The invention relates generally to vehicle suspensions and, more specifically, to methods and apparatus for suspension adjustment.
Vehicle suspension systems typically include some form of a shock absorber. Many integrated damper/spring shock absorbers include a damper body surrounded by a mechanical spring. The damper body often consists of a vented piston and a shaft telescopically mounted in a fluid cylinder. Some shock absorbers utilize gas as a spring medium in place of, or in addition to, a mechanical spring. The spring rate of such shock absorbers may be adjustable such as by adjusting the preload of a mechanical spring or adjusting the pressure of the gas in the shock absorber. In that way the shock absorber can be adjusted to accommodate heavier or lighter carried weight, or greater or lesser anticipated impact loads. In vehicle applications, including motorcycles, bicycles, and, particularly, off-road applications, shock absorbers are pre-adjusted to account for varying terrain and anticipated speeds and jumps. Shocks are also adjusted according to certain rider preferences (e.g. soft-firm).
One disadvantage with conventional shock absorbers is that adjusting the spring mechanism to the correct preset may be difficult. The vehicle must be properly loaded for the expected riding conditions such as with a rider or driver sitting on or in the vehicle while the spring mechanism is adjusted to create a proper amount of preload. Often times such adjustment requires both a rider sitting on the vehicle and a separate mechanic performing the proper adjustment at the location of the shock absorber. A further disadvantage is that many current systems rely on imprecise tools and methods to set the initial amount of preload.
As the foregoing illustrates, what is needed in the art are improved apparatus and techniques for easily and accurately adjusting the amount of preload applied to a spring in a shock absorber.
One embodiment of the present disclosure sets forth a shock absorber that includes a gas spring cylinder containing a piston. The piston is moveable between an extended position and a compressed position within the gas spring cylinder. A fill port is fluidly coupled to the cylinder and configured to enable gas to be added to the cylinder, and, in addition, a bleed port is provided to bleed a predetermined amount of gas from the cylinder. A mechanical actuator is arranged whereby the bleed port is automatically closed when the gas spring is compressed to a predetermined position corresponding to a desired sag setting. Another embodiment sets forth a vehicle suspension system that includes the shock absorber discussed above. The vehicle suspension system may also include a front bicycle or motorcycle (for example) fork incorporating the described elements of the shock absorber.
Yet another embodiment sets forth a method for adjusting a vehicle suspension. The method includes the steps of pressurizing a gas spring cylinder of a shock absorber, loading the vehicle suspension with an expected operating load, bleeding air from the cylinder through a bleed port/valve until a first portion of the suspension reaches a predetermined position relative to another portion of the suspension. The position corresponds to a predetermined sag setting whereby the gas spring is partially compressed.
In yet another embodiment, a proper sag setting is determined through the use of a processor and sensor that in one instance measure a position of shock absorber components to dictate a proper sag setting and in another instance calculate a pressure corresponding to a preferred sag setting.
Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by a mechanical spring. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. The mechanical spring may be a helically wound spring that surrounds the damper body. Various integrated shock absorber configurations are described in U.S. Pat. Nos. 5,044,614; 5,803,443; 5,553,836; and 7,293,764; each of which is herein incorporated, in its entirety, by reference.
Some shock absorbers utilize gas as a spring medium in place of, or in addition to, mechanical springs. Gas spring type shock absorbers, having integral dampers, are described in U.S. Pat. Nos. 6,135,434; 6,360,857 and 6,311,962; each of which is herein incorporated, in its entirety, by reference. U.S. Pat. No. 6,360,857 shows a shock absorber having selectively adjustable damping characteristics. U.S. Pat. No. 7,163,222, which is incorporated herein, in its entirety, by reference, describes a gas sprung front shock absorber for a bicycle (a “fork”) having a selective “lock out” and adjustable “blow off” function.
The spring mechanism (gas or mechanical) of some shock absorbers is adjustable so that it can be preset to varying initial states of compression. In some instances the shock spring (gas or mechanical) may comprise different stages having varying spring rates, thereby giving the overall shock absorber a compound spring rate depending varying through the stroke length. In that way the shock absorber can be adjusted to accommodate heavier or lighter carried weight, or greater or lesser anticipated impact loads. In vehicle applications including motorcycle and bicycle applications and particularly off-road applications, shock absorbers are pre-adjusted to account for varying terrain and anticipated speeds and jumps. Shocks are also adjusted according to certain rider preferences (e.g. soft-firm).
