Some embodiments described herein relate generally to methods and apparatus for stabilizing bone, for example, stabilizing vertebrae by securing the articular processes of the vertebrae.
Traumatic, inflammatory, and degenerative disorders of the spine can lead to severe pain and loss of mobility. One source of back and spine pain is related to degeneration of the facets of the spine or facet arthritis. Bony contact or grinding of degenerated facet joint surfaces can play a role in some pain syndromes. While many technological advances have focused on the intervertebral disc and artificial replacement or repair of the intervertebral disc, little advancement in facet repair has been made. Facet joint and disc degeneration frequently occur together. Thus, a need exists to address the clinical concerns raised by degenerative facet joints.
The current standard of care to address the degenerative problems with the facet joints is to fuse the two adjacent vertebrae. By performing this surgical procedure, the relative motion between the two adjacent vertebrae is stopped, thus stopping motion of the facets and any potential pain generated as a result thereof. Procedures to fuse two adjacent vertebrae often involve fixation and/or stabilization of the two adjacent vertebrae until the two adjacent vertebrae fuse.
Injuries and/or surgical procedure on and/or effecting other bones can also result in the desire to fixate and/or stabilize a bone until the bone, or bone portions, can fuse, for example, to stabilize a sternum after heart surgery, to stabilize a rib after a break, etc. Current procedures to fixate and/or stabilize adjacent vertebrae and/or other bones can be slow and/or complex.
Accordingly, a need exists for an apparatus and a procedure to quickly and/or easily stabilize and/or fixate a bone.
In some embodiments, a method comprises forming a lumen in a first bone portion and forming a lumen in a second bone portion. The method further includes inserting a portion of a flexible fastening band through the lumen in the first bone portion and through the lumen in the second bone portion, and inserting the portion of the flexible fastening band into a fastening mechanism monolithically formed with the flexible fastening band. The method further includes advancing the portion of the flexible fastening band through the fastening mechanism until the first bone portion and the and the second bone portion are stabilized.
In some embodiments, a method comprises disposing a portion of a flexible fastening band into contact with a first bone portion and into contact with a second bone portion. The portion of the flexible fastening band having a substantially uniform shape configured to substantially compliment a shape of the first bone portion and a shape of the second bone portion. The method further includes inserting the portion of the flexible fastening band into a fastener and advancing the portion of the flexible fastening band through the fastener until the first bone portion and the and the second bone portion are stabilized.
In some embodiments, an apparatus includes a flexible elongate body including a proximal end portion, a first portion, a second portion, a reinforcement portion, and a distal end portion. The distal end portion of the flexible elongate body includes a fastener configured to accept the proximal end portion and the first portion. The second portion includes a first material, and the reinforcement portion includes a second material, different from the first material and stronger than the first material. The reinforcement piece is disposed within at least a portion of the second portion.
In some embodiments, an apparatus comprises a flexible elongate body including a proximal end portion, a first portion, a second portion mutually exclusive from and distal to the first portion, and a distal end portion. The apparatus further comprises a fastener configured to accept the proximal end portion and the first portion. The first portion of the flexible elongate body having a length and a substantially uniform first shape and the second portion of the flexible elongate body having a length and a substantially uniform second shape, different from the first shape, that is configured to substantially compliment a shape of first bone portion and a shape of a second bone portion. The fastener configured to receive the first portion of the flexible elongate body when the second portion of the flexible elongate body is disposed in contact with the first bone portion and in contact with the second bone portion.
As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a ratchet” is intended to mean a single ratchet or a combination of ratchets. As used in this specification, a substance can include any biologic and/or chemical substance, including, but not limited to, medicine, adhesives, etc. While exemplary references are made with respect to vertebra, in some embodiments another bone can be involved. While specific reference may be made to a specific vertebra and/or subset and/or grouping of vertebrae, it is understood that any vertebra and/or subset and/or grouping, or combination of vertebrae can be used.
As shown in
The orientation of the facet joints vary, depending on the level of the vertebral column. In the C1 and C2 vertebrae, for example the facet joints are parallel to the transverse plane.
In addition to guiding movement of the vertebrae, the facet joints also contribute to the load-bearing ability of the vertebral column. One study by King et al. Mechanism of Spinal Injury Due to Caudocephalad Acceleration, Orthop. Clin. North Am., 6:19 1975, found facet joint load-bearing as high as 30% in some positions of the vertebral column. The facet joints may also play a role in resisting shear stresses between the vertebrae. Over time, these forces acting on the facet joints can cause degeneration and arthritis.
In some embodiments described herein, a flexible fastening band can be used to stabilize and/or fixate a first vertebra to a second vertebra to reduce the pain, to reduce further degradation of a spine, or of a specific vertebra of a spine, and/or until the first vertebra and the second vertebra have fused.
Proximal end portion 142 is configured to pass through a lumen formed through a vertebra and a lumen formed through an adjacent vertebra, and to pass through fastening mechanism 150 of the distal end portion 148. In some embodiments, proximal end portion 142 can be shaped to increase the ease of inserting proximal end portion 142 into fastening mechanism 150, e.g., proximal end portion 142 can be tapered, rounded, and/or angled, etc, to reduce at least a portion of a cross-sectional area of proximal end portion 142.
First portion 144 can extend for a length between proximal end portion 142 and second portion 146, and can have a substantially uniform shape. The first portion 144 can have, for example, a substantially cuboidal shape, or a substantially cylindrical shape. In some embodiments, the length of first portion 144 can be more than twice the length of second portion 146. In some embodiments, the cross-sectional area of the first portion 144 can be smaller than the cross-sectional area of the second portion 146. In some embodiments, the cross-sectional area of first portion 144 can be less than a cross-sectional area of a lumen defined by the fastening mechanism 150. First portion 144 can include a gear rack (not shown in
Second portion 146 can have a length between first portion 144 and distal end portion 148, and can include a substantially uniform shape. In embodiments including the third portion, second portion 146 can have a length between first portion 144 and the third portion. Second portion 146 can have, for example, a substantially cuboidal shape or a substantially cylindrical shape. First portion 144 and second portion 146 can have the same or different shapes, e.g., first portion 144 and second portion 146 can both be substantially cuboidal (see, e.g., band 240 in
Distal end portion 148 includes a fastening mechanism 150 configured to accept at least a portion of proximal end portion 142, first portion 144, and/or second portion 146. In some embodiments, distal end portion 148, second portion 146, first portion 144, and proximal end portion 142 can be monolithically formed. Fastening mechanism 150 includes a lumen (not shown in
In some embodiments, at least one of distal end portion 148, second portion 146, first portion 144, and proximal end portion 142 can be formed separately from the other(s) of distal end portion 148, second portion 146, first portion 144, and proximal end portion 142. Said another way, and by way of example, distal end portion 148, first portion 144, and proximal end portion 142 can be monolithically formed together, while second portion 146 can be separately formed. In this manner, band 140 can include an initial second portion 146 configured to be replaced and/or covered with a replacement second portion 146. By way of a first example, initial second portion 146 can be monolithically formed with first portion 144 and replacement second portion 146 can be slidably disposed over initial second portion 146. By way of a second example, initial second portion 146 can be separately formed from first portion 144, can be removed from band 140, and replacement second portion 146 can be slidably disposed over first portion 144. By way of a third example, initial second portion 146 can be separately or monolithically formed from first portion 144, and replacement second portion 146 can be slidably disposed over first portion 144 and initial second portion 146. In some embodiments, initial second portion 146 and replacement second portion 146 can have the same shape, e.g., initial second portion 146 can include a substantially cylindrical shape and replacement second portion 146 can include a substantially cylindrical shape. In some embodiments, initial second portion 146 and replacement second portion 146 can have different shapes, e.g., initial second portion 146 can include a substantially cuboidal shape and replacement second portion 146 can include a substantially cylindrical shape.
In some embodiments, the shape of first portion 144 and the shape of second portion 146 can be determined based on the shape of an artificial lumen formed through a articular process of a vertebra. By way of example, if the shape of the artificial lumen is cuboidal, the shape of the of the first portion 144 and the shape of the second portion 146 can be cuboidal to allow the first portion 144 and the second portion 146 to slidably advance through the artificial lumen. By way of a second example, if the shape of the artificial lumen is cylindrical, the shape of the first portion 144 and the shape of the second portion 146 can be either cuboidal or cylindrical. Continuing with the second example, the shape of the first portion 144 can be cuboidal to allow the first portion 144 to advance easily through the artificial lumen, while the shape of the second portion 146 can be cylindrical to allow the second portion 146 to fit more tightly within the artificial lumen as compared to a cuboidal shape.
