The invention relates generally to vehicle suspensions and, more specifically, to a system for adjusting operational characteristics of a vehicle suspension system.
Vehicle suspension systems typically include a spring component or components and a damping component or components. Often, mechanical springs, like helical springs, are used with some type of viscous fluid-based damping mechanism, the spring and damper being mounted functionally in parallel. In some instances a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there-through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.
Despite efforts to educate product managers, retailers, and end consumers on the importance of proper initial vehicle suspension set up, it is evident at event support and trail side encounters that many vehicles such as mountain bikes and motorcycles are ridden with improper initial suspension settings. An important initial setting is suspension “sag,” which is the measured distance a shock absorber compresses while the rider, preferably wearing intended riding gear, is seated on, e.g., a bicycle, motorcycle, or four-wheeled vehicle in a riding position compared to a fully extended suspension position. Suspension sag also applies to all-terrain vehicles (ATVs), trucks, and other vehicles equipped with a suspension. Getting the sag setting correct allows the wheels or vehicle suspension to react to negative terrain features (i.e., dips requiring suspension extension) without the entire vehicle “falling” into such terrain features. Often any attention that is paid to the initial sag setting is focused on the rear suspension, especially in motorcycle applications, but making sure that both the front and rear sag settings are correct is equally important.
Another important initial setting is the rebound damping setting for the rear and front vehicle suspensions. Rebound damping dissipates stored system spring energy after a suspension compression event and results in a controlled rate of return of the suspension to a more extended condition. Preventing the suspension from rebounding too quickly is an important aspect of the quality of vehicle suspension setup. In the case of rear suspension, an improper amount of rebound damping can result in the rear of the vehicle “kicking” off the ground and pitching the rider forward after encountering a bump or sharp compression obstacle, also known as “bucking.” In the case of front suspension, an improper amount of rebound damping can cause impact to the rider's hands as the front suspension kicks back directly toward the rider. Conversely, preventing the suspension from rebounding too slowly is also an important aspect of the quality of vehicle suspension setup. An improper amount of rebound damping, where the amount of damping is too high, can result in the suspension not returning quickly enough to respond to the next bump in a series of bumps, ultimately causing the suspension to “ratchet” down into a compressed state. Such a “ratcheting” sequence is commonly referred to as suspension packing. Packing can result in the suspension being overly stiff due to retained compression through the middle to the end of a series of bumps, causing the back of the vehicle to kick off the ground and pitch the rider forward (in the case of the rear suspension) and causing the suspension to get overly stiff and steering geometry to get steep and unstable (in the case of the front suspension). Compression damping settings are similarly important.
As the foregoing illustrates, what is needed in the art are improved techniques for assisting the operator of a vehicle to prepare and adjust one or more operating parameters of the vehicle for an optimum riding experience.
One embodiment of the present disclosure sets forth a computer-readable storage medium including instructions that, when executed by a processor, cause the processor to perform a plurality of steps. The steps include receiving a weight value that indicates a load to be carried by the vehicle, receiving a digital image of the suspension component, and cropping the digital image to generate a portion of the digital image, where the portion of the digital image comprises a plurality of pixels associated with a shaft of the suspension component and an o-ring positioned to indicate a level of sag of the suspension component under the load. The steps further include analyzing, via an object recognition algorithm executed by a processor, the portion of the digital image to determine a location of the o-ring on the shaft of the suspension component, and determining an adjustment to the suspension component based on the location of the o-ring.
Another embodiment of the present disclosure sets forth a system for adjusting a suspension component on a vehicle. The system includes an image sensor, a display, a memory storing an application, and a processor coupled to the memory, the image sensor, and the display. The processor is configured to receive a weight value that indicates a load to be carried by the vehicle, receive a digital image of the suspension component, and crop the digital image to generate a portion of the digital image, where the portion of the digital image comprises a plurality of pixels associated with a shaft of the suspension component and an o-ring positioned to indicate a level of sag of the suspension component under the load. The processor is further configured to analyze, via an object recognition algorithm, the portion of the digital image to determine a location of the o-ring on the shaft of the suspension component, and determine an adjustment to the suspension component based on the location of the o-ring.
Yet another embodiment of the present disclosure sets forth a system for adjusting a suspension component on a vehicle. The system includes a display, a memory storing an application, and a processor coupled to the memory, and the display. The processor is configured to receive a weight value that indicates a load to be carried by the vehicle, determine a target pressure for an air spring of the suspension component based on the weight value, measure a loaded position of the suspension component, and determine an adjustment to the suspension component based on the loaded position.
