Reference is made to commonly assigned, co-pending U.S. patent application Ser. No. 11/668,504, filed Jan. 30, 2007, entitled “METHOD AND APPARATUS FOR SEPARATING A SLIP-SHEET FROM AN IMAGE RECORDABLE MATERIAL”, in the name of Jo A. L. Gromadzki et al.; application Ser. No. 11/668,519, filed Jan. 30, 2007, entitled “METHODS AND APPARATUS FOR SEPARATING IMAGE RECORDABLE MATERIALS FROM A MEDIA STACK”, in the name of William Yuen; and application Ser. No. 11/668,533, filed Jan. 30, 2007, entitled “A METHOD AND APPARATUS FOR SEPARATING MEDIA COMBINATIONS FROM A MEDIA STACK”, in the name of William Yuen et al.
This invention relates to the field of imaging systems and more particularly to the field of removing and storing slip-sheets interspersed between a plurality of media sheets.
In the commercial printing industry, an important step in the preparation of images for printing is the transfer of image information to an image recordable material that can be used repeatedly to print the image. While the image recordable material can take a variety of forms, one common form is the printing plate that includes a surface that can be modified in an image-wise fashion. Printing plates can take different forms. In one embodiment the modifiable surface includes a special coating referred to as an emulsion. An emulsion is radiation sensitive coating that changes properties when exposed to radiation such as visible, ultraviolet, or infrared light. An emulsion can include one or more layers that are coated onto a substrate. The substrate can be composed of a variety of materials such as aluminum, polyester or elastomers.
The transfer of image information to an image recordable material can be done in a variety of methods. One method in which image information is transferred to an image forming material is by computer-to-plate (CTP) systems. In CTP systems images are formed on the modifiable surface of an image recordable material by way of radiation beams or the like generated by an imaging head in response to image forming information. In this manner, images can be quickly formed onto the image recordable material.
The advent of CTP technology is part of an increasing trend towards automation in the printing industry. The increasing use of information technology to create and distribute electronic and print publications, coupled with the more widespread accessibility of such technologies is contributing to a greater demand for shorter print runs and faster turnaround times. These changes, in turn, have contributed to a greater push towards automating all aspects of the printing process.
Automating the printing industry does present some special technological hurdles, however. In the case of printing plates used in CTP systems, some of these hurdles result from the delicacy of the modifiable surfaces of these plates. These plates are easily marred, and if marred, can create undesirable defects in the final printed product. Any attempt to automate the handling of printing plates must include measures to prevent damage to the delicate modifiable surfaces of the plates.
Measures used to reduce marring of printing plates during storage or transport, however introduce additional problems for automation. Unexposed printing plates are normally supplied in packages in numbers that can range from a few dozen to several hundred with slip-sheets interspersed between adjacent printing plates. Slip-sheets are used to protect the sensitive surfaces of the printing plates by providing a physical barrier between printing plates. The slip-sheets must be removed from the printing plates prior to imaging.
The automation of slip-sheet removal and storage presents a number of challenges. Slip-sheet removal is not simply a matter of moving a single sheet from a stack of similar sheets. In general, slip-sheets are made from materials different from those used for printing plates (e.g. paper) and in particular, from materials suitable for not damaging the modifiable surfaces of the printing plates. Separating a slip-sheet from an adjacent plate can be complicated when the slip-sheet becomes adhered to a surface of the adjacent plate by physical mechanisms that can include electrostatic attraction or the expulsion of air between the surfaces. These mechanisms can lead to multiple plate picks that can lead to system error conditions. Increasing plate-making throughput requirements complicate matters further by necessitating that the slip-sheets be removed at rates that do not hinder the increased plate supply demands.