In some embodiments, the shape of the first portion 144 and the shape of the second portion 146 can be determined based on characteristics of the bone or bone portion against which the first portion 144 and the second portion 146 may contact. By way of example, while first portion 144 and/or second portion 146 can be substantially cuboidal, edges of the first portion 144 and/or the second portion 146 can be rounded, partially rounded, and/or otherwise shaped to compliment the shape of a bone or bone portion, and/or to reduce digging or grinding into the bone or bone portion. In this manner, use of band 140 may cause little or no damage to the bone or bone portions contacted by band 140.
In some embodiments, band 140 can include a third portion (not shown in
While each of first portion 144, second portion 146, and the third portion can be a substantially uniform shape, in some embodiments any one of first portion 144, second portion 146, and the third portion can include a transition portion to transition band 140 from a first substantially uniform shape to a second substantially uniform shape. By way of example, in some embodiments, first portion 144 and the third portion can be substantially cuboidal and second portion 146 can be substantially cylindrical. In this example, second portion 146 can include an angled, conical, or other shaped transition portion (see, e.g., second portion 446 in
In some embodiments, the band can include a spacer (not shown). The spacer can be similar to, and have similar features to the embodiments of the prosthesis shown and described in U.S. patent application Ser. No. 12/859,009; filed Aug. 18, 2010, and titled “Vertebral Facet Joint Drill and Method of Use” (referred to as “the '009 application”), and is incorporated herein by reference in its entirety. As described in the '009 patent, the spacer can be implanted and deployed to restore the space between facets of a superior articular process of a first vertebra and an inferior articular process of an adjacent vertebra. As described herein, the spacer can be implanted and deployed to help stabilize adjacent vertebrae with adhesives, and/or can be implanted and deployed to deliver a medication. In such embodiments, the spacer can be, for example, substantially disc shaped. In other embodiments, the spacer can be other shapes, e.g., square, elliptical, or any other shape. The spacer can include a first side and a second side. The first side and/or the second side can be, for example, convex, concave, or flat. Said another way, the first side of the spacer can be concave, convex, or flat, and the second side of the spacer can be concave, convex, or flat, for example, the first side can be concave and the second side concave, the first side can be concave and the second side convex, etc. The spacer can include the same materials as band 140. In some embodiments, the spacer can include substances configured to release medication and/or increase the stability of a vertebra and/or band 140. As discussed above, the substances can is include a medicine(s) and/or an adhesive(s).
Each of band 240 and band 340 can be similar to band 140 described above and can include similar components. By way of example, band 240 includes a proximal end portion 242, a first portion 244, a second portion 246, and a distal end portion 248 including a fastening mechanism 250, and band 340 includes a proximal end portion (not shown in
As shown in
Each of band 440 and band 540 can be similar to bands 140, 240, and 340 described above and can include similar components. By way of example, band 440 includes a proximal end portion 442, a first portion 444, a second portion 446, and a distal end portion 448 including a fastening mechanism 450, and band 540 includes a proximal end portion (not shown in
Each of band 640 and band 740 can be similar to bands 140, 240, 340, 440, and 540 described above and can include similar components. In contrast to bands 140, 240, 340, 440, and 540, band 640 can include a spacer 654, and band 740 can include a spacer 754. While not shown, any of bands 140, 240, 340, 440, and 540, can include a spacer similar to spacer 654 and 754.
As shown in
The proximal end portion is inserted into the lumen of inferior articular process IAP5A of vertebra V5, at 6010. Proximal end portion 642 is inserted into the lumen of fastening mechanism 650 of distal end portion 648, at 6012. In some embodiments, to insert the proximal end portion into fastening mechanism 650 of distal end portion 648, a medical practitioner can grasp the proximal end portion and distal end 648, and manually insert the proximal end portion into fastening mechanism 650. In other embodiments, one or both of the proximal end portion and distal end portion 648 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive distal end 648 without obstructing the lumen of fastening mechanism 650. By way of another example, the surgical tools can be configured to grasp and manipulate the proximal end portion and/or first portion 644. A portion of first portion 644 is advanced through the lumen of superior articular process SAP6A of vertebra V6 and through the lumen of inferior articular process IAP5A of vertebra V5. A portion of first portion 644 is advanced through the lumen of fastening mechanism 650 of distal end portion 648 until superior articular process SAP6A of vertebra V6 and inferior articular process IAP5A of vertebra V5 are stabilized, at 6014. In some embodiments, a surgical tool can be used to advance first portion 644 through the lumen of fastening mechanism 650. In such embodiments, one portion of the surgical tool can be configured to receive distal portion 648 without obstructing the lumen through fastening mechanism 650, one portion of the surgical tool can be configured to grip and/or advance the proximal end portion and or first portion 644. The surgical tool can be configured to restrict the amount of force and/or torque imparted on band 640 and/or to provide an indication to a medical practitioner of the amount of force and/or torque imparted on the band. In some embodiments, the amount of force and/or torque imparted on the band, and/or the amount of force and/or torque required to provide and indication to the medical practitioner, can be adjusted by the medical practitioner and/or can be determined by the configuration of the band selected for the procedure and/or by the physiology of the patient. As each gear of the gear rack passes over the ratchet of the fastening mechanism, the first portion 644 is prevented from retracting out of the fastening mechanism. A portion of first portion 644 is removed from band 640. In some embodiments, a surgical tool can be used to remove the portion of the band 640 that extends beyond fastening mechanism 650. In such embodiments, the surgical tool can be configured to maintain a grip on the portion of the band 640 that extends beyond fastening mechanism 250 and is to be removed. In this manner, the location of the removed portion of band 640 can be controlled prior to, and after, removal. Band 740 and spacer 754 can be substantially similar to band 640 and spacer 654, and method 770 can be used to implant and deploy band 740 and spacer 754.
Reinforcement piece 1072 can include any of the materials described above for band 140. In some embodiments, reinforcement piece 1072 can include a material stronger than second portion 1046 and/or first portion 1044, for example, first portion 1044 and second portion 1046 can include PEEK and reinforcement piece 1072 can include titanium. As shown in
The reinforcement piece can be molded within the band. Said another way, in embodiments where the first portion, the second portion, and or the distal end portion are moldable materials, the reinforcement piece can be placed in the mold and the moldable materials can be injected or otherwise put in the mold around the reinforcement piece. In other embodiments, each portion of the band (for example, the proximal end portion, the first portion, the second portion, the third portion, and/or the distal end portion) around the reinforcement piece can have a top half and a bottom half, and each of the top half and the bottom half can be placed around the reinforcement piece, and sealed. As shown in
As shown in
As shown in
Either of band 1140 and/or band 1240 can be used in accordance with any of the methods described herein. By way of example, second portion 1146 of band 1140 can be disposed in a lumen of IAP11A of vertebra V11 and in a lumen of SAP12A of vertebra V12. Proximal end portion 1142 is inserted into a lumen of fastening mechanism 1150. In some embodiments, to insert proximal end portion 1142 into fastening mechanism 1150, a medical practitioner can grasp proximal end portion 1142 and fastening mechanism 1150, and manually insert proximal end portion 1142 into fastening mechanism 1150. In other embodiments, one or both of proximal end portion 1142 and fastening mechanism 1150 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive fastening mechanism 1150 without obstructing the lumen of fastening mechanism 1150. A portion of first portion 1144 is advanced through the lumen of fastening mechanism 1150 until superior articular process SAP12A of vertebra V12 and inferior articular process IAP11A of vertebra V11 are stabilized.
