. Sep 2012 A1
20120271354 Baccelli et al. Oct 2012 A1
20120277801 Marik et al. Nov 2012 A1
20130023878 Belliard et al. Jan 2013 A1
20130041410 Hestad et al. Feb 2013 A1
20130079778 Azuero et al. Mar 2013 A1
20130123923 Pavlov et al. May 2013 A1
20130197643 Greenberg et al. Aug 2013 A1
20130204250 McDevitt et al. Aug 2013 A1
20130253649 Davis Sep 2013 A1
20130261625 Koch et al. Oct 2013 A1
20130325065 Malandain et al. Dec 2013 A1
20140012318 Goel Jan 2014 A1
20140018816 Fenn et al. Jan 2014 A1
20140066758 Marik et al. Mar 2014 A1
20140214084 Jackson et al. Jul 2014 A1
20140257397 Akbarnia et al. Sep 2014 A1
20140277142 Blain et al. Sep 2014 A1
20140277148 Blain et al. Sep 2014 A1
20140277149 Rooney et al. Sep 2014 A1
20140309699 Houff Oct 2014 A1
20140336653 Bromer Nov 2014 A1
20140378976 Garcia Dec 2014 A1
20150045794 Garcia et al. Feb 2015 A1
20150081023 Blain Mar 2015 A1
20150094766 Blain et al. Apr 2015 A1
20150094767 Blain et al. Apr 2015 A1
20150119988 Assell et al. Apr 2015 A1
20150164516 Blain et al. Jun 2015 A1
20150164652 Assell et al. Jun 2015 A1
20150190149 Assell et al. Jul 2015 A1
20150196330 Blain Jul 2015 A1
20150209096 Gephart Jul 2015 A1
20150257770 Assell et al. Sep 2015 A1
20150257773 Blain et al. Sep 2015 A1
20150313656 Hulliger Nov 2015 A1
20150327872 Assell et al. Nov 2015 A1
20150342648 McCormack et al. Dec 2015 A1
20150342657 Voisard et al. Dec 2015 A1
20160113692 Knoepfle Apr 2016 A1
20160128838 Assell et al. May 2016 A1
20160213481 Blain Jul 2016 A1
20160324549 Blain Nov 2016 A1
20170000527 Blain et al. Jan 2017 A1
20170105767 Blain Apr 2017 A1
20170239060 Blain Aug 2017 A1
20170281232 Smith Oct 2017 A1
20170296234 Jackson et al. Oct 2017 A1
20170333091 Taber et al. Nov 2017 A1
20170333205 Joly et al. Nov 2017 A1
20180049780 Blain Feb 2018 A1
20180085148 Blain Mar 2018 A1
20180085149 Blain Mar 2018 A1
20180132915 Esser et al. May 2018 A1
20190142478 Blain May 2019 A1
20190167314 Mosnier et al. Jun 2019 A1
20190192194 Blain Jun 2019 A1
20190365433 Blain et al. Dec 2019 A1
20200000608 Bullard Jan 2020 A1
20200214746 Blain et al. Jul 2020 A1
20200367945 Semingson et al. Nov 2020 A1
20210121207 Semingson Apr 2021 A1
20210251667 Blain et al. Aug 2021 A1
Foreign Referenced Citations (83)
Number Date Country
2 437 575 Apr 2009 CA
93 04 368 May 1993 DE
201 12 123 Sep 2001 DE
101 35 771 Feb 2003 DE
0 238 219 Sep 1987 EP
0 322 334 Jun 1989 EP
0 392 124 Oct 1990 EP
0 610 837 Aug 1994 EP
0 928 603 Jul 1999 EP
1 201 202 May 2002 EP
1 201 256 May 2002 EP
2 138 122 Dec 2009 EP
2 919 717 Sep 2015 EP
2 704 745 Nov 1994 FR
2 722 980 Feb 1996 FR
2 366 736 Mar 2002 GB
53-005889 Jan 1978 JP
62-270147 Nov 1987 JP
03-100154 Apr 1991 JP