Conventional materials pickers have typically picked and removed printing plates and slip-sheets sequentially from a media stack. For example, in some conventional systems, a slip-sheet is first picked from the media stack and moved to a disposal container. Once the slip-sheet has been moved, a printing plate is then picked and moved to subsequent station where it is processed (e.g. imaging in an exposure engine). In other conventional systems, a slip-sheet is picked and transferred to a disposal container after the printing plate has been secured and transferred to a subsequent process. In either case, the sequential picking and removal steps can adversely affect the overall system throughput times. Increased throughput times can also arise when additional efforts expended to secure an additional sheet that is adjacent to a given sheet that is being removed from the media stack. In such a case, these efforts are required to prevent the additional sheet from being removed accidentally along with the given sheet. Conventional methods have typically employed media cassettes with passive or fixed separation plates or toothed structures to attempt to separate an underlying adhered sheet when a given sheet is lifted out of the cassette. In these conventional methods, the separation of the underlying sheet needs to occur over a limited amount of travel dictated by the distance between the given sheet and the fixed separation plate as the given sheet is lifted out of the cassette. Further, if the underlying sheet has not been separated from the given sheet, these conventional separation methods cannot easily be repeated when the given sheet is lifted out of the cassette to a position wherein the fixed separation plates no longer contact the given sheet.
Some conventional systems attempt to remove slip-sheets and printing plates simultaneously from a media cassette and convey them to a second location to be separated. In these conventional systems, suction is drawn through a porous slip-sheet to secure an underlying printing plate. Different slips-sheets can have different degrees of porosity that can affect the picking reliability of the underlying plate.
Once a slip-sheet has been secured and separated from a printing plate, its reliable disposal presents additional challenges for automated media handling systems. Specifically, in a device designed to have a large number of printing plates on-line at any one time, the slip-sheets that are removed each time a plate is picked must be accumulated somewhere for disposal. Conventional plate-making systems have employed complex media handling mechanisms that remove and convey slip-sheets to containers such as slip-sheet holders. The reliability and throughput of the media handling system may be adversely affected when a picked slip-sheet must be additionally conveyed and deposited into a slip-sheet holder. Further, when slip-sheets are crumpled during the act of picking, separating, conveying or depositing them into a slip-sheet holder, the slip-sheets can occupy a significant volume that increases the size of the slip-sheet holder, thus adversely impacting the required footprint of the plate-making system.
The presence of slip-sheets can hinder automation associated with the processing of image recordable materials. Consequently, there remains a need for better methods and apparatus for storing slip-sheets removed from a media stack made up of an arrangement of image recordable materials and slip-sheets.
The present invention provides a method and apparatus for storing a slip-sheet removed from a stack of interleaved slip-sheets and printing plates and relates to image recording systems such as, for example, computer-to-plate (CTP) systems. Image recording systems include imaging systems that image an image recordable material in response to imaging information. Image recordable materials can include, for example, printing plates. Image recording systems can include integrated systems that additionally process the image forming materials. Additional processing can include, but is not limited to materials punching, materials bending, exposure to non-imaging radiation, chemical development and materials drying. The present invention relates to a materials handling system that separates a slip-sheet from a media stack that includes image recordable materials. A slip-sheet separates each of the image recordable materials from one another in the media stack. The image recordable materials removed from the stack are subsequently imaged and optionally additionally processed. The slip-sheets removed from the stack are moved to a position away from the media stack where they are stored in a slip-sheet holder that is moved to a position in the vicinity of the moved slip-sheets
In one embodiment, the present invention includes a method for storing a slip-sheet, the method comprising: removing the slip-sheet from a media stack at a first position, the media stack including one or more slip sheets and one or more image recordable materials; moving the slip-sheet from the first position to a second position; moving a slip-sheet holder from a third position to a fourth position in which the slip-sheet holder positioned at the fourth position is in the vicinity of the slip-sheet positioned at the second position, and depositing the slip-sheet into the slip-sheet holder positioned at the fourth position.
In another embodiment, the present invention includes an apparatus for storing a slip-sheet, comprising: a media holder for supporting a media stack that includes the slip-sheet located at a first position, the media stack including one or more slip-sheets and one or more image recordable materials; a picker for securing the slip-sheet at the first position and moving the slip-sheet to a second position; and a slip-sheet holder for depositing the slip sheet into after the slip-sheet holder is moved from a third position to a fourth position in which the slip-sheet holder positioned at the fourth position is in the vicinity of the slip-sheet positioned at the second position.