As shown in
Either of band 1340 and/or band 1440 can be used in accordance with any of the methods described herein. By way of example, the second portion of band 1340 can be disposed in a lumen of IAP13A of vertebra V13, spacer 1354 can be disposed between IAP13A and SAP14A, and the second portion of band 1340 can be disposed in a lumen of SAP14A of vertebra V14. Proximal end portion 1342 is inserted into a lumen of fastening mechanism 1350. In some embodiments, to insert proximal end portion 1342 into fastening mechanism 1350, a medical practitioner can grasp proximal end portion 1342 and fastening mechanism 1350, and manually insert proximal end portion 1342 into fastening mechanism 1350. In other embodiments, one or both of proximal end portion 1342 and fastening mechanism 1350 can be grasped with surgical tools (not shown). In such embodiments, the surgical tools can be configured to fit specific band configuration, for example, the surgical tools can be configured to receive fastening mechanism 1350 without obstructing the lumen of fastening mechanism 1350. A portion of first portion 1344 is advanced through the lumen of fastening mechanism 1350 until superior articular process SAP14A of vertebra V14 and inferior articular process IAP13A of vertebra V13 are stabilized.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. For example, while the descriptions given are with reference to stabilizing vertebra, another bone(s), such as, for example, a sternum and/or a rib(s) could be stabilized using the flexible fastening bands described herein. In another example, a flexible fastening band can be used to stabilize and/or fixate an intramedullary (IM) rod or nail. For example, the flexible fastening band can be used at different longitudinal locations along an IM rod or nail, and used to couple adjacent bone portions to the IM rod or nail. In such situations, a given flexible fastening band can fix a first bone portion, the IM rod or nail, and a second bone portion, all of which are positioned between the distal portion and the proximal portion of the flexible fastening band. In yet another example, a flexible fastening band can be used to stabilize and/or fixate a bone fragment. While various embodiments have been described above with regard to natural bone spaces, (e.g., the space between an inferior articulate process and a superior articulate process), in other embodiments, the bone spacing can be man-made (e.g., sternum split during a heart procedure), and/or due to an injury (e.g., broken bone).
Where methods described above indicate certain events occurring in certain order, the ordering of certain events can be modified. Additionally, certain of the events can be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different embodiments described. For example,
The present application is a continuation of U.S. application Ser. No. 15/726,775, filed Oct. 6, 2017, which is a continuation of U.S. application Ser. No. 14/869,793, filed Sep. 29, 2015, which is a continuation of U.S. application Ser. No. 14/256,532, filed Apr. 18, 2014, which is a divisional of U.S. application Ser. No. 13/033,791, filed Feb. 24, 2011, the disclosures of each of these applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
86016 | Howell | Jan 1869 | A |
1630239 | Binkley et al. | May 1927 | A |
1822280 | Ervay | Sep 1931 | A |
1822330 | Anslie | Sep 1931 | A |
2486303 | Longfellow | Oct 1949 | A |
2706023 | Merritt | Apr 1955 | A |
2967282 | Schwartz et al. | Jan 1961 | A |
3111945 | Von Solbrig | Nov 1963 | A |
3149808 | Weckesser | Sep 1964 | A |
3570497 | Lemole | Mar 1971 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
3879767 | Stubstad | Apr 1975 | A |
4001896 | Arkangel | Jan 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4085466 | Goodfellow et al. | Apr 1978 | A |
4119091 | Partridge | Oct 1978 | A |
4156296 | Johnson et al. | May 1979 | A |
4164793 | Swanson | Aug 1979 | A |
4166292 | Bokros | Sep 1979 | A |
4231121 | Lewis | Nov 1980 | A |
D261935 | Halloran | Nov 1981 | S |
4312337 | Donohue | Jan 1982 | A |
4323217 | Dochterman | Apr 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4502161 | Wall | Mar 1985 | A |
D279502 | Halloran | Jul 1985 | S |
D279503 | Halloran | Jul 1985 | S |
4535764 | Ebert | Aug 1985 | A |
4570618 | Wu | Feb 1986 | A |
4573458 | Lower | Mar 1986 | A |
4573459 | Litton | Mar 1986 | A |
4634445 | Helal | Jan 1987 | A |
4643178 | Nastari et al. | Feb 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4706659 | Matthews et al. | Nov 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4722331 | Fox | Feb 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4834757 | Brantigan | May 1989 | A |
4863477 | Monson | Sep 1989 | A |
4880429 | Stone | Nov 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
4907577 | Wu | Mar 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4919667 | Richmond | Apr 1990 | A |
4923471 | Morgan | May 1990 | A |
4936848 | Bagby | Jun 1990 | A |
4941466 | Romano | Jul 1990 | A |
4955913 | Robinson | Sep 1990 | A |
4959065 | Arnett et al. | Sep 1990 | A |
4969909 | Barouk | Nov 1990 | A |
5000165 | Watanabe | Mar 1991 | A |
5002546 | Romano | Mar 1991 | A |
5011484 | Bréard | Apr 1991 | A |
5015255 | Kuslich | May 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5062845 | Kuslich | Nov 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5092868 | Mehdian | Mar 1992 | A |
5112013 | Tolbert et al. | May 1992 | A |
5112346 | Hiltebrandt et al. | May 1992 | A |
5127912 | Ray et al. | Jul 1992 | A |
5135188 | Anderson et al. | Aug 1992 | A |
5147404 | Downey | Sep 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5192326 | Bao et al. | Mar 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5209755 | Abrahan et al. | May 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5282861 | Kaplan | Feb 1994 | A |
5286249 | Thibodaux | Feb 1994 | A |
5300073 | Ray et al. | Apr 1994 | A |
5304178 | Stahurski | Apr 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5326364 | Clift, Jr. et al. | Jul 1994 | A |
5330479 | Whitmore | Jul 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5368596 | Burkhart | Nov 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5400784 | Durand et al. | Mar 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5413576 | Rivard | May 1995 | A |
5415661 | Holmes | May 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5462542 | Alesi, Jr. | Oct 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5491882 | Walston et al. | Feb 1996 | A |
5496142 | Fodor et al. | Mar 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5507823 | Walston et al. | Apr 1996 | A |
5509918 | Romano | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5527312 | Ray | Jun 1996 | A |
5527314 | Brumfield et al. | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540698 | Preissman | Jul 1996 | A |
5540703 | Barker, Jr. et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571105 | Gundolf | Nov 1996 | A |
5571131 | Ek et al. | Nov 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5577995 | Walker et al. | Nov 1996 | A |
5586989 | Bray, Jr. | Dec 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5603713 | Aust et al. | Feb 1997 | A |
5638700 | Shechter | Jun 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649947 | Auerbach et al. | Jul 1997 | A |
5653762 | Pisharodi | Aug 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5700265 | Romano | Dec 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5707373 | Sevrain et al. | Jan 1998 | A |