A representative embodiment of a shock absorber derives from a modification, as disclosed herein, of the shock absorber shown in
It is noted that embodiments herein of shock absorber adjustment systems and methods are equally applicable to a vehicle's (such as bicycle or motorcycle) front forks. Further, it is contemplated that such a bicycle or motorcycle may include both shock absorber and fork, both of which benefiting from some or all of the features disclosed herein.
An important initial setting to get correct is suspension “sag.” Suspension sag is the measured distance a shock compresses while the rider, wearing intended riding gear, is seated on (for example) a bicycle or motorcycle in a riding position, versus its fully extended position (sag also applies to ATVs, trucks and other suspension equipped vehicles and may account for not only the driver weight but other operational payload weight as well). Getting the sag correct sets the front end steering/handling geometry, puts the rear suspension at its intended linkage articulation for pedaling or riding efficiency (if applicable) and bump absorption and provides some initial suspension compression to allow the wheels/suspension to react to negative terrain features (e.g. dips requiring suspension extension) without having the entire vehicle “fall” into those features. Proper sag adjustment is critical in ensuring continuous contact between tire and ground and greatly enhances traction over varied terrain. Often any attention that is paid to this initial sag setting is focused on the rear suspension, especially in motorcycle applications, but making sure that both the front and rear sag settings are correct are equally important. In one embodiment each suspension component is equipped with a position sensor (e.g. electronic or mechanical) for indicating the magnitude (or state) of extension or compression existing in the suspension. In one embodiment such state of extension or compression is determined by calculation based on a related parameter of the suspension.
A negative spring is used in conjunction with a primary gas spring to create a force equilibrium at zero stroke. If a gas spring is used with no negative spring, the static gas spring force will have to be overcome before the fork or shock will move. For a 1 in 2 piston area and a 100 pis charged gas spring (and including seal break away force), it would take significantly more than 100 lbs of force to get the fork or shock to begin to move. Such high initial force requirement results in a fairly harsh suspension. A negative spring pulls the initial force to move the fork or shock down to, or close to zero. This effect can also be calculated depending on whether the negative spring is a gas spring itself, or a coil spring.
U.S. Pat. No. 6,135,434 (“434 patent”), which is entirely incorporated herein by reference, discloses (see
In one embodiment a shock absorber like the one shown in
A gas spring typically has a non-linear spring rate because (simply stated and ignoring thermal and other effects) of the ideal gas law derived principle of P1V1=P2V2 (where P is pressure and V is volume and 1 is an initial state and 2 is a second state of a closed system). A volume change occurs with each increment of linear piston stroke. Increments of V required to effect spring force change get smaller as axial compression continues as P doubles for every ½V (i.e. ½ reduction of the total remaining volume at any time will double the pressure over the unreduced remaining volume at the time) change. In other words, each 2P change is happening for a constantly decreasing amount of linear stroke hence volume (e.g. logarithmic). This causes an increasing spring rate with gas spring compression.
In one embodiment, initial sag can be automatically set and facilitated by having a position valve attached to the shock absorber such that the position valve allows main gas spring bleed off to occur until a specific sag level is achieved at which time the valve is closed. Each shock absorber has a specific stroke length and proper sag is typically a predetermined fraction of that stroke. In one embodiment the position valve is attached to a fully extended shock absorber such that a plunger or trigger of the valve causes the valve to close at a predetermined distance into the stroke, under load, from full extension.
In one embodiment, as shown in
In one embodiment shown in
One embodiment of the bleed valve bracket 250 is illustrated in
In one embodiment, the plunger operated bleed valve 350 may be configured as shown in
In one embodiment, the plunger operated bleed valve 350 may be configured as shown in
In each of the forgoing embodiments, the gas spring part of the shock is initially pressurized by an external source of air. The air arrives via an exemplary hand pump 300 but it could be supplied by any powered or manual type pump, compressor, or even by a portable pre-charged gas cartridge. During the initial pressurization of the gas spring, the sag mode valve 325 is closed to override the plunger operated bleed valve 350 and prevent operation thereof. Once the pressurization is complete, a rider's weight is placed on (or “in”) the vehicle and the sag mode valve is opened. Thereafter, the bleed valve (which in each case is initially “open”) permits additional compression of the shock until a predetermined travel point at which a shoulder of one portion of the compressing shock interferes with a valve member and closes the bleed valve, thereby stopping the compression travel at a predetermined sag point. At this point, the bleed valve will typically be locked out using a retention member or second valve similar to the ones disclosed in relation to the embodiments described.