03-240660 Oct 1991 JP
08-509918 Oct 1996 JP
10-179622 Jul 1998 JP
2000-201941 Jul 2000 JP
2000-210297 Aug 2000 JP
2003-079649 Mar 2003 JP
2004-508888 Mar 2004 JP
2004-181236 Jul 2004 JP
2004-537354 Dec 2004 JP
2006-230722 Sep 2006 JP
2006-528540 Dec 2006 JP
2007-503884 Mar 2007 JP
2007-517627 Jul 2007 JP
2007-190389 Aug 2007 JP
2008-510526 Apr 2008 JP
2008-522787 Jul 2008 JP
2008-537498 Sep 2008 JP
2009-533167 Sep 2009 JP
2010-510852 Apr 2010 JP
2010-173739 Aug 2010 JP
2012-509740 Apr 2012 JP
2012-521221 Sep 2012 JP
2013-534451 Sep 2013 JP
2013-535247 Sep 2013 JP
2014-513583 Jun 2014 JP
2014-523751 Sep 2014 JP
2015-500701 Jan 2015 JP
6012309 Jan 2007 MX
WO 88006022 Aug 1988 WO
WO 93014721 Aug 1993 WO
WO 94004088 Mar 1994 WO
WO 97047246 Dec 1997 WO
WO 98048717 Nov 1998 WO
WO 99023963 May 1999 WO
WO 00038582 Jul 2000 WO
WO 00053126 Sep 2000 WO
WO 01030248 May 2001 WO
WO 02045765 Jun 2002 WO
WO 02065954 Aug 2002 WO
WO 02096300 Dec 2002 WO
WO 03101350 Dec 2003 WO
WO 2004071358 Aug 2004 WO
WO 2005020850 Mar 2005 WO
WO 2005072661 Aug 2005 WO
WO 2006023980 Mar 2006 WO
WO 2006096803 Sep 2006 WO
WO 2008008522 Jan 2008 WO
WO 2009013397 Jan 2009 WO
WO 2009015100 Jan 2009 WO
WO 2009021876 Feb 2009 WO
WO 2010060072 May 2010 WO
WO 2010122472 Oct 2010 WO
WO 2011011621 Jan 2011 WO
WO 2012007941 Jan 2012 WO
WO 2012116266 Aug 2012 WO
WO 2012116267 Aug 2012 WO
WO 2012154265 Nov 2012 WO
WO 2013022880 Feb 2013 WO
WO 2013138655 Sep 2013 WO
WO 2014078541 May 2014 WO
WO 2016044432 Mar 2016 WO
WO 2020030656 Feb 2020 WO
WO 2020236229 Nov 2020 WO
WO 2021163313 Aug 2021 WO
Non-Patent Literature Citations (167)
Entry
Notice of Acceptance in Australian Application No. AU2016231622, dated Dec. 4, 2018.
Official Communication in Australian Application No. AU2019201539, dated Jun. 25, 2019.
Official Communication in European Application No. 19158915.9, dated Jul. 1, 2019.
Official Communication in European Application No. 14774714.1, dated May 23, 2019.
Official Communication in Japanese Application No. JP 2016-500498, dated Mar. 4, 2019.
Notice of Acceptance in Australian Application No. 2014327083, dated Apr. 3, 2019.
Official Communication in Japanese Application No. JP 2016-517392, dated Apr. 22, 2019.
3rd Party Lab Notebook, “Facet Cartilage Repair,” dated May 20, 2003 in 2 pages.
Arthrotek, “CurTek® Bone Tunneling System,” Surgical Technique, 2000, pp. 6.
Arthrotek, “CurvTek® Bone Tunneling System,” User's Manual, 2000, pp. 20.
Ash, H.E., “Proximal Interphalangeal Joint Dimensions for the Design of a Surface Replacement Prosthesis”, School of Engineering, University of Durham, Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine Feb. 1996, vol. 210, No. 2, pp. 95-108.