5713542 | Benoit | Feb 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5741260 | Songer et al. | Apr 1998 | A |
5741261 | Moskovitz et al. | Apr 1998 | A |
D395138 | Ohata | Jun 1998 | S |
5766251 | Koshino | Jun 1998 | A |
5766253 | Brosnahan | Jun 1998 | A |
5772663 | Whiteside et al. | Jun 1998 | A |
5797916 | McDowell | Aug 1998 | A |
5810854 | Beach | Sep 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5851208 | Trott | Dec 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868745 | Alleyne | Feb 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
5879396 | Walston et al. | Mar 1999 | A |
5888203 | Goldberg | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895428 | Berry | Apr 1999 | A |
RE36221 | Breard et al. | Jun 1999 | E |
5918604 | Whelan | Jul 1999 | A |
5951555 | Rehak et al. | Sep 1999 | A |
5964765 | Fenton et al. | Oct 1999 | A |
5993452 | Vandewalle | Nov 1999 | A |
5997542 | Burke | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6014588 | Fitz | Jan 2000 | A |
6019763 | Nakamura et al. | Feb 2000 | A |
6019768 | Wenstrom, Jr. et al. | Feb 2000 | A |
6019792 | Cauthen | Feb 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6050998 | Fletcher | Apr 2000 | A |
6063121 | Xavier et al. | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6080157 | Cathro et al. | Jun 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6102347 | Benoit | Aug 2000 | A |
6106558 | Picha | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6132464 | Martin | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6179839 | Weiss et al. | Jan 2001 | B1 |
D439340 | Michelson | Mar 2001 | S |
6200322 | Branch et al. | Mar 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
D450122 | Michelson | Nov 2001 | S |
6325803 | Schumacher et al. | Dec 2001 | B1 |
D454953 | Michelson | Mar 2002 | S |
6368325 | McKinley et al. | Apr 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6371958 | Overaker | Apr 2002 | B1 |
6375573 | Romano | Apr 2002 | B2 |
6379386 | Resch et al. | Apr 2002 | B1 |
6409765 | Bianchi et al. | Jun 2002 | B1 |
D460188 | Michelson | Jul 2002 | S |
D460189 | Michelson | Jul 2002 | S |
6419678 | Asfora | Jul 2002 | B1 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6423071 | Lawson | Jul 2002 | B1 |
6436099 | Drewry et al. | Aug 2002 | B1 |
6436101 | Hamada et al. | Aug 2002 | B1 |
6436146 | Hassler et al. | Aug 2002 | B1 |
D463560 | Michelson | Sep 2002 | S |
6447544 | Michelson | Sep 2002 | B1 |
6470207 | Simon et al. | Oct 2002 | B1 |
6475220 | Whiteside | Nov 2002 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6572617 | Senegas | Jun 2003 | B1 |
6579318 | Varga et al. | Jun 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6589244 | Sevrain et al. | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6607530 | Carl et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
D479331 | Pike et al. | Sep 2003 | S |
6626944 | Taylor | Sep 2003 | B1 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6656178 | Veldhuizen et al. | Dec 2003 | B1 |
6656195 | Peters et al. | Dec 2003 | B2 |
6669697 | Pisharodi | Dec 2003 | B1 |
6669729 | Chin | Dec 2003 | B2 |
6679914 | Gabbay | Jan 2004 | B1 |
6706068 | Ferree | Mar 2004 | B2 |
6743232 | Overaker et al. | Jun 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6764491 | Frey et al. | Jul 2004 | B2 |
6770095 | Grinberg et al. | Aug 2004 | B2 |
6783527 | Drewry et al. | Aug 2004 | B2 |
6790210 | Cragg et al. | Sep 2004 | B1 |
6802863 | Lawson et al. | Oct 2004 | B2 |
6811567 | Reiley | Nov 2004 | B2 |
6902566 | Zucherman et al. | Jun 2005 | B2 |
6908484 | Zubok et al. | Jun 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6974479 | Trieu | Dec 2005 | B2 |
7004971 | Serhan et al. | Feb 2006 | B2 |
D517404 | Schluter | Mar 2006 | S |
7008429 | Golobek | Mar 2006 | B2 |
7013675 | Marquez-Pickering | Mar 2006 | B2 |
7051451 | Augostino et al. | May 2006 | B2 |
7074238 | Stinson et al. | Jul 2006 | B2 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7223269 | Chappuis | May 2007 | B2 |
D565180 | Schluter | Mar 2008 | S |
7371238 | Sololeski et al. | May 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7517358 | Petersen | Apr 2009 | B2 |
7537611 | Lee | May 2009 | B2 |
7559940 | McGuire et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7585300 | Cha | Sep 2009 | B2 |
7608104 | Yuan et al. | Oct 2009 | B2 |
7695472 | Young | Apr 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806895 | Weier et al. | Oct 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7862590 | Lim et al. | Jan 2011 | B2 |
7935136 | Alamin et al. | May 2011 | B2 |
D643121 | Milford et al. | Aug 2011 | S |
7993370 | Jahng | Aug 2011 | B2 |
7998172 | Blain | Aug 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8109971 | Hale | Feb 2012 | B2 |
8133225 | Pieske | Mar 2012 | B2 |
8163016 | Linares | Apr 2012 | B2 |
8172877 | Winslow et al. | May 2012 | B2 |
8177810 | Ferree | May 2012 | B2 |
8192468 | Biedermann et al. | Jun 2012 | B2 |
8216275 | Fielding et al. | Jul 2012 | B2 |
8231661 | Carls | Jul 2012 | B2 |
8246655 | Jackson et al. | Aug 2012 | B2 |
8267966 | McCormack et al. | Sep 2012 | B2 |
8292954 | Robinson et al. | Oct 2012 | B2 |
8306307 | Koike et al. | Nov 2012 | B2 |
8382801 | Lamborne et al. | Feb 2013 | B2 |
8394125 | Assell | Mar 2013 | B2 |
8460346 | Ralph et al. | Jun 2013 | B2 |
8486078 | Carl et al. | Jul 2013 | B2 |
8496691 | Blain | Jul 2013 | B2 |
8579903 | Carl | Nov 2013 | B2 |
8652137 | Blain et al. | Feb 2014 | B2 |
8740942 | Blain | Jun 2014 | B2 |
8740949 | Blain | Jun 2014 | B2 |
8753345 | McCormack et al. | Jun 2014 | B2 |
8784423 | Kowarsch et al. | Jul 2014 | B2 |
8858597 | Blain | Oct 2014 | B2 |
8882804 | Blain | Nov 2014 | B2 |
8961613 | Assell et al. | Feb 2015 | B2 |
D724733 | Blain et al. | Mar 2015 | S |
8974456 | Allen et al. | Mar 2015 | B2 |
8979529 | Marcus | Mar 2015 | B2 |
8992533 | Blain et al. | Mar 2015 | B2 |
8998953 | Blain | Apr 2015 | B2 |
9017389 | Assell et al. | Apr 2015 | B2 |
9060787 | Blain et al. | Jun 2015 | B2 |
9101410 | Urrea | Aug 2015 | B1 |
D739935 | Blain et al. | Sep 2015 | S |
9149283 | Assell et al. | Oct 2015 | B2 |
9161763 | Assell et al. | Oct 2015 | B2 |
9179943 | Blain | Nov 2015 | B2 |
9220547 | Blain et al. | Dec 2015 | B2 |
D748262 | Blain | Jan 2016 | S |
9233006 | Assell et al. | Jan 2016 | B2 |
D748793 | Blain | Feb 2016 | S |
9265546 | Blain | Feb 2016 | B2 |
9271765 | Blain | Mar 2016 | B2 |
9301786 | Blain | Apr 2016 | B2 |
9314277 | Assell et al. | Apr 2016 | B2 |
9345488 | Assell et al. | May 2016 | B2 |
9421044 | Blain et al. | Aug 2016 | B2 |
D765853 | Blain et al. | Sep 2016 | S |
D765854 | Blain et al. | Sep 2016 | S |
9439686 | Rooney et al. | Sep 2016 | B2 |
9456855 | Blain et al. | Oct 2016 | B2 |
9517077 | Blain et al. | Dec 2016 | B2 |
D777921 | Blain et al. | Jan 2017 | S |
D780315 | Blain et al. | Feb 2017 | S |
9572602 | Blain et al. | Feb 2017 | B2 |
9615861 | Perez-Cruet et al. | Apr 2017 | B2 |
D790062 | Blain et al. | Jun 2017 | S |
9675387 | Blain | Jun 2017 | B2 |
9743937 | Blain et al. | Aug 2017 | B2 |
9808294 | Blain | Nov 2017 | B2 |
9820784 | Blain et al. | Nov 2017 | B2 |
9839450 | Blain et al. | Dec 2017 | B2 |
D810942 | Blain et al. | Feb 2018 | S |
D812754 | Blain et al. | Mar 2018 | S |
9936984 | Blain | Apr 2018 | B2 |
10022161 | Blain | Jul 2018 | B2 |
10085776 | Blain | Oct 2018 | B2 |
D834194 | Blain et al. | Nov 2018 | S |
10194955 | Blain et al. | Feb 2019 | B2 |
10251679 | Blain et al. | Apr 2019 | B2 |
D857900 | Blain et al. | Aug 2019 | S |