In drawing which show non-limiting example embodiments of the invention:
The features of this invention are shown in the accompanying figures. Although the figures are intended to illustrate this invention, they are not necessarily drawn to scale.
Exposure system 15 includes an exposure support 16 to mount an image recordable material 17 thereupon and an imaging head 18 disposed to emit radiation beams 19 to form an image on the image recordable material 17. Materials handling system 30 includes, among other things, a picking assembly 70. Picking assembly 70 and image recordable materials picker 50 (herein referred to as “materials picker 50”) secure and transport image recordable materials 17A, 17B, and 17C from one or more media stacks 36A, 36B, and 36C of image forming materials 17A, 17B, and 17C and transport the secured image recordable materials 17A, 17B, and 17C, respectively, to exposure system 15. Picking assembly 70 includes slip-sheet picker 55 to secure slip-sheets 40A, 40B, and 40C from one or more media stacks 36A, 36B, and 36C, respectively, and transport them to a slip-sheet holder 26. In this embodiment, materials pickers 50 and slip-sheet pickers 55 are combined to form an integrated picking assembly 70.
Exposure support 16 is an external cylindrical drum. Other types of exposure supports such as, for example, internal drums and flatbed configurations can be used. Image recordable material 17 is secured onto exposure support 16 by leading edge clamps 20 and trailing edge clamps 21. Image recordable material 17 is conveyed onto exposure support 16 with the assistance of loading support 22 and roller 11. During loading, exposure support 16 is appropriately positioned, and leading edge clamps 20 reactivated by an associated actuator (not shown) to accept image recordable material 17. Loading support 22 is used to support image recording material 17 as its leading edge is introduced into leading edge clamps 20. Image recordable material 17 is aligned with respect to exposure support 16 by abutting its leading edge against one or more registration features (not shown) that are positioned in a pre-determined orientation with respect to exposure support 16. Leading edge clamps 20 are activated to secure the leading edge of image recordable material 17 with respect to exposure support 16. Exposure support 16 is rotated to wrap image recordable material 17 on exposure support 16. Roller 11 is activated to ensure contact between image recordable material 17 and exposure support 16 during the wrapping. Exposure support 16 is rotated to a predetermined position wherein trailing edge clamps 21 are activated by an associated actuator (not shown) to secure the trailing edge of image recordable material 17 against exposure support 16. Other known systems for mounting image recordable material 17 onto exposure support 16 can also be used such as, for example, suction may be applied through various features formed on the surface of exposure support 16 to assist in securing image recordable material 17 to exposure support 16. Other known systems can be used to align image recordable material 17 with respect to exposure support 16.
Controller 23 is used to manage, create and/or modify digital files representing images to be formed on image recordable material 17. Controller 23 can also include a raster image processor to further process the digital files into image information that includes raster data. Controller 23 can provide device control signals to control the various required functions of exposure system 15 and materials handling system 30.
Image information and control signals provided by controller 23 are used to cause imaging head 18 to generate one or more radiation beams 19 to form an image on image recordable material 17. In this embodiment, exposure support 16 is rotated by drive 24 during imaging. Imaging head 18 can image a swath of data during each rotation. Drive 24 can rotate exposure support 16 clockwise or counterclockwise as required along a main-scan direction 25. Imaging head 18 is mounted onto a carriage (not shown) that moves along sub-scan direction that is substantially parallel with an axis of rotation of exposure support 16. Imaging head 18 can move along the sub-scan direction while exposure support 16 moves along main-scan direction 25 to create imaged swaths that are helical in form. Alternatively, the motion of imaging head 18 and exposure support 16 can be controlled to image “ring-like” swaths. This invention is not limited to this exposure system and other exposure systems that employ different control systems and schemes can be used.
When an image has been formed on image recordable material 17, image recordable material 17 is unloaded onto unloading support 27. Image recordable material 17 is unloaded from exposure support 16 by employing the steps of the media loading procedure described above but substantially in reverse sequence, and by correctly positioning exposure support 16 to unload image recordable material 17 onto unloading support 27. Unloading support 27 is movable from a first position 28, at which the image recordable media is unloaded to a second position 29 (shown in ghosted lines). At second position 29, the unloaded image recordable material 17 can be additionally processed, or conveyed for additional processing.