In one embodiment, a preferable initial gas spring pressure P1 is determined by loading the air spring with a rider's weight (and/or other payload weight) and measuring the pressure developed in the gas spring in its loaded state. Assuming the gas spring has a constant piston area through the relevant portion of its travel (e.g. extended and loaded) that “loaded” pressure will correspond to the sag pressure because it is the pressure at which the gas spring balances the operational load. Thereafter, using a (computer) processor and a variation of gas law equation such as PiVi=PsVs, (where “i” is initial and “s” is sag) an initial pressure Pi can be calculated that will result in the sag pressure being reached at a desired axial location along the stroke of the shock. In one embodiment for example a proper sag compression stroke setting may be in the range of 20-25% of the total available suspension stroke. In this embodiment, an initial sag position is determined by placing a rider on (or “in”) the vehicle under a static condition and permitting the shock to compress. That pressure will be Psag (even if compression is complete at a less than desirable location along the stroke of the shock). Once Psag and a desired “sag fraction” (sag portion of the total available stroke) are known, along with the initial volume and volume per incremental length of the gas spring, an initial pressure requirement Pi can be calculated to result in that sag fraction using (from Pi=Ps×VsNi) the formula: Pi=Psag×(1-sag fraction). If for example, desired sag fraction is ¼ or 25% and Psag is measured at 200 psi, the equation becomes: Pi=200×(1-0.25). The calculation results in a Pi of 150 psi.
In practice, the forgoing operation of determining Pi may be performed in these steps:
In one version of the forgoing embodiment, an automated pump is connected to the shock absorber main spring fitting and total sprung weight (including rider) is applied to the vehicle. The pump measures the equilibrium pressure Psag and then calculates a proper initial shock spring pressure generally from the formula Pi=Psag×[1-sag fraction]. The pump, by means of for example a screen type display, shows the user the suggested value for Pi initial and the user then uses the pump to correspondingly adjust the pressure state of the uncompressed shock absorber (after the rider has dismounted). In one embodiment, the pump automatically adjusts the uncompressed shock pressure (following dismount of the rider) by automatically operating (all the while connected to a gas input of the gas spring) until the gas spring contains the calculated Pi as measured by the pump. In one embodiment the pump is equipped with control buttons or a touch screen having press-able icons signaling the pump (when appropriately depressed by the user) that the shock is fully extended, in an equilibrium sag state, or other suitable condition. In one embodiment the pump communicates (e.g. Bluetooth, ANT Plus) information to a “smart phone” or other personal digital assistant or laptop or pad and the screen of such device acts as the user interface. In one embodiment the screen prompts the user to: connect the pump to the gas spring; pump the gas spring to overpressure; and load the vehicle, following which the screen displays the sag pressure and then instructs the user to adjust unloaded air pressure to Pi (a suggested value is displayed).
In one embodiment an optical sensor can be used to aid in setting sag. For example a digital camera such as that found on a cell phone, in conjunction with the use of the computing power of the cell phone, may be used. For example, there are a number of currently available applications (iPhoto Measurement, for example) for “smart phones” that permit measurements to be calculated from two digital images of the same object. The ideal gas derivate PiVi=PsagVsag applies. In the case of a camera (e.g. on a phone), a digital image is taken and stored, of the shock in a fully extended position and a second digital image is taken and stored, of the shock subject to full sprung load (e.g. rider) or Dsag (“sag distance”). The camera is also equipped to read an optical identification and/or data code (or RFID tag) on the suspension and following that access, either from a website or internal memory the physical characteristics of the suspension including relevant gas spring dimensions. The camera is programmed to analyze the two images, taken from substantially the same perspective, geometrically and calculate the stroke distance assumed between fully extended “Di” and partially compressed “Dsag” positions. The ratio of Vsag/Vi is equal to the ratio Dsag/Di and therefore the ideal gas equation may be expressed as PiDi=PsagDsag. For purposes of an optical embodiment, a known initial pressure Pik must be used but the value is not overly important so long as the observed sag position is not a bottomed out position. With Pik known (as input by the user) and Dsag known (as calculated by the camera), the camera/phone can calculate (using the ideal gas law) a Psag that corresponds to the sprung load and observed sag state. That Psag can then be used in the equation Pi=Psag×1-sag fraction] to determine a preferred Pi. That Pi is then displayed by the user interface of the camera or camera/phone.