10368921 | Blain | Aug 2019 | B2 |
10426524 | Blain | Oct 2019 | B2 |
10624680 | Blain | Apr 2020 | B2 |
D884896 | Blain et al. | May 2020 | S |
10758361 | Blain | Sep 2020 | B2 |
D926982 | Blain et al. | Aug 2021 | S |
11272961 | Blain et al. | Mar 2022 | B2 |
11304733 | Blain et al. | Apr 2022 | B2 |
20010018614 | Bianchi | Aug 2001 | A1 |
20020018799 | Spector et al. | Feb 2002 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020040227 | Harari | Apr 2002 | A1 |
20020065557 | Goble et al. | May 2002 | A1 |
20020072800 | Goble et al. | Jun 2002 | A1 |
20020077700 | Varga et al. | Jun 2002 | A1 |
20020086047 | Mueller et al. | Jul 2002 | A1 |
20020120335 | Angelucci et al. | Aug 2002 | A1 |
20020123806 | Reiley | Sep 2002 | A1 |
20020138077 | Ferree | Sep 2002 | A1 |
20020151895 | Soboleski et al. | Oct 2002 | A1 |
20020173800 | Dreyfuss et al. | Nov 2002 | A1 |
20020173813 | Peterson et al. | Nov 2002 | A1 |
20020198527 | Muckter | Dec 2002 | A1 |
20030004572 | Goble et al. | Jan 2003 | A1 |
20030028250 | Reiley et al. | Feb 2003 | A1 |
20030040797 | Fallin et al. | Feb 2003 | A1 |
20030093152 | Pedersen et al. | May 2003 | A1 |
20030093154 | Estes et al. | May 2003 | A1 |
20030120343 | Whelan | Jun 2003 | A1 |
20030176919 | Schmieding | Sep 2003 | A1 |
20030176922 | Lawson et al. | Sep 2003 | A1 |
20030187454 | Gill et al. | Oct 2003 | A1 |
20030191532 | Goble et al. | Oct 2003 | A1 |
20030204259 | Goble et al. | Oct 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030233146 | Grinberg et al. | Dec 2003 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040010318 | Ferree | Jan 2004 | A1 |
20040024462 | Ferree et al. | Feb 2004 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040049272 | Reiley | Mar 2004 | A1 |
20040049273 | Reiley | Mar 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049275 | Reiley | Mar 2004 | A1 |
20040049276 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040049278 | Reiley | Mar 2004 | A1 |
20040049281 | Reiley | Mar 2004 | A1 |
20040059429 | Amin et al. | Mar 2004 | A1 |
20040087954 | Allen et al. | May 2004 | A1 |
20040116927 | Graf | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040143264 | McAfee | Jul 2004 | A1 |
20040176844 | Zubok et al. | Sep 2004 | A1 |
20040195727 | Stoy | Oct 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040215341 | Sybert et al. | Oct 2004 | A1 |
20040230201 | Yuan et al. | Nov 2004 | A1 |
20040230304 | Yuan et al. | Nov 2004 | A1 |
20050010291 | Stinson et al. | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050043797 | Lee | Feb 2005 | A1 |
20050043799 | Reiley | Feb 2005 | A1 |
20050049705 | Hale et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050059972 | Biscup | Mar 2005 | A1 |
20050107879 | Christensen et al. | May 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050131538 | Chervitz et al. | Jun 2005 | A1 |
20050143818 | Yuan et al. | Jun 2005 | A1 |
20050154463 | Trieu | Jul 2005 | A1 |
20050159746 | Grab et al. | Jul 2005 | A1 |
20050171547 | Aram | Aug 2005 | A1 |
20050197700 | Boehem et al. | Sep 2005 | A1 |
20050204515 | Hewes | Sep 2005 | A1 |
20050216017 | Fielding et al. | Sep 2005 | A1 |
20050240201 | Yeung | Oct 2005 | A1 |
20050251256 | Reiley | Nov 2005 | A1 |
20050256494 | Datta | Nov 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060041311 | McLeer | Feb 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060085006 | Ek et al. | Apr 2006 | A1 |
20060085072 | Funk et al. | Apr 2006 | A1 |
20060111782 | Petersen | May 2006 | A1 |
20060116684 | Whelan | Jun 2006 | A1 |
20060149289 | Winslow et al. | Jul 2006 | A1 |
20060149375 | Yuan et al. | Jul 2006 | A1 |
20060190081 | Kraus et al. | Aug 2006 | A1 |
20060200137 | Soboleski et al. | Sep 2006 | A1 |
20060241597 | Mitchell et al. | Oct 2006 | A1 |
20060241601 | Trautwein et al. | Oct 2006 | A1 |
20060241758 | Peterman et al. | Oct 2006 | A1 |
20060241778 | Ogilvie | Oct 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060293691 | Mitra et al. | Dec 2006 | A1 |
20070055236 | Hudgins et al. | Mar 2007 | A1 |
20070055252 | Blain et al. | Mar 2007 | A1 |
20070055373 | Hudgins et al. | Mar 2007 | A1 |
20070073293 | Martz et al. | Mar 2007 | A1 |
20070078464 | Jones et al. | Apr 2007 | A1 |
20070100452 | Prosser | May 2007 | A1 |
20070118218 | Hooper | May 2007 | A1 |
20070123863 | Winslow et al. | May 2007 | A1 |
20070135814 | Farris | Jun 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070179619 | Grab | Aug 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070255414 | Melkent et al. | Nov 2007 | A1 |
20070270812 | Peckham | Nov 2007 | A1 |
20080009866 | Alamin et al. | Jan 2008 | A1 |
20080046083 | Hewko | Feb 2008 | A1 |
20080058929 | Whelan | Mar 2008 | A1 |
20080082103 | Hutton et al. | Apr 2008 | A1 |
20080161853 | Arnold et al. | Jul 2008 | A1 |
20080177264 | Alamin et al. | Jul 2008 | A1 |
20080177326 | Thompson | Jul 2008 | A1 |
20080183209 | Robinson et al. | Jul 2008 | A1 |
20080183211 | Lamborne et al. | Jul 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20080255664 | Hogendijk et al. | Oct 2008 | A1 |
20080262549 | Bennett et al. | Oct 2008 | A1 |
20080287996 | Soholeski et al. | Nov 2008 | A1 |
20090005818 | Chin et al. | Jan 2009 | A1 |
20090005873 | Slivka et al. | Jan 2009 | A1 |
20090018662 | Pasquet et al. | Jan 2009 | A1 |
20090024166 | Carl et al. | Jan 2009 | A1 |
20090036926 | Hestad | Feb 2009 | A1 |
20090072006 | Clauson et al. | Mar 2009 | A1 |
20090076617 | Ralph et al. | Mar 2009 | A1 |
20090105766 | Thompson et al. | Apr 2009 | A1 |
20090125066 | Kraus et al. | May 2009 | A1 |
20090138048 | Baccelli et al. | May 2009 | A1 |
20090171360 | Whelan | Jul 2009 | A1 |
20090198282 | Fielding et al. | Aug 2009 | A1 |
20090198339 | Kleiner et al. | Aug 2009 | A1 |
20090248077 | Johns | Oct 2009 | A1 |
20090248082 | Crook | Oct 2009 | A1 |
20090264928 | Blain | Oct 2009 | A1 |
20090264929 | Alamin et al. | Oct 2009 | A1 |
20090270918 | Attia et al. | Oct 2009 | A1 |
20090270929 | Suddaby | Oct 2009 | A1 |
20090306716 | Beger et al. | Dec 2009 | A1 |
20090326589 | Lemoine et al. | Dec 2009 | A1 |
20100010548 | Hermida Ochoa | Jan 2010 | A1 |
20100063550 | Felix et al. | Mar 2010 | A1 |
20100076503 | Beyar et al. | Mar 2010 | A1 |
20100087859 | Jackson, Jr. | Apr 2010 | A1 |
20100131008 | Overes et al. | May 2010 | A1 |
20100168864 | White et al. | Jul 2010 | A1 |
20100179553 | Ralph et al. | Jul 2010 | A1 |
20100185241 | Malandain et al. | Jul 2010 | A1 |
20100191286 | Butler | Jul 2010 | A1 |
20100204700 | Falahee | Aug 2010 | A1 |
20100204732 | Aschmann et al. | Aug 2010 | A1 |
20100234894 | Alamin et al. | Sep 2010 | A1 |
20100274289 | Carls et al. | Oct 2010 | A1 |
20100292698 | Hulliger et al. | Nov 2010 | A1 |
20100298829 | Schaller et al. | Nov 2010 | A1 |
20100318133 | Tornier | Dec 2010 | A1 |
20110015744 | Squires et al. | Jan 2011 | A1 |
20110022050 | McClellan et al. | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110034956 | Mazda et al. | Feb 2011 | A1 |
20110060366 | Heim et al. | Mar 2011 | A1 |
20110082504 | Singhatat et al. | Apr 2011 | A1 |
20110098816 | Jacob et al. | Apr 2011 | A1 |
20110106163 | Hochschuler et al. | May 2011 | A1 |
20110106259 | Lindenmann et al. | May 2011 | A1 |
20110160772 | Arcenio et al. | Jun 2011 | A1 |
20110172712 | Chee et al. | Jul 2011 | A1 |
20110245875 | Karim | Oct 2011 | A1 |
20110295318 | Alamin et al. | Dec 2011 | A1 |
20110301644 | Belliard | Dec 2011 | A1 |
20120022591 | Baccelli et al. | Jan 2012 | A1 |
20120022649 | Robinson et al. | Jan 2012 | A1 |