Materials handling system 30 includes a primary media supply 32 and a secondary media supply 34. Materials handling system 30 picks materials from a plurality of media stacks 36A, 36B and 36C. Media stack 36A can be stored within primary media supply 32. Media stack 36A includes one or more image forming materials 17A with one or more slip-sheets 40A. Interspersed between each of the image forming materials 17A is a slip-sheet 40A. It is to be noted that media stacks 36A, 36B and 36C show separations between image recordable materials 17A, 17B, and 17C and slip sheets 40A, 40B and 40C. These separations are shown for the sake of clarity, and those skilled in the art will realize that contact between the various sheets is typically present within the media stacks 36A, 36B and 36C.
In this embodiment, image recording materials 17A and slip-sheets 40A are stacked alternately and a slip-sheet 40A is positioned on top of media stack 36A. Media stack 36A can include a plurality of media stacks wherein each media stack contains one or more of image recordable material 17A and slip-sheet 40A. Media stack 36A is supported by media holder 42. Media holder 42 can include any suitable support system for media stack 36A, including, but not limited to, cassettes, magazines, or pallets. Pallets are particularly beneficial when media stack 36A includes a large number of image recording materials 17A such as, for example, aluminum offset printing plates. For instance, newspaper printing applications typically have high printing plate making demands. Consequently, a large uninterrupted supply of a large number of printing plates can be needed. Many plates weighing hundreds of kilograms can be required. Pallets provide a suitable means to support such quantities.
Media stack 36A is transported into primary media supply 32 via access port 44 by a cart, pallet-jack, forklift or the like. Access port 44 is closable by one or more covers (not shown). In this embodiment, media stack 36A remains stationary in primary media supply 32 when image recordable materials 17A and slip-sheets 40A are removed from media stack 36A. Media stack 36A remains stationary in primary media supply 32 when image recordable materials 17B and 17C and slip-sheets 40B and 40C are removed from media stacks 36B and 36C, respectively. A stationary media stack is particularly advantageous when the stack is high due to a large numbers of image recordable materials. Moving media holder 42 into an imaging position (or other positions) can cause an associated stack of media to shift due to accelerations/decelerations associated with the movement. A shifted media stack can lead to picking errors.
Secondary media supply 34 includes a media holder 60 and 62. Other embodiments of this invention can employ a different number of media holders. Media holder 60 contains media stack 36B that includes one or more of image recordable material 17B stacked one upon the other and media holder 62 contains media stack 36C that includes one or more of image recordable materials 17C stacked one upon the other. Interspersed between each of the image recording materials 17B and 17C are corresponding slip-sheets 40B and 40C, respectively. In this embodiment of the invention, image recordable materials 17B and 17C and slip-sheets 40B and 40C in each of media stack 36B and 36C, respectively, are stacked alternately and a slip-sheet is positioned on top of each of the stacks 36B and 36C. Each of media stacks 36B and media stacks 36C can include a plurality of image recordable material 17B and 17C and slip-sheets 40B and 40C. Each of media stacks 36B and media stacks 36C can include a plurality of media stacks.
Media holders 42, 60 and 62 can hold materials with similar or dissimilar characteristics. Material differences can include differences in size and/or composition. Differences in the image recordable materials 17A, 17B and 17C may be required by different print jobs. Alternatively, plate-making delays can be avoided by creating additional capacity by arranging one or more of the media holders 42, 60 and 62 to contain image recordable materials 17A, 17B and 17C, respectively, with the same characteristics as those contained in an additional media holder.
In this embodiment, as seen in
In this embodiment, controller 23 can provide and receive signals to allow an additional media holder to be positioned below a given media holder within primary media supply 32, such that slip-sheets and image recordable materials can be removed from the given media holder. An additional media holder positioned below a given media holder within primary media supply 32 does not obstruct picking assembly 70 from removing materials from the given media holder.