Beaman, MD et al., “Substance P Innervation of Lumbar Spine Facet Joints”, Spine, 1993, vol. 18, No. 8, pp. 1044-1049.
Butterman, et al., “An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method”, Journal of Biomechanical Engineering, Nov. 1991, vol. 113, pp. 375-386.
Cruess et al., “The Response of Articular Cartilage to Weight-Bearing Against Metal”, The Journal of Bone and Joint Surgery, Aug. 1984, vol. 66-B, No. 4, pp. 592-597.
Dalldorf et al., “Rate of Degeneration of Human Acetabular Cartilage after Hemiarthroplasty”, The Journal of Bone and Joint Surgery, Jun. 1995, vol. 77. No. 6, pp. 877-882.
E-mail from 3rd Party citing U.S. Appl. No. 60/749,000; U.S. Appl. No. 60/749,000 and U.S. Appl. No. 60/749,000, initial e-mail dated May 11, 2009, reply e-mail dated May 18, 2009.
Frost, Harold M., “From Wolff's Law to the Utah Paradigm: Insights About Bone Physiology and Its Clinical Applications”, The Anatomical Record, 2001, vol. 262, pp. 398-419.
King et al., “Mechanism of Spinal Injury Due to Caudocephalad Acceleration,” Symposium on the Lumbar Spine, Orthopedic Clinic of North America, Jan. 1975, vol. 6, pp. 19-31.
Kurtz, PhD et al., “Isoelastic Polyaryletheretherketone Implants for Total Joint Replacement”, PEEK Biomaterials Handbook, Ch. 14, 2012, pp. 221-226.
Meisel et al., “Minimally Invasive Facet Restoration Implant for Chronic Lumbar Zygapophysial Pain: 1-Year Outcomes”, Annals of Surgical Innovation and Research (ASIR), 2014, vol. 8, No. 7, pp. 6.
Panjabi, PhD et al., “Articular Facets of the Human Spine: Quantitative Three-Dimensional Anatomy”, Spine, 1993, vol. 18, No. 10, pp. 1298-1310.
PARTEQ Innovations, “Facet Joint Implants & Resurfacing Devices,” Technology Opportunity Bulletin, Tech ID 1999-012, Queen's University, Ontario Canada, pp. 2.
Ravikumar et al., “Internal Fixation Versus Hemiarthroplasty Versus Total Hip Arthroplasty for Displaced Subcapital Fractures of Femur—13 year Results of a Prospective Randomised Study”, International Journal of the Care of the Injured (Injury), 2000, vol. 31, pp. 793-797.
Schendel et al., “Experimental Measurement of Ligament Force, Facet Force, and Segment Motion in the Human Lumbar Spine”, Journal of Biomechanics, 1993, vol. 26, No. 4/5, pp. 427-438.
Sharpe Products, “Metal Round Disks”, https://web.archive.org/web/20170705214756/https://sharpeproducts.com/store/metal-round-disks, as archived Jul. 5, 2017 in 3 pages.
Tanno et al., “Which Portion in a Facet is Specifically Affected by Articular Cartilage Degeneration with Aging in the Human Lumbar Zygapophysial Joint?”, Okajimas Folia Anatomica Japonica, May 2003, vol. 80, No. 1, pp. 29-34.
Official Communication in Australian Application No. 2005213459, dated Dec. 11, 2009.
Official Communication in Australian Application No. 2005213459, dated Dec. 15, 2010.
Official Communication in Australian Application No. 2011226832, dated Sep. 4, 2012.
Official Communication in Australian Application No. 2011226832, dated Oct. 31, 2012.
Official Communication in Australian Application No. AU2013237744, dated Sep. 2, 2014.
Notice of Acceptance in Australian Application No. AU2013237744, dated Apr. 23, 2015.
Official Communication in Australian Application No. AU2015205875, dated Apr. 2, 2016.
Official Communication in Australian Application No. AU2015205875, dated Jun. 15, 2016.