20120035658 | Goble et al. | Feb 2012 | A1 |
20120041441 | Bernstein et al. | Feb 2012 | A1 |
20120046749 | Tatsumi | Feb 2012 | A1 |
20120101502 | Kartalian et al. | Apr 2012 | A1 |
20120150231 | Alamin et al. | Jun 2012 | A1 |
20120221048 | Blain | Aug 2012 | A1 |
20120221049 | Blain | Aug 2012 | A1 |
20120221060 | Blain | Aug 2012 | A1 |
20120245586 | Lehenkari et al. | Sep 2012 | A1 |
20120271354 | Baccelli et al. | Oct 2012 | A1 |
20120277801 | Marik et al. | Nov 2012 | A1 |
20130023878 | Belliard et al. | Jan 2013 | A1 |
20130041410 | Hestad et al. | Feb 2013 | A1 |
20130079778 | Azuero et al. | Mar 2013 | A1 |
20130123923 | Pavlov et al. | May 2013 | A1 |
20130197643 | Greenberg et al. | Aug 2013 | A1 |
20130204250 | McDevitt et al. | Aug 2013 | A1 |
20130253649 | Davis | Sep 2013 | A1 |
20130261625 | Koch et al. | Oct 2013 | A1 |
20130325065 | Malandain et al. | Dec 2013 | A1 |
20140012318 | Goel | Jan 2014 | A1 |
20140018816 | Fenn et al. | Jan 2014 | A1 |
20140066758 | Marik et al. | Mar 2014 | A1 |
20140214084 | Jackson et al. | Jul 2014 | A1 |
20140257397 | Akbarnia et al. | Sep 2014 | A1 |
20140277142 | Blain et al. | Sep 2014 | A1 |
20140277148 | Blain et al. | Sep 2014 | A1 |
20140277149 | Rooney et al. | Sep 2014 | A1 |
20140309699 | Houff | Oct 2014 | A1 |
20140336653 | Bromer | Nov 2014 | A1 |
20140378976 | Garcia | Dec 2014 | A1 |
20150045794 | Garcia et al. | Feb 2015 | A1 |
20150081023 | Blain | Mar 2015 | A1 |
20150094766 | Blain et al. | Apr 2015 | A1 |
20150094767 | Blain et al. | Apr 2015 | A1 |
20150119988 | Assell et al. | Apr 2015 | A1 |
20150164516 | Blain et al. | Jun 2015 | A1 |
20150164652 | Assell et al. | Jun 2015 | A1 |
20150190149 | Assell et al. | Jul 2015 | A1 |
20150196330 | Blain | Jul 2015 | A1 |
20150209096 | Gephart | Jul 2015 | A1 |
20150257770 | Assell et al. | Sep 2015 | A1 |
20150257773 | Blain et al. | Sep 2015 | A1 |
20150313656 | Hulliger | Nov 2015 | A1 |
20150327872 | Assell et al. | Nov 2015 | A1 |
20150342648 | McCormack et al. | Dec 2015 | A1 |
20150342657 | Voisard et al. | Dec 2015 | A1 |
20160113692 | Knoepfle | Apr 2016 | A1 |
20160128838 | Assell et al. | May 2016 | A1 |
20160213481 | Blain | Jul 2016 | A1 |
20160324549 | Blain | Nov 2016 | A1 |
20170000527 | Blain et al. | Jan 2017 | A1 |
20170105767 | Blain | Apr 2017 | A1 |
20170239060 | Blain | Aug 2017 | A1 |
20170281232 | Smith | Oct 2017 | A1 |
20170296234 | Jackson et al. | Oct 2017 | A1 |
20170333091 | Taber et al. | Nov 2017 | A1 |
20170333205 | Joly et al. | Nov 2017 | A1 |
20180049780 | Blain | Feb 2018 | A1 |
20180085148 | Blain | Mar 2018 | A1 |
20180085149 | Blain | Mar 2018 | A1 |
20180132915 | Esser et al. | May 2018 | A1 |
20190142478 | Blain | May 2019 | A1 |
20190167314 | Mosnier et al. | Jun 2019 | A1 |
20190192194 | Blain | Jun 2019 | A1 |
20190365433 | Blain et al. | Dec 2019 | A1 |
20200000608 | Bullard | Jan 2020 | A1 |
20200214746 | Blain et al. | Jul 2020 | A1 |
20200367945 | Semingson et al. | Nov 2020 | A1 |
20210121207 | Semingson | Apr 2021 | A1 |
20210251667 | Blain et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
2 437 575 | Apr 2009 | CA |
93 04 368 | May 1993 | DE |
201 12 123 | Sep 2001 | DE |
101 35 771 | Feb 2003 | DE |
0 238 219 | Sep 1987 | EP |
0 322 334 | Jun 1989 | EP |
0 392 124 | Oct 1990 | EP |
0 610 837 | Aug 1994 | EP |
0 928 603 | Jul 1999 | EP |
1 201 202 | May 2002 | EP |
1 201 256 | May 2002 | EP |
2 138 122 | Dec 2009 | EP |
2 919 717 | Sep 2015 | EP |
2 704 745 | Nov 1994 | FR |
2 722 980 | Feb 1996 | FR |
2 366 736 | Mar 2002 | GB |
53-005889 | Jan 1978 | JP |
62-270147 | Nov 1987 | JP |
03-100154 | Apr 1991 | JP |
03-240660 | Oct 1991 | JP |
08-509918 | Oct 1996 | JP |
10-179622 | Jul 1998 | JP |
2000-201941 | Jul 2000 | JP |
2000-210297 | Aug 2000 | JP |
2003-079649 | Mar 2003 | JP |
2004-508888 | Mar 2004 | JP |
2004-181236 | Jul 2004 | JP |
2004-537354 | Dec 2004 | JP |
2006-230722 | Sep 2006 | JP |
2006-528540 | Dec 2006 | JP |
2007-503884 | Mar 2007 | JP |
2007-517627 | Jul 2007 | JP |
2007-190389 | Aug 2007 | JP |
2008-510526 | Apr 2008 | JP |
2008-522787 | Jul 2008 | JP |
2008-537498 | Sep 2008 | JP |
2009-533167 | Sep 2009 | JP |
2010-510852 | Apr 2010 | JP |
2010-173739 | Aug 2010 | JP |
2012-509740 | Apr 2012 | JP |
2012-521221 | Sep 2012 | JP |
2013-534451 | Sep 2013 | JP |
2013-535247 | Sep 2013 | JP |
2014-513583 | Jun 2014 | JP |
2014-523751 | Sep 2014 | JP |
2015-500701 | Jan 2015 | JP |
6012309 | Jan 2007 | MX |
WO 88006022 | Aug 1988 | WO |
WO 93014721 | Aug 1993 | WO |
WO 94004088 | Mar 1994 | WO |
WO 97047246 | Dec 1997 | WO |
WO 98048717 | Nov 1998 | WO |
WO 99023963 | May 1999 | WO |
WO 00038582 | Jul 2000 | WO |
WO 00053126 | Sep 2000 | WO |
WO 01030248 | May 2001 | WO |
WO 02045765 | Jun 2002 | WO |
WO 02065954 | Aug 2002 | WO |
WO 02096300 | Dec 2002 | WO |
WO 03101350 | Dec 2003 | WO |
WO 2004071358 | Aug 2004 | WO |
WO 2005020850 | Mar 2005 | WO |
WO 2005072661 | Aug 2005 | WO |
WO 2006023980 | Mar 2006 | WO |
WO 2006096803 | Sep 2006 | WO |
WO 2008008522 | Jan 2008 | WO |
WO 2009013397 | Jan 2009 | WO |
WO 2009015100 | Jan 2009 | WO |
WO 2009021876 | Feb 2009 | WO |
WO 2010060072 | May 2010 | WO |
WO 2010122472 | Oct 2010 | WO |
WO 2011011621 | Jan 2011 | WO |
WO 2012007941 | Jan 2012 | WO |
WO 2012116266 | Aug 2012 | WO |
WO 2012116267 | Aug 2012 | WO |
WO 2012154265 | Nov 2012 | WO |
WO 2013022880 | Feb 2013 | WO |
WO 2013138655 | Sep 2013 | WO |
WO 2014078541 | May 2014 | WO |
WO 2016044432 | Mar 2016 | WO |
WO 2020030656 | Feb 2020 | WO |
WO 2020236229 | Nov 2020 | WO |
WO 2021163313 | Aug 2021 | WO |
Entry |
---|
Notice of Acceptance in Australian Application No. AU2016231622, dated Dec. 4, 2018. |
Official Communication in Australian Application No. AU2019201539, dated Jun. 25, 2019. |
Official Communication in European Application No. 19158915.9, dated Jul. 1, 2019. |
Official Communication in European Application No. 14774714.1, dated May 23, 2019. |
Official Communication in Japanese Application No. JP 2016-500498, dated Mar. 4, 2019. |
Notice of Acceptance in Australian Application No. 2014327083, dated Apr. 3, 2019. |
Official Communication in Japanese Application No. JP 2016-517392, dated Apr. 22, 2019. |
3rd Party Lab Notebook, “Facet Cartilage Repair,” dated May 20, 2003 in 2 pages. |
Arthrotek, “CurTek® Bone Tunneling System,” Surgical Technique, 2000, pp. 6. |
Arthrotek, “CurvTek® Bone Tunneling System,” User's Manual, 2000, pp. 20. |
Ash, H.E., “Proximal Interphalangeal Joint Dimensions for the Design of a Surface Replacement Prosthesis”, School of Engineering, University of Durham, Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine Feb. 1996, vol. 210, No. 2, pp. 95-108. |
Beaman, MD et al., “Substance P Innervation of Lumbar Spine Facet Joints”, Spine, 1993, vol. 18, No. 8, pp. 1044-1049. |
Butterman, et al., “An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method”, Journal of Biomechanical Engineering, Nov. 1991, vol. 113, pp. 375-386. |
Cruess et al., “The Response of Articular Cartilage to Weight-Bearing Against Metal”, The Journal of Bone and Joint Surgery, Aug. 1984, vol. 66-B, No. 4, pp. 592-597. |
Dalldorf et al., “Rate of Degeneration of Human Acetabular Cartilage after Hemiarthroplasty”, The Journal of Bone and Joint Surgery, Jun. 1995, vol. 77. No. 6, pp. 877-882. |
E-mail from 3rd Party citing U.S. Appl. No. 60/749,000; U.S. Appl. No. 60/749,000 and U.S. Appl. No. 60/749,000, initial e-mail dated May 11, 2009, reply e-mail dated May 18, 2009. |