In use the optical embodiment is performed as follows:
It is noted that a negative gas spring influence can be calculated also using ideal gas law derivative P1V1=P2V2. The initial volume V1 of the negative spring is known as is the volume of the negative spring at sag V2. In one embodiment an iterative solution can be calculated by substituting the foregoing calculated Pi for P1 and solving for P2. The effect of P2 can then be added (based on the negative spring piston area versus the main spring piston area) into the calculation to determine the Psag offset due to the negative spring. A factor such as 10% can be chosen as a delimiter whereby if the effect is greater than the delimiter, the pump computer can recalculate Pi accounting for the effect.
In another embodiment a method of determining a preferred sag can be performed as follows:
Questions/queries that are determined by the computer/processor include:
1) Did spring sag to ideal (requires+1-tolerance) sag percentage? If “Yes”=pump communicates to rider that the sag is correct and rider removes pump.
If “No” because there is too little sag, the pump predicts corrected pressure (lower) to achieve ideal sag for the gas spring and the rider manually bleeds air pressure to the pressure communicated by the pump. Thereafter, the rider disconnects the pump.
If “No” because due to too much sag, the pump communicates a corrected pressure (higher) to achieve ideal sag and the rider manually raises the pressure to the correct value and thereafter, disconnects the pump.
The directly preceding steps and associated apparatus may be used in whole or in part and any suitable combination and further in any suitable combination with any other steps or apparatus included herein.
Proper rebound damping setting often depends on initial spring stiffness (i.e. load) and the spring rate. For example, a higher spring force usually indicates an increase in desired rebound damping to control the return rate of the shock to extension under the force of the spring. When the spring force is lower, a lower rebound damping rate (e.g. force) will be all that is required. The processes described herein ultimately (among other things) result in a properly adjusted initial spring pressure and corresponding spring rate. Because in one embodiment the pump computer has all of the compression spring and sag data it is also, based on the particular suspension model, well equipped to calculate a suggested rebound damping setting corresponding to the preferred initial spring pressure setting. Additionally the pump will “know” (have stored) what product model (by user input or sensor query) it is operating with and will have access to a correlated table for rebound settings versus initial spring pressure and/or final/proper sag. Therefore, in one embodiment, before the rider removes the pump from the gas spring as described, the pump will also communicate (e.g. display) a proper rebound setting (e.g. the number of clicks on a setting dial for proper rebound dampening. In one embodiment the user is directed, following adjustment of the gas spring to proper initial pressure (e.g. from foregoing sag calculations) to “bounce” (cyclically load) the suspension several times. Using a sensor for velocity measurement (or measuring dynamic pressure within the gas spring and calculating velocity based on pressure/volume relationships) the pump or other computing device calculates a rebound velocity occurring during the bouncing and determines whether that velocity is too high or too low for example by comparison with suggested rebound velocities for the given suspension (which was determined by query or input). The device (or user interface such as phone) then, if needed because rebound is incorrect, prompts the user to adjust the rebound adjuster in a certain direction higher or lower such as a dial a certain distance such as for example number of indexing marks or audible clicks.
In addition to rebound dampening, it is also possible for forks or shocks that have adjustable compression damping to make a compression damping adjustment based on final gas spring pressure. This can include another internal computer “look up” table for compression damping setting and final pressure. For example, knowing a weight range of a rider from the prior calculations and knowing if the rider added or subtract air pressure to arrive at a proper sag, the weight of the rider can be predicted and a corresponding suggested compression damping adjustment can be made. In a typical example, a heavier rider would require an increased compression damping setting.