Picking assembly 70 is mounted in a cantilevered orientation with respect to linear rail 84 and channel 90. Timing belts 78 effectively form a loop around drive pulleys 74 and driven pulleys 76. Drive side 88 of picking assembly 70 is mechanically coupled to a first side of the loop formed by timing belts 78. The weight of picking assembly 70 is counterbalanced by weights 92 which are mechanically coupled to a second side of the loop formed by timing belts 78. Weights 92 are additionally guided by linear rails 94. Weights 92 have a combined mass that is substantially equal to the mass of picking assembly 70 so that the burden of gravitational forces on picking assembly 70 are effectively removed from vertical drive system 71.
Non-drive side 100 of picking assembly 70 is additionally supported by timing belts 102. Timing belts 102 are attached to a first attachment point 104 on picking assembly 70, and then follow a path around idler pulleys 106, 108 and 110 and are additionally attached to second attachment point 112 on picking assembly 70. Timing belts 102 are appropriately tensioned to support the cantilevered end of picking assembly 70. Other example embodiments of this invention can employ other support mechanisms for the cantilevered end of picking assembly 70. Other embodiments of this invention can also employ any other suitable guide and support systems for picking assembly 70. For example, each of at least two sides of picking assembly 70 may be guided and supported by a linear rail and open channel as previously described with respect to drive side 84.
Sensor 114 determines when a picking assembly is located at a home position. Picking assembly 70 can also include various distance measurement devices (not shown) that can be employed to verify a position of a corresponding stack media positioned within primary media supply 32. Distance measurement devices can be employed to verify the position of one media holders 60 and 62 moved into primary media supply 32. Examples of distance measurement devices include ultrasonic sensors, lvdt stroke sensors, IR beam distance measurement devices, and inductance sensing devices. Distance measurement devices can be mounted to picking assembly 70.
In this embodiment, each of the pickers 122 and 124 includes one or more suction mechanisms 130 to grip image recordable material 17A, 17B, or 17C. Other embodiments of this invention can employ other types of gripping mechanisms. Suction mechanism 130 can secure itself to a surface of an image recordable material 17A, 17B, or 17C by suction. Suction can be generated by numerous methods and will be dependant upon the suction mechanism employed. For example, when suction mechanism 130 includes a suction cup, a fluid comprising a negative fluid pressure (i.e. with respect to atmospheric pressure) can be supplied to suction mechanism 130 to generate the required suction. Alternatively, suction can be generated by a flow of fluid between the pickup face of a surface of suction mechanism 130 and the surface of the image recordable material 17A, 17B, or 17C as taught in U.S. Pat. No. 6,601,888 which is herein incorporated by reference. In this embodiment, the fluid is made to flow with a velocity sufficient to produce a pressure differential between the flowing fluid and a surrounding fluid medium. Bernoulli lift is generated to provide suction. Suction mechanism 130 may be in contact with a surface of the image recordable material 17A, 17B, or 17C when image recordable material 17A, 17B, or 17C is gripped. “Contact-less” securement is advantageous when the picked surface of the image recordable material 17A, 17B, or 17C includes a modifiable surface that may be damaged if directly handled.
In this embodiment, two groups 131 made up of two suction mechanisms 130 each are employed in each of the pickers 122 and 124, respectively. In other embodiments, a different number of suction mechanisms 130 can be employed. Multiple groups of suction mechanisms 130 can be employed when a plurality of image recordable materials 17A, 17B, or 17C are simultaneously picked from a corresponding plurality of media stacks 36A, 36B, and 36C. In this illustrated embodiment, each suction mechanism 130 in each group 131 is movable along directions 132 in slots 134. This allows image recordable materials 17A, 17B, and 17C with different size attributes along directions 132 to be gripped or secured. Suctions mechanisms 130 can also be moved along directions 136 by a corresponding movement of either picker 122 and 124 along slots 138. This allows image recordable materials 17A, 17B, and 17C with different size attributes along directions 136 to be gripped or secured. In this illustrated embodiment, suction mechanisms 130 can be manually positioned along directions 132 and 136 and can be secured by any suitable fastener when they have been properly located. In other example embodiments of this invention, controller 23 can be employed to control various actuators to position suction mechanisms 130 along one, or both of directions 132 and 136. Such actuators are well known in the art, and can include, but are not limited to, electric motors and transmission members such as gears, pulleys, screws, belts and chains.