Frost, Harold M., “From Wolff's Law to the Utah Paradigm: Insights About Bone Physiology and Its Clinical Applications”, The Anatomical Record, 2001, vol. 262, pp. 398-419. |
King et al., “Mechanism of Spinal Injury Due to Caudocephalad Acceleration,” Symposium on the Lumbar Spine, Orthopedic Clinic of North America, Jan. 1975, vol. 6, pp. 19-31. |
Kurtz, PhD et al., “Isoelastic Polyaryletheretherketone Implants for Total Joint Replacement”, PEEK Biomaterials Handbook, Ch. 14, 2012, pp. 221-226. |
Meisel et al., “Minimally Invasive Facet Restoration Implant for Chronic Lumbar Zygapophysial Pain: 1-Year Outcomes”, Annals of Surgical Innovation and Research (ASIR), 2014, vol. 8, No. 7, pp. 6. |
Panjabi, PhD et al., “Articular Facets of the Human Spine: Quantitative Three-Dimensional Anatomy”, Spine, 1993, vol. 18, No. 10, pp. 1298-1310. |
PARTEQ Innovations, “Facet Joint Implants & Resurfacing Devices,” Technology Opportunity Bulletin, Tech ID 1999-012, Queen's University, Ontario Canada, pp. 2. |
Ravikumar et al., “Internal Fixation Versus Hemiarthroplasty Versus Total Hip Arthroplasty for Displaced Subcapital Fractures of Femur—13 year Results of a Prospective Randomised Study”, International Journal of the Care of the Injured (Injury), 2000, vol. 31, pp. 793-797. |
Schendel et al., “Experimental Measurement of Ligament Force, Facet Force, and Segment Motion in the Human Lumbar Spine”, Journal of Biomechanics, 1993, vol. 26, No. 4/5, pp. 427-438. |
Sharpe Products, “Metal Round Disks”, https://web.archive.org/web/20170705214756/https://sharpeproducts.com/store/metal-round-disks, as archived Jul. 5, 2017 in 3 pages. |
Tanno et al., “Which Portion in a Facet is Specifically Affected by Articular Cartilage Degeneration with Aging in the Human Lumbar Zygapophysial Joint?”, Okajimas Folia Anatomica Japonica, May 2003, vol. 80, No. 1, pp. 29-34. |
Official Communication in Australian Application No. 2005213459, dated Dec. 11, 2009. |
Official Communication in Australian Application No. 2005213459, dated Dec. 15, 2010. |
Official Communication in Australian Application No. 2011226832, dated Sep. 4, 2012. |
Official Communication in Australian Application No. 2011226832, dated Oct. 31, 2012. |
Official Communication in Australian Application No. AU2013237744, dated Sep. 2, 2014. |
Notice of Acceptance in Australian Application No. AU2013237744, dated Apr. 23, 2015. |
Official Communication in Australian Application No. AU2015205875, dated Apr. 2, 2016. |
Official Communication in Australian Application No. AU2015205875, dated Jun. 15, 2016. |
Official Communication in Australian Application No. AU2016231622, dated Dec. 5, 2017. |
Official Communication in Australian Application No. AU2016231622, dated Nov. 22, 2018. |
Official Communication in Canadian Application No. 2,555,355, dated Sep. 2, 2011. |
Official Communication in Canadian Application No. 2,803,783, dated Sep. 29, 2014. |
Official Communication in Canadian Application No. 2,803,783, dated Aug. 5, 2015. |
Official Communication in Canadian Application No. 2,803,783, dated Jul. 7, 2016. |
Official Communication in Canadian Application No. 2,803,783, dated Apr. 5, 2017. |
Official Communication in European Application No. 05712981.9, dated Jul. 24, 2007. |
Official Communication in European Application No. 05712981.9, dated Mar. 10, 2008. |
Official Communication in European Application No. 05712981.9, dated Apr. 6, 2009. |
Official Communication in European Application No. 05712981.9, dated Jun. 15, 2010. |
Official Communication in European Application No. 10178979.0, dated Mar. 14, 2011. |
Official Communication in European Application No. 10178979.0, dated Nov. 13, 2012. |
Official Communication in European Application No. 10178979.0, dated Aug. 5, 2013. |
Official Communication in European Application No. 14175088.5, dated Sep. 8, 2014. |
Official Communication in European Application No. 14175088.5, dated Nov. 18, 2015. |
Official Communication in European Application No. 16180368.9, dated Mar. 31, 2017. |
Official Communication in European Application No. 16180368.9, dated Jan. 11, 2018. |
Official Communication in Japanese Application No. 2006-552309, dated May 25, 2010. |
Official Communication in Japanese Application No. 2006-552309, dated Feb. 15, 2011. |
Official Communication in Japanese Application No. 2010-221380, dated Feb. 15, 2011. |
Official Communication in Japanese Application No. 2012-272106, dated Dec. 3, 2013. |
Official Communication in Japanese Application No. 2012-272106, dated May 26, 2014. |
Official Communication in Japanese Application No. 2012-272106, dated Feb. 23, 2015. |
Official Communication in Japanese Application No. 2012-272106, dated Nov. 2, 2015. |
International Search Report and Written Opinion in International Application No. PCT/US2005/003753, dated Dec. 5, 2006. |
International Preliminary Report and Written Opinion in International App No. PCT/US2005/003753, dated Jan. 9, 2007. |
Official Communication in European Application No. 08730413.5, dated Feb. 16, 2012. |
Official Communication in European Application No. 14177951.2, dated Nov. 13, 2014. |
International Search Report and Written Opinion in International Application No. PCT/US2008/054607, dated Jul. 10, 2008. |
International Preliminary Reporton Patentability in International Application No. PCT/US2008/054607, dated Sep. 3, 2009. |
Official Communication in Australian Application No. 2011292297, dated Jul. 10, 2013. |
Official Communication in Australian Application No. 2014277721, dated Sep. 8, 2016. |
Official Communication in Australian Application No. 2014277721, dated Jan. 9, 2017. |
Official Communication in Canadian Application No. 2,804,223, dated Jun. 5, 2017. |
Official Communication in Canadian Application No. 2,804,223, dated Mar. 14, 2018. |
Official Communication in European Application No. 11818586.7, dated Nov. 6, 2014. |
Official Communication in European Application No. 11818586.7, dated Feb. 3, 2017. |
Official Communication in Japanese Application No. 2013-524882, dated Mar. 2, 2015. |
Official Communication in Japanese Application No. 2013-524882, dated Nov. 16, 2015. |
Official Communication in Japanese Application No. 2015-242990, dated Dec. 12, 2016. |
Official Communication in Japanese Application No. 2015-242990, dated May 8, 2017. |
Official Communication in Japanese Application No. 2015-242990, dated Aug. 21, 2017. |
International Search Report and Written Opinion in International Application No. PCT/US2011/047432, dated Dec. 12, 2011. |
International Preliminary Reporton Patentability in International Application No. PCT/US2011/047432, dated Feb. 28, 2013. |
Official Communication in Australian Application No. AU2012222229, dated Aug. 21, 2015. |
Official Communication in Australian Application No. AU2012222229, dated May 11, 2016. |
Official Communication in Australian Application No. AU2012222230, dated Aug. 21, 2015. |
Official Communication in European Application No. EP12749447.4, dated Jan. 4, 2017. |
Official Communication in European Application No. EP12749447.4, dated Apr. 4, 2017. |
Official Communication in European Application No. EP12749447.4, dated Nov. 14, 2018. |
Official Communication in European Application No. 12749251.0, dated Jan. 4, 2017. |
Official Communication in European Application No. 12749251.0, dated May 9, 2017. |
Official Communication in Japanese Application No. JP 2013-555591, dated Jan. 4, 2016. |
Official Communication in Japanese Application No. 2016-246368, dated Oct. 30, 2017. |
Official Communication in Japanese Application No. 2016-246368, dated Jul. 2, 2018. |