The systems disclosed herein can be fully automatic. If, during the sag setting process for example, the sag is determined to be not great enough (stroke), the pump can be constructed, using for example sensors connected to a controller in turn connected to servo operated valve or valves, to bleed itself down to the proper pressure/sag setting. If this happens dynamically while the rider is on the bike, the bleed mechanism would be very sophisticated (in terms of measuring air exiting the gas spring) in order to “understand” how much (volume of) air it was bleeding off so that it could continue its calculations from a known starting point (i.e. extended gas volume) without excess error. In one embodiment the rider can be instructed by the pump to get off the bike following a bleed down, and the pump would sense a “new” initial set pressure again (e.g. Pi), it would then bleed pressure off to what the rider would have otherwise done manually above.
If the sag is too much, the pump, in one embodiment being in communication with a high pressure accumulator/reservoir, would add pressure to the spring to achieve the proper sag. If this is to be done dynamically while the rider is on the bike the pump merely needs to add pressure to find the correct location on the pressure delta versus travel look up table. In one embodiment the rider gets off the bike, and the pump pressurizes the spring to the appropriate pressure.
In one embodiment, a shock absorber position sensor/calculator and a data processor (to measure compression of the shock from full extension) is used to help maintain proper sag. The position sensor indicates the magnitude (or state) of extension or compression of a shock absorber (like the one in
If the sensor and processor determine that the loaded shock is extended beyond a proper sag level, an electrically actuated valve is opened to bleed air pressure from the gas spring in a controlled manner until the proper predetermined sag level is reached, at which point the valve automatically closes and the pump opts itself out of sag mode. In another embodiment, the position sensor/calculator can include a gas spring pressure sensor and a processor that calculates axial shock position based on the compression ratio of the shock, the pressure of the gas spring, and gas compression laws. Likewise, the data processor can measure compression from full extension or any selectively set “zero” datum.
Alternatively the rider can switch the sag set up mode “off” upon reaching a proper sag setting. In one embodiment, with the pump in normal mode the rider/bike will now be in a proper starting point for their sag measurement. When in “pump” mode, more pressure can be added to the gas spring or pressure can be reduced from the gas spring to accommodate different rider styles and/or terrain. This auto sag feature can be achieved electronically as well, by having a shock position sensor in a computer processor/programming of the pump, and specific shock model data allowing the computer to adjust gas spring preload (e.g. air pressure) appropriately for the given model (in one embodiment as determined by the computer in a query of the shock) what sag measurement it should achieve. An electronically controlled pressure relief valve is utilized to bleed off gas spring pressure until the sensor determines the shock is at its proper sag. The pressure relief valve is then directed to close when proper sag is achieved.
One embodiment of the disclosure may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as compact disc read only memory (CD-ROM) disks readable by a CD-ROM drive, flash memory, read only memory (ROM) chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.
In another embodiment, a memory in the ECU or an associated external memory includes instructions that cause the processor to perform the calculations described related to calculating pressures, Pi, Psag, Di, Dsag, etc. In another embodiment, instructions are stored on a server computer connected to the internet, the server being configured to receive the measured values from a client computer, compute the suggested operational setting, and transmit the suggested operational setting to the client computer for display.
The foregoing embodiments while shown in configurations corresponding to rear bicycle shock absorbers are equally applicable to bicycle or motorcycle front forks or other vehicle (e.g. 4 wheel) shock absorbers or other shock absorbers generally having or comprising gas springs or rebound dampers.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be implemented without departing from the scope of the invention, and the scope thereof is determined by the claims that follow.