Each suction mechanism 130 can also include a compliance member 133. Compliance member 133 can include any suitable spring element or other elastic member. In this illustrated embodiment, compliance member 133 includes a bellows in each suction mechanism 130. Compliance along directions 138A can reduce the positional accuracy requirements of the vertical drive system 71 when suctions mechanisms 130 are positioned with respect to the image recordable materials 17A, 17B, or 17C.
Controller 23 can be used to control the suction produced at each suction mechanism 130 by controlling each suction mechanism 130 individually or as part of a group 131. A selectable suction control can be used to grip different sizes of image recordable materials 17A, 17B, or 17C or different numbers of image recordable materials 17A, 17B, or 17C.
Pinning mechanism 120 includes one or more pinning members 140 that bear against an uppermost sheet of a media stack, for example, media stack 36A in
Pinning members 140 can be compliant along directions 138A. Compliance can reduce the positional accuracy requirements of the vertical drive system 71. Pinning members 140 can be used to change the shape of an uppermost sheet when it is separated from the top of media stack 36A, 36B, or 36C. Changing the shape of the uppermost sheet can include bending the uppermost sheet. Pinning a central portion of an uppermost sheet can be used to increase the degree of curvature imparted on an uppermost sheet as it is separated from the underlying media stack.
Changing the shape of the uppermost sheet can be used to assist in separating one more sheets adhered to the bottom of the uppermost sheet as it is separated from the media stack. Sheets may adhere to one another as a result of various causes including, but not limited to, static electricity and/or the creation of vacuum between sheets.
Pining members 140 can be constructed from materials that can reduce potential damage to a modifiable surface. The actuation and/or physical shape of pinning members 140 can be controlled to reduce potential damage to a modifiable surface of an image recordable material 17A, 17B, or 17C. In this embodiment, pinning members 140 include suction members that are controlled to grip at least the uppermost sheet. Separation of at least the uppermost sheet can be assisted by gripping. Gripping can be used to change the shape of at least the uppermost sheet.
Each of pickers 122 and 124 include flexing members 142. Flexing members 142 comprise a plunger 143 that is extendible and retractable in directions that are preferably parallel to directions 138A. In other example embodiments of this invention, plunger 143 may extend and retract at some predetermined angle with respect to directions 138A, but care should be taken to regulate motion that is tangential to a secured surface of the image recordable material to minimize potential damage to its modifiable surface. Plungers 143 can be driven by any suitable actuators and such actuators can be controlled by controller 23. Spring biased or double acting pneumatic actuators and the like are examples of suitable actuators.
Picking assembly 70 comprises slip-sheet pickers 126 and 128. In this illustrated example, slip-sheet pickers 126 and 128 are used to pick slip-sheets 40A, 40B, and 40C from a media stack 36A, 36B, and 36C, respectively. Each of slip-sheet pickers 126 and 128 are arranged to pick separate portions of a slip-sheet 40A, 40B, or 40C and each portion can include, or be adjacent to, an edge of slip-sheet 40A, 40B, or 40C. Slip-sheet 40A, 40B, and 40C portions can include opposing edges of the slip-sheet 40A, 40B, and 40C.
As shown in side view in
Unlike conventional separation methods that employ fixed separation features (e.g. separation plates fixed to a media holder) that need to separate an underlying sheet from a given sheet over limited amount of travel defined primarily by the distance between the given sheet within the media holder and the separation feature affixed to the media holder, the active nature of flexing members 142A can bend an image forming material 17E(1) (and adhered materials) over a large distance that is limited primarily by the distance the image recordable material 17E(1) is lifted above media stack 36E. The bending of image recordable material 17E(1) over a relatively large distance is effective in causing an additional adhered material to separate from the image recordable material 17E(1), especially when a compound curve is formed in imaged recordable material 17E(1).