Official Communication in Japanese Application No. JP 2013-555592, dated Dec. 7, 2015. |
Official Communication in Japanese Application No. JP 2013-555592, dated Aug. 8, 2016. |
Official Communication in Japanese Application No. JP 2013-555592, dated Jan. 5, 2018. |
Official Communication in Japanese Application No. 2016-237460, dated Oct. 23, 2017. |
Official Communication in Japanese Application No. 2016-237460, dated Apr. 16, 2018. |
International Search Report in International Application No. PCT/US2012/026470, dated May 30, 2012. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026470, dated Sep. 6, 2013. |
International Search Report and Written Opinion in International Application No. PCT/US2012/026472, dated Jun. 20, 2012. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026472, dated Mar. 12, 2014. |
Official Communication in Australian Application No. 2014241989, dated Aug. 31, 2017. |
Official Communication in Australian Application No. 2014241989, dated Jun. 20, 2018. |
Official Communication in Australian Application No. 2014241989, dated Aug. 17, 2018. |
Official Communication in European Application No. 14774714.1, dated Oct. 21, 2016. |
Official Communication in Japanese Application No. JP 2016-500490, dated Nov. 27, 2017. |
Official Communication in Japanese Application No. JP 2016-500490, dated May 7, 2018. |
International Search Report and Written Opinion in International Application No. PCT/US2014/019302, dated May 18, 2015. |
Official Communication in Australian Application No. 2014241994, dated Oct. 30, 2017. |
Official Communication in European Application No. 14776445.0, dated Nov. 7, 2016. |
Official Communication in Japanese Application No. JP 2016-500498, dated Jan. 5, 2018. |
Official Communication in Japanese Application No. JP 2016-500498, dated Jul. 2, 2018. |
International Search Report and Written Opinion in International Application No. PCT/US2014/019325, dated Jun. 17, 2014. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/019325, dated Sep. 24, 2015. |
Official Communication in Australian Application No. 2014327083, dated May 31, 2018. |
Official Communication in European Application No. 14850082.0, dated Aug. 31, 2016. |
Official Communication in Japanese Application No. JP 2016-517392, dated Jun. 4, 2018. |
International Search Report and Written Opinion in International Application No. PCT/US2014/056598, dated Dec. 29, 2014. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/056598, dated Apr. 7, 2016. |
International Search Report and Written Opinion in International Application No. PCT/US2015/050441, dated Dec. 28, 2015. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2015/050441, dated Mar. 30, 2017. |
Official Communication in European Application No. 16743832.4, dated Jul. 24, 2018. |
International Search Report and Written Opinion in International Application No. PCT/US2016/013062, dated Mar. 16, 2016. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2016/013062, dated Aug. 10, 2017. |
International Search Report in International Application No. PCT/CA2002/000193 filed Feb. 15, 2002, dated Jun. 18, 2002. |
International Search Report and Written Opinion in International Application No. PCT/US2004/028094, dated May 16, 2005. |
International Preliminary Reporton Patentability in International Application No. PCT/US2004/028094, dated Feb. 25, 2013. |
International Search Report in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated May 24, 2005. |
International Preliminary Reporton Patentability in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated Jan. 17, 2006. |
Official Communication in Australian Application No. 2019201539, dated Apr. 3, 2020. |
Official Communication in European Application No. 12749251.0, dated Aug. 16, 2019. |
Official Communication in Australian Application No. 2018279003, dated Jan. 9, 2020. |
Official Communication in Australian Application No. 2018279003, dated Sep. 18, 2020. |
Official Communication in Australian Application No. 2018279003, dated Jan. 12, 2021. |
Official Communication in Canadian Application No. 2,903,999, dated Dec. 9, 2019. |
Official Communication in Canadian Application No. 2,903,999, dated Aug. 31, 2020. |
Official Communication in Australian Application No. 2014241994, dated Jan. 31, 2020. |
Official Communication in Canadian Application No. 2,904,280, dated Dec. 9, 2019. |
Official Communication in Canadian Application No. 2,904,280, dated Sep. 1, 2020. |
Official Communication in Japanese Application No. 2016-500498, dated Aug. 9, 2019. |
Official Communication in Japanese Application No. 2019-163133, dated Oct. 5, 2020. |
Official Communication in Australian Application No. 2019206045, dated Sep. 8, 2020. |
Official Communication in Canadian Application No. 2,923,623, dated Dec. 8, 2020. |
Official Communication in European Application No. 14850082.0, dated Sep. 15, 2020. |
Official Communication in Japanese Application No. 2016-517392, dated Dec. 2, 2019. |
Official Communication in Japanese Application No. 2019-236855, dated Nov. 24, 2020. |
Official Communication in Australian Application No. 2016212009, dated Sep. 6, 2019. |
Official Communication in Australian Application No. 2016212009, dated May 26, 2020. |
Official Communication in Australian Application No. 2016212009, dated Jul. 14, 2020. |
Official Communication in Japanese Application No. 2017-557269, dated Oct. 21, 2019. |
Official Communication in Japanese Application No. 2017-557269, dated Jul. 13, 2020. |
International Search Report and Written Opinion in International Application No. PCT/US2020/014985, dated Apr. 24, 2020. |
Official Communication in European Application No. 11818586.7, dated Apr. 8, 2021. |
Official Communication in European Application No. EP12749447.4, dated Aug. 18, 2021. |
Official Communication in Canadian Application No. 2,904,280, dated Jun. 7, 2021. |
Official Communication in European Application No. 14776445.0, dated Jun. 10, 2021. |
Official Communication in Japanese Application No. 2019-163133, dated Jun. 7, 2021. |
Official Communication in Australian Application No. 2019206045, dated Sep. 9, 2020. |
Official Communication in Australian Application No. 2019206045, dated Jul. 16, 2021. |
Official Communication in Japanese Application No. 2019-236855, dated Jun. 28, 2021. |
Official Communication in Japanese Application No. 2020-181320, Sep. 21, 2021. |
International Search Report and Written Opinion in International Application No. PCT/US2021/017643, dated Apr. 28, 2021. |
Official Communication in Australian Application No. 2020244544, dated Nov. 15, 2021. |
Official Communication in Australian Application No. 2016212009, dated Nov. 24, 2021. |
Official Communication in Canadian Application No. 2,972,788, dated Jan. 31, 2022. |
Official Communication in Japanese Application No. 2017-557269, dated Nov. 1, 2021. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2020/014985, dated Dec. 2, 2021. |
Invitation to Pay Additional Search Fees in International Application No. PCT/US2021/072351, dated Jan. 13, 2022. |
International Search Report and Written Opinion in International Application No. PCT/US2021/072351, dated Mar. 18, 2022. |
Number | Date | Country | |
---|---|---|---|
20190328428 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13033791 | Feb 2011 | US |
Child | 14256532 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15726775 | Oct 2017 | US |
Child | 16436118 | US | |
Parent | 14869793 | Sep 2015 | US |
Child | 15726775 | US | |
Parent | 14256532 | Apr 2014 | US |
Child | 14869793 | US |