In other embodiments, there is provided a vehicle damper comprising a piston and shaft telescopically mounted within a cylinder, wherein a portion of the shaft is visible when the damper is mounted on a vehicle and the vehicle is not in use, the vehicle damper further comprising a code for identifying the vehicle damper within an electronic database of vehicle dampers, and a member mounted on the visible portion of the shaft. The member adapted to be movable along the shaft by the cylinder during a compression of the damper, but which member retains a position on the shaft indicating the furthest movement of the cylinder during compression of the damper.
In yet other embodiments, there is provided a system that includes a shock absorber having a first member and a second member mounted movably relative thereto such that the shock absorber is positioned at or between an extended position and a compressed position. The system further includes a sensor configured to measure the position of the shock absorber, a memory for storing a plurality of sensor readings (e.g., digitally), a processor executing a program for calculating a force applied to the shock absorber based on a difference between a first position and a second position and a spring setting (i.e., target pressure) such that the force applied to the shock absorber causes the shock absorber to be compressed to a third position (i.e., proper sag position), and a user interface for displaying the spring setting to a user. The program calculates a rebound damping setting (and/or a compression damping setting) for the shock absorber based on the spring setting.
One advantage of the disclosed technique is that the device may use the physical characteristics of the suspension component and an intended load entered by the rider to automatically calculate target values for various settings of the suspension component that should result in a properly setup vehicle suspension. The device may also receive feedback, such as using images captured by the device, to determine whether the suspension should be adjusted from the target values in order to provide the correct result. Proper setup of a vehicle suspension helps create a more enjoyable experience for the rider.
So that the manner in which the above recited features can be understood in detail, a more particular description, briefly summarized above, may be had by reference to certain example embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting the scope of the claims, which may admit to other equally effective embodiments.
For clarity, identical reference numbers have been used, where applicable, to designate identical elements that are common between figures. It is contemplated that features of one example embodiment may be incorporated in other example embodiments without further recitation.
Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by a mechanical spring or constructed in conjunction with an air spring. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. A mechanical spring may be a helically wound spring that surrounds the damper body. Various integrated shock absorber configurations are described in U.S. Pat. Nos. 6,311,962; 6,135,434; 5,044,614; 5,803,443; 5,553,836; and 7,293,764; each of which is herein incorporated by reference in its entirety.
Some shock absorbers utilize gas as a spring medium in place of, or in addition to, mechanical springs. Gas spring type shock absorbers, such as gas spring shock absorbers having integral dampers, are described in U.S. Pat. Nos. 6,135,434; 6,360,857; and 6,311,962, each of which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,360,857, which is incorporated herein by reference in its entirety, shows a shock absorber having selectively adjustable damping characteristics. U.S. Pat. No. 7,163,222, which is incorporated herein by reference in its entirety, describes a gas sprung front shock absorber for a bicycle (i.e., a bicycle fork) having a selective “lock out” and adjustable “blow off” function.
The spring mechanism (gas or mechanical) of some shock absorbers is adjustable so that it can be preset to varying initial states of compression. In some instances the shock spring may comprise different stages having varying spring rates, thereby giving the overall shock absorber a compound spring rate varying through the stroke length. In that way, the shock absorber can be adjusted to accommodate heavier or lighter carried weight, or greater or lesser anticipated impact loads. In vehicle applications, including motorcycle and bicycle applications and particularly off-road applications, shock absorbers should be pre-adjusted to account for varying terrain and anticipated speeds and jumps. Shocks may also be adjusted according to certain rider preferences (e.g., soft to firm).
For example, a type of integrated damper/spring shock absorber having a gas spring is shown in FIG. 28 of U.S. Pat. No. 7,374,028 (hereinafter “028 patent”), which is incorporated by reference herein in its entirety. The shock absorber of FIG. 28 also includes an “adjustable intensifier assembly 510.” The intensifier or reservoir accepts damping fluid from chamber 170 as the fluid is displaced from that chamber by the incursion of rod 620 into chamber 170 during a compression stroke of the shock. The intensifier valve assembly regulates flow of damping fluid into and out of the reservoir, and an embodiment of the valve assembly is shown in FIG. 17 of the '028 patent.
Although described herein with respect to a bicycle suspension system, the embodiments herein may be used with any type of suspended vehicle, as well as other types of suspension or damping systems.