Flexing members 142A can be controlled by controller 23, or the like to extend plungers 143A by different amounts to selectively bend a given image recordable material 17E(1) by a distance dependent upon a particular characteristic of the given image recordable material 17E(1). Different characteristics can include a size characteristic such as the thickness of the given image recordable material 17E(1) and/or a material characteristic such as elastic modulus and/or plastic deformations limits of the given image recordable material 17E(1). Unlike fixed separation features, flexing members 142A can be advantageously controlled to bend a number of different image recordable materials 17E(1) based upon on each of their particular characteristics, thus improving the reliability of the separation of any adhered materials.
Flexing members 142A can be controlled by controller 23, or the like to extend plungers 143A by different amounts to selectively bend a given image recordable material 17E(1) by a distance dependent upon a position of gripping members 130A and/or flexing members 142A relative to image recordable material 17E(1). Advantageously, this improves the reliability of the separation of any adhered materials when the position of gripping members 130A and/or flexing members 142A is required to vary between different image recordable materials. Flexing members 142A can be controlled by controller 23, or the like to extend plungers 143A by different amounts to selectively bend a given image recordable material 17E(1) by distance dependent upon existing environmental factors. Changes in environmental factors such humidity can change the degree of adherence between an underlying sheet and image recordable material 17E(1). Changes in these environmental factors can be measured by an appropriate sensor. These measured changes can be used by controller 23, or the like to control flexing members 142A in accordance with these changes.
Flexing members 142A can be controlled to repeatedly flex image recordable material 17E(1) to further assist with the separation of an adhered material. In some example embodiment of this invention, a plurality of flexing members 142A can be activated in tandem to flex corresponding portions of image recordable material 17E(1) at substantially the same time. In yet other example embodiments of this invention, a plurality of flexing members 142A can be sequentially activated to flex corresponding portions of image recordable material 17E(1) at different times. In other embodiments of this invention, flexing members 142A can include gripping mechanisms such as, but not limited to, suction members. Gripping mechanisms can allow flexing members 142A to push and pull corresponding portions of the image recordable material 17E(1) towards and away from media stack 36E to flex image recordable material 17E(1) over a greater range to promote the separation of an adhered media.
Each of slip-sheet pickers 126 and 128 includes a roller mechanism 150 and a nipping mechanism 152.
In
The position of slip-sheet picker 128 and the rotation of retraction roller 156 are controlled such that loop 172 is formed with sufficient length to avoid a crease or fold from forming in slip-sheet 40E(1) when it is captured in contact nip 160A between nipping member 160 and retraction roller 156. Creases or folds in slip-sheet 40E(1) are likely to occur when a contact nip is formed substantially at, or in the immediate vicinity of apex 174 of loop 172. In such cases, loop 172 is constrained to form a bend radius sufficiently small enough to form a crease or fold. Creases include folds where portion of the slip-sheet 40E(1) is folded upon itself. Creases can be created such that the folded portions of slip-sheet 40E(1) remain folded upon themselves or open to form V-shaped sections.
Picked slips-sheets 40E(1) that are creased can not typically be stored efficiently within a slip-sheet holder since the creases can prevent picked slip-sheets 40E from assuming a planar form that would allow an efficient stacking of picked slip-sheets 40E. Non-planar forms typically occupy more space, complicating storage requirements. Although it may be possible to nest successive creased slip-sheets 40E, this may place an added burden on the placement requirements of the conveying mechanism that is used to deposit a creased slip-sheets 40E into a slip-sheet holder. Further, nesting may not be possible when different sized creased slip-sheets are disposed into a single universal slip-sheet holder.
Referring to
As shown in
In
As shown in
As shown in
Referring to
Referring to
The apparatus and associated operational steps corresponding to the example embodiment of the invention illustrated in
Depositing secured slip-sheet 40C(1) directly into slip-sheet holder 26 which has been moved into a position below it allows slip-sheets 40C(1) to be stacked in a planar fashion to help reduce the amount of space that would be required to store it. Slip-sheet holder 26 can be emptied by an operator when it is within either primary media supply 32 or secondary media supply 34 as dictated by the presence of suitable access ports within housing 12. The movable nature of slip-sheet holder 26 can also allow it to be moved to a removal position 232 (shown in ghosted lines in
Picking assembly 70 can include an assembly of slip-sheet pickers 55 that are fixed or movable with respect to materials pickers 50.