Official Communication in Australian Application No. AU2016231622, dated Dec. 5, 2017.
Official Communication in Australian Application No. AU2016231622, dated Nov. 22, 2018.
Official Communication in Canadian Application No. 2,555,355, dated Sep. 2, 2011.
Official Communication in Canadian Application No. 2,803,783, dated Sep. 29, 2014.
Official Communication in Canadian Application No. 2,803,783, dated Aug. 5, 2015.
Official Communication in Canadian Application No. 2,803,783, dated Jul. 7, 2016.
Official Communication in Canadian Application No. 2,803,783, dated Apr. 5, 2017.
Official Communication in European Application No. 05712981.9, dated Jul. 24, 2007.
Official Communication in European Application No. 05712981.9, dated Mar. 10, 2008.
Official Communication in European Application No. 05712981.9, dated Apr. 6, 2009.
Official Communication in European Application No. 05712981.9, dated Jun. 15, 2010.
Official Communication in European Application No. 10178979.0, dated Mar. 14, 2011.
Official Communication in European Application No. 10178979.0, dated Nov. 13, 2012.
Official Communication in European Application No. 10178979.0, dated Aug. 5, 2013.
Official Communication in European Application No. 14175088.5, dated Sep. 8, 2014.
Official Communication in European Application No. 14175088.5, dated Nov. 18, 2015.
Official Communication in European Application No. 16180368.9, dated Mar. 31, 2017.
Official Communication in European Application No. 16180368.9, dated Jan. 11, 2018.
Official Communication in Japanese Application No. 2006-552309, dated May 25, 2010.
Official Communication in Japanese Application No. 2006-552309, dated Feb. 15, 2011.
Official Communication in Japanese Application No. 2010-221380, dated Feb. 15, 2011.
Official Communication in Japanese Application No. 2012-272106, dated Dec. 3, 2013.
Official Communication in Japanese Application No. 2012-272106, dated May 26, 2014.
Official Communication in Japanese Application No. 2012-272106, dated Feb. 23, 2015.
Official Communication in Japanese Application No. 2012-272106, dated Nov. 2, 2015.
International Search Report and Written Opinion in International Application No. PCT/US2005/003753, dated Dec. 5, 2006.
International Preliminary Report and Written Opinion in International App No. PCT/US2005/003753, dated Jan. 9, 2007.
Official Communication in European Application No. 08730413.5, dated Feb. 16, 2012.
Official Communication in European Application No. 14177951.2, dated Nov. 13, 2014.
International Search Report and Written Opinion in International Application No. PCT/US2008/054607, dated Jul. 10, 2008.
International Preliminary Reporton Patentability in International Application No. PCT/US2008/054607, dated Sep. 3, 2009.
Official Communication in Australian Application No. 2011292297, dated Jul. 10, 2013.
Official Communication in Australian Application No. 2014277721, dated Sep. 8, 2016.
Official Communication in Australian Application No. 2014277721, dated Jan. 9, 2017.
Official Communication in Canadian Application No. 2,804,223, dated Jun. 5, 2017.
Official Communication in Canadian Application No. 2,804,223, dated Mar. 14, 2018.
Official Communication in European Application No. 11818586.7, dated Nov. 6, 2014.
Official Communication in European Application No. 11818586.7, dated Feb. 3, 2017.
Official Communication in Japanese Application No. 2013-524882, dated Mar. 2, 2015.
Official Communication in Japanese Application No. 2013-524882, dated Nov. 16, 2015.
Official Communication in Japanese Application No. 2015-242990, dated Dec. 12, 2016.
Official Communication in Japanese Application No. 2015-242990, dated May 8, 2017.
Official Communication in Japanese Application No. 2015-242990, dated Aug. 21, 2017.
International Search Report and Written Opinion in International Application No. PCT/US2011/047432, dated Dec. 12, 2011.
International Preliminary Reporton Patentability in International Application No. PCT/US2011/047432, dated Feb. 28, 2013.