This application is a continuation application of and claims the benefit of co-pending U.S. patent application Ser. No. 16/821,999, filed on Mar. 17, 2020, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOX-0053US.DIV.CON4, and is hereby incorporated by reference in its entirety herein. The application Ser. No. 16/821,999 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 16/201,816, filed on Nov. 27, 2018, now Issued U.S. Pat. No. 10,591,015, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOX-0053US.DIV.CON3, and is hereby incorporated by reference in its entirety herein. The application Ser. No. 16/201,816 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 15/211,670, filed on Jul. 15, 2016, now Issued U.S. Pat. No. 10,145,435, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOX-0053US.DIV.CON2, and is hereby incorporated by reference in its entirety herein. The application Ser. No. 15/211,670 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/940,839, filed on Nov. 13, 2015, now Issued U.S. Pat. No. 9,523,406, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOX-0053US.DIV.CON, and is hereby incorporated by reference in its entirety herein. The application Ser. No. 14/940,839 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/569,419, filed on Dec. 12, 2014, now Issued U.S. Pat. No. 9,186,949, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOX-0053US.DIV, and is hereby incorporated by reference in its entirety herein. The application Ser. No. 14/569,419 is a divisional application of and claims the benefit of U.S. patent application Ser. No. 13/338,047, filed on Dec. 27, 2011, now Issued U.S. Pat. No. 8,936,139, entitled “METHODS AND APPARATUS FOR SUSPENSION ADJUSTMENT” by Galasso et al., assigned to the assignee of the present application, having Attorney Docket No. FOXF/0053USP1, and is hereby incorporated by reference in its entirety herein. The U.S. Ser. No. 13/338,047 application claims benefit of U.S. Provisional Patent Application Ser. No. 61/427,438 (Atty. Dkt. No. FOXF/0053USL), filed Dec. 27, 2010, and claims benefit of U.S. Provisional Patent Application Ser. No. 61/533,712 (Atty. Dkt. No. FOXF/0058USL), filed Sep. 12, 2011, both of which are herein incorporated by reference in their entireties. The U.S. Ser. No. 13/338,047 application is also a continuation-in-part of U.S. patent application Ser. No. 13/292,949 (Atty. Dkt. No. FOXF/0052US), filed Nov. 9, 2011, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/411,901 (Atty. Dkt. No. FOXF/0052USL), filed Nov. 9, 2010, both of which are herein incorporated by reference in their entireties. The U.S. Ser. No. 13/338,047 application is also a continuation-in-part of U.S. patent application Ser. No. 13/022,346 (Atty. Dkt. No. FOXF/0045USP1), filed Feb. 7, 2011, now Issued U.S. Pat. No. 10,036,443, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/302,070 (Atty. Dkt. No. FOXF/0045USL), filed Feb. 5, 2010, both of which are herein incorporated by reference in their entireties. The U.S. Ser. No. 13/338,047 application is also a continuation-in-part of U.S. patent application Ser. No. 12/773,671 (Atty. Dkt. No. FOXF/0036US), filed May 4, 2010, which claims the benefit of U.S. Provisional Application Ser. No. 61/175,422 (Atty. Dkt. No. FOXF/0036USL), filed May 4, 2009, both of which are herein incorporated by reference in their entireties. The U.S. Ser. No. 13/338,047 application is also a continuation-in-part of U.S. patent application Ser. No. 12/727,915 (Atty. Dkt. No. FOXF/0035US), filed Mar. 19, 2010, now Issued U.S. Pat. No. 9,140,325, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/161,552 (Atty. Dkt. No. FOXF/0035USL), filed Mar. 19, 2009, and United States Provisional. Patent Application Ser. No. 61/161,620 (Atty. Dkt. No. FOXF/0035USL02), filed Mar. 19, 2009, each of which are herein incorporated by reference in their entireties. This patent application is related to U.S. patent application Ser. No. 12/773,671; U.S. Provisional Patent Application Ser. No. 61/175,422 (“422”); U.S. Provisional Patent Application Ser. No. 61/302,070; and U.S. Provisional Patent Application Ser. No. 61/411,901; each of which is entirely incorporated herein by reference. Any individual feature or combination of the features disclosed in the foregoing incorporated references may be suitable for combination with embodiments of this present disclosure.
Number | Date | Country | |
---|---|---|---|
61533712 | Sep 2011 | US | |
61427438 | Dec 2010 | US | |
61411901 | Nov 2010 | US | |
61302070 | Feb 2010 | US | |
61175422 | May 2009 | US | |
61161620 | Mar 2009 | US | |
61164552 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16821999 | Mar 2020 | US |
Child | 18135610 | US | |
Parent | 16201816 | Nov 2018 | US |
Child | 16821999 | US | |
Parent | 15211670 | Jul 2016 | US |
Child | 16201816 | US | |
Parent | 14940839 | Nov 2015 | US |
Child | 15211670 | US | |
Parent | 14569419 | Dec 2014 | US |
Child | 14940839 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13292949 | Nov 2011 | US |
Child | 13338047 | Dec 2011 | US |
Parent | 13022346 | Feb 2011 | US |
Child | 13338047 | US | |
Parent | 12773671 | May 2010 | US |
Child | 13338047 | US | |
Parent | 12727915 | Mar 2010 | US |
Child | 13338047 | US |