Suitable mechanisms for separating slip-sheet pickers 55 from materials pickers 50 can include elements made up of, but not limited to: electric motors, timing belts, gears, chains, pneumatic or hydraulic cylinders etc. The separation of slip-sheet pickers 55 from materials pickers 50 can be initiated at first position 234, or on route to, or at transfer position 224. Slip sheet pickers 55186 are sufficiently separated from pickers 50 to allow slip-sheet holder 26 to move there between. At transfer position 224, slips-sheet pickers 55 can deposit secured slip-sheet 40A(1) into slip-sheet bin 26 at substantially the same time as secured image recordable material 17A(1) is deposited on transfer support 226 for conveyance to a subsequent process, thus allowing for a further improvement in the system throughput.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. For example:
Number | Name | Date | Kind |
---|---|---|---|
4081085 | Haenni | Mar 1978 | A |
4212263 | Hillhouse | Jul 1980 | A |
4402592 | Schon et al. | Sep 1983 | A |
4667948 | Angelbeck et al. | May 1987 | A |
5145164 | Kan | Sep 1992 | A |
5257444 | Nishiyama | Nov 1993 | A |
5322268 | Okutsu et al. | Jun 1994 | A |
5367360 | McIlwraith et al. | Nov 1994 | A |
5655452 | Blake et al. | Aug 1997 | A |
5788455 | Krupica et al. | Aug 1998 | A |
5791250 | Blake et al. | Aug 1998 | A |
5818508 | Straayer et al. | Oct 1998 | A |
5992324 | Rombult et al. | Nov 1999 | A |
6000337 | Blake et al. | Dec 1999 | A |
6076464 | Okamura | Jun 2000 | A |
6422801 | Solomon | Jul 2002 | B1 |
6530322 | Ono et al. | Mar 2003 | B1 |
6561097 | Toyofuku | May 2003 | B2 |
6607192 | Ono et al. | Aug 2003 | B2 |
6619208 | Ono et al. | Sep 2003 | B2 |
6623003 | Koizumi et al. | Sep 2003 | B1 |
6651561 | Koizumi et al. | Nov 2003 | B2 |
6688591 | Larsen et al. | Feb 2004 | B2 |
6726433 | Blake et al. | Apr 2004 | B1 |
6729237 | Kawamura et al. | May 2004 | B2 |
6729837 | Ono et al. | May 2004 | B1 |
6739261 | Ono | May 2004 | B2 |
6745694 | Ellis et al. | Jun 2004 | B1 |
6776097 | Takeda | Aug 2004 | B2 |
6779793 | Behrens et al. | Aug 2004 | B2 |
6904844 | Koizumi et al. | Jun 2005 | B2 |
6929257 | Richardson, Jr. et al. | Aug 2005 | B2 |
6935238 | Kawamura et al. | Aug 2005 | B2 |
6964228 | Koizumi et al. | Nov 2005 | B2 |
6966966 | Koizumi et al. | Nov 2005 | B2 |
6969060 | Bouchal et al. | Nov 2005 | B2 |
6978716 | Takeda | Dec 2005 | B2 |
7000541 | Yee et al. | Feb 2006 | B2 |
7044056 | Miyoshi | May 2006 | B2 |
7100506 | Takeda | Sep 2006 | B2 |
7152531 | Miyoshi | Dec 2006 | B2 |
7367266 | Takeda et al. | May 2008 | B2 |
20030189281 | Larsen et al. | Oct 2003 | A1 |
20040112233 | Shibabuki et al. | Jun 2004 | A1 |
20040112534 | Koizumi et al. | Jun 2004 | A1 |
20040179922 | Blake et al. | Sep 2004 | A1 |
20050021754 | Alda et al. | Jan 2005 | A1 |
20060117975 | Yee et al. | Jun 2006 | A1 |
20060174790 | Yee | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
1 061 019 | Dec 2000 | EP |
1 273 964 | Jan 2003 | EP |
0 897 885 | Oct 2004 | EP |
2000-318850 | Nov 2000 | JP |
2003-285941 | Oct 2003 | JP |
2006091558 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080179004 A1 | Jul 2008 | US |