Official Communication in Australian Application No. AU2012222229, dated Aug. 21, 2015.
Official Communication in Australian Application No. AU2012222229, dated May 11, 2016.
Official Communication in Australian Application No. AU2012222230, dated Aug. 21, 2015.
Official Communication in European Application No. EP12749447.4, dated Jan. 4, 2017.
Official Communication in European Application No. EP12749447.4, dated Apr. 4, 2017.
Official Communication in European Application No. EP12749447.4, dated Nov. 14, 2018.
Official Communication in European Application No. 12749251.0, dated Jan. 4, 2017.
Official Communication in European Application No. 12749251.0, dated May 9, 2017.
Official Communication in Japanese Application No. JP 2013-555591, dated Jan. 4, 2016.
Official Communication in Japanese Application No. 2016-246368, dated Oct. 30, 2017.
Official Communication in Japanese Application No. 2016-246368, dated Jul. 2, 2018.
Official Communication in Japanese Application No. JP 2013-555592, dated Dec. 7, 2015.
Official Communication in Japanese Application No. JP 2013-555592, dated Aug. 8, 2016.
Official Communication in Japanese Application No. JP 2013-555592, dated Jan. 5, 2018.
Official Communication in Japanese Application No. 2016-237460, dated Oct. 23, 2017.
Official Communication in Japanese Application No. 2016-237460, dated Apr. 16, 2018.
International Search Report in International Application No. PCT/US2012/026470, dated May 30, 2012.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026470, dated Sep. 6, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2012/026472, dated Jun. 20, 2012.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026472, dated Mar. 12, 2014.
Official Communication in Australian Application No. 2014241989, dated Aug. 31, 2017.
Official Communication in Australian Application No. 2014241989, dated Jun. 20, 2018.
Official Communication in Australian Application No. 2014241989, dated Aug. 17, 2018.
Official Communication in European Application No. 14774714.1, dated Oct. 21, 2016.
Official Communication in Japanese Application No. JP 2016-500490, dated Nov. 27, 2017.
Official Communication in Japanese Application No. JP 2016-500490, dated May 7, 2018.
International Search Report and Written Opinion in International Application No. PCT/US2014/019302, dated May 18, 2015.
Official Communication in Australian Application No. 2014241994, dated Oct. 30, 2017.
Official Communication in European Application No. 14776445.0, dated Nov. 7, 2016.
Official Communication in Japanese Application No. JP 2016-500498, dated Jan. 5, 2018.
Official Communication in Japanese Application No. JP 2016-500498, dated Jul. 2, 2018.
International Search Report and Written Opinion in International Application No. PCT/US2014/019325, dated Jun. 17, 2014.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/019325, dated Sep. 24, 2015.
Official Communication in Australian Application No. 2014327083, dated May 31, 2018.
Official Communication in European Application No. 14850082.0, dated Aug. 31, 2016.
Official Communication in Japanese Application No. JP 2016-517392, dated Jun. 4, 2018.
International Search Report and Written Opinion in International Application No. PCT/US2014/056598, dated Dec. 29, 2014.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/056598, dated Apr. 7, 2016.
International Search Report and Written Opinion in International Application No. PCT/US2015/050441, dated Dec. 28, 2015.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2015/050441, dated Mar. 30, 2017.
Official Communication in European Application No. 16743832.4, dated Jul. 24, 2018.
International Search Report and Written Opinion in International Application No. PCT/US2016/013062, dated Mar. 16, 2016.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2016/013062, dated Aug. 10, 2017.
International Search Report in International Application No. PCT/CA2002/000193 filed Feb. 15, 2002, dated Jun. 18, 2002.
International Search Report and Written Opinion in International Application No. PCT/US2004/028094, dated May 16, 2005.
International Preliminary Reporton Patentability in International Application No. PCT/US2004/028094, dated Feb. 25, 2013.
International Search Report in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated May 24, 2005.
International Preliminary Reporton Patentability in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated Jan. 17, 2006.
Official Communication in Australian Application No. 2019201539, dated Apr. 3, 2020.
Official Communication in European Application No. 12749251.0, dated Aug. 16, 2019.
Official Communication in Australian Application No. 2018279003, dated Jan. 9, 2020.
Official Communication in Australian Application No. 2018279003, dated Sep. 18, 2020.
Official Communication in Australian Application No. 2018279003, dated Jan. 12, 2021.
Official Communication in Canadian Application No. 2,903,999, dated Dec. 9, 2019.
Official Communication in Canadian Application No. 2,903,999, dated Aug. 31, 2020.
Official Communication in Australian Application No. 2014241994, dated Jan. 31, 2020.
Official Communication in Canadian Application No. 2,904,280, dated Dec. 9, 2019.
Official Communication in Canadian Application No. 2,904,280, dated Sep. 1, 2020.
Official Communication in Japanese Application No. 2016-500498, dated Aug. 9, 2019.
Official Communication in Japanese Application No. 2019-163133, dated Oct. 5, 2020.
Official Communication in Australian Application No. 2019206045, dated Sep. 8, 2020.
Official Communication in Canadian Application No. 2,923,623, dated Dec. 8, 2020.
Official Communication in European Application No. 14850082.0, dated Sep. 15, 2020.
Official Communication in Japanese Application No. 2016-517392, dated Dec. 2, 2019.
Official Communication in Japanese Application No. 2019-236855, dated Nov. 24, 2020.
Official Communication in Australian Application No. 2016212009, dated Sep. 6, 2019.
Official Communication in Australian Application No. 2016212009, dated May 26, 2020.
Official Communication in Australian Application No. 2016212009, dated Jul. 14, 2020.
Official Communication in Japanese Application No. 2017-557269, dated Oct. 21, 2019.
Official Communication in Japanese Application No. 2017-557269, dated Jul. 13, 2020.
International Search Report and Written Opinion in International Application No. PCT/US2020/014985, dated Apr. 24, 2020.
Official Communication in European Application No. 11818586.7, dated Apr. 8, 2021.
Official Communication in European Application No. EP12749447.4, dated Aug. 18, 2021.
Official Communication in Canadian Application No. 2,904,280, dated Jun. 7, 2021.
Official Communication in European Application No. 14776445.0, dated Jun. 10, 2021.
Official Communication in Japanese Application No. 2019-163133, dated Jun. 7, 2021.
Official Communication in Australian Application No. 2019206045, dated Sep. 9, 2020.
Official Communication in Australian Application No. 2019206045, dated Jul. 16, 2021.
Official Communication in Japanese Application No. 2019-236855, dated Jun. 28, 2021.
Official Communication in Japanese Application No. 2020-181320, Sep. 21, 2021.
International Search Report and Written Opinion in International Application No. PCT/US2021/017643, dated Apr. 28, 2021.
Official Communication in Australian Application No. 2020244544, dated Nov. 15, 2021.
Official Communication in Australian Application No. 2016212009, dated Nov. 24, 2021.
Official Communication in Canadian Application No. 2,972,788, dated Jan. 31, 2022.
Official Communication in Japanese Application No. 2017-557269, dated Nov. 1, 2021.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2020/014985, dated Dec. 2, 2021.
Invitation to Pay Additional Search Fees in International Application No. PCT/US2021/072351, dated Jan. 13, 2022.
International Search Report and Written Opinion in International Application No. PCT/US2021/072351, dated Mar. 18, 2022.
Related Publications (1)
Number Date Country
20190328428 A1 Oct 2019 US
Divisions (1)
Number Date Country
Parent 13033791 Feb 2011 US
Child 14256532 US
Continuations (3)
Number Date Country
Parent 15726775 Oct 2017 US
Child 16436118 US
Parent 14869793 Sep 2015 US
Child 15726775 US
Parent 14256532 Apr 2014 US
Child 14869793 US