Referring to
In one embodiment, a sensor 5 may be positioned proximate a rear axle 15 of the bicycle 100 for sensing changes in terrain. As shown in
The sensors, such as sensors 5, 5b, 5c, and a pedal force sensor (not shown), may be any suitable force or acceleration transducer (e.g. strain gage, wheatstone bridge, accelerometer, hydraulic cylinder, interferometer based, optical, thermal, acoustic or any suitable combination thereof). The sensors may utilize solid state electronics, electro-mechanical principles, or any other suitable mechanisms for monitoring the operational characteristics. In one embodiment, sensor 5 comprises a single-axis, self-powered accelerometer, such as for example ENDEVCO Model 2229C. The 2229C is a comparatively small device with overall dimensions of about 15 mm height by 10 mm diameter, and weighs about 4.9 g. The 2229C power is self-generated and therefore the total power requirements for the bicycle 100 are reduced; an important advantage, at least for some types of bicycle, where overall weight is a concern. In another embodiment, sensor 5 comprises the ENDEVCO 12M1A, which is of the surface-mount type. The 12M1A is a single-axis accelerometer comprising a bimorph sensing element which operates in the bender mode. This accelerometer is particularly small and light, measuring about 4.5 mm by 3.8 mm by 0.85 mm, and weighs about 0.12 g. In other embodiments, sensor 5 may be a tri-axial accelerometer, such as the ENDEVCO 67-100, which has overall dimensions of about 23 mm length and 15 mm width, and weighs about 14 g. Other sensors known in the art may be used with the embodiments described herein.
In one embodiment, the sensor 5 may be attached to the swing arm 10 directly, to any link thereof, to an intermediate mounting member or to any other portion or portions of the bicycle 100 as may be useful for purposes disclosed herein. In another embodiment, the sensor 5 may be attached to an un-sprung portion of the bicycle 100, such as for example the swing arm 10, and another sensor 35 (such as an accelerometer as described above) may be attached to a sprung portion of the bicycle 100, such as for example the frame 40. Data from each sensor can be registered relative to a common time datum, and suspension damping and/or spring effectiveness can be evaluated by comparing the data from the sensors on either “side” of the suspension unit. Sensors may be integrated with the vehicle structure and data processing system as described in U.S. Pat. Nos. 6,863,291; 4,773,671; 4,984,819; 5,390,949; 5,105,918; 6,427,812; 6,244,398; 5,027,303 and 6,935,157; each of which is incorporated herein by reference in its entirety. Sensors and valve actuators (e.g., electric solenoid, linear motor type, or rotary motor type) may be integrated herein utilizing principles outlined in SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series no. 910661 by Shiozaki et al. for the International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991, which is incorporated herein by reference in its entirety. Further, sensors and valves, or principles, of patents and other documents incorporated herein by reference, may be integrated into embodiments hereof, individually or in combination, as disclosed herein.
In one embodiment, the shock absorber 25 is operatively mounted between an unsprung portion of the bicycle 100, such as the swing arm 10 and rear axle 15, and a sprung portion of the bicycle 100, such as the frame 40. A representative example embodiment of the shock absorber 25 derives from a modification, as disclosed herein, of the shock absorber shown in FIG. 28 of the '028 patent.
Referring to
The valve portion 110 may also include a spring 118 that applies a force against the piston 116 to bias the piston 116 toward the closed position. Fluid pressure against the piston 116 may result in a force that exceeds the spring force causing the piston 116 to move and open the orifice(s) 114. The actuator portion 120 may also apply a force to the piston 116. The actuator portion 120 may advantageously be back drivable to permit the pressure term to push open the valve, for example, during the onset of a high shock event. One embodiment of the actuator portion 120 is a voice coil type linear actuator including a voice coil 122, a magnet 124, and a back iron 126. The back iron 126 is coupled to the piston 116 such that linear movement of the back iron 126 causes linear movement of the piston 116.
The actuator portion 120 may be controlled using a command such as a voltage command, for example, provided by drive electronics. A voltage command or signal to the actuator portion 120 causes current to flow through the coil 122, creating a magnetic field that applies a force to the magnet 124 and back iron 126. Different voltage commands may thus correspond to different amounts of force applied to the piston 116 in the valve assembly 511. In one embodiment, the signals and actuator are configured to move the valve completely between a full open (“unlocked”) and a full closed position (“locked”) thereby allowing the damper to move or substantially locking it; i.e., adjusting the damping rate of the damping assembly 630 between minimum and maximum respectively.
Although one exemplary valve 110 is shown, those skilled in the art will recognize that other types of valves may be used. Although the exemplary actuator 120 is a voice coil type linear actuator, those skilled in the art will recognize that other types of actuator technologies may be used. For example, the sensors, switches, controllers, actuators and other operative elements hereof may comprise optical circuitry and as such the power source may comprises an optical (or other electromagnetic) generator such as a “LASER” and wiring and circuits used herein may comprises fiber optic and optic circuitry including Bragg grating technology and other suitable “electrical equivalents.” The elements hereof may be operable in whole or in part based on sonic wave or microwave transmission and suitable waveguide technology may be employed. An operation of an intensifier valve that may be used with the embodiments described herein is disclosed in U.S. Pat. No. 7,299,112; which is incorporated herein by reference in its entirety.
It should be noted that voice coil 122 and magnet 124 are interchangeable such that the voice coil may be either 122 or 124 and the magnet may be the other of 122 and 124, respectively. The voice coil 122 or 124 responds to input current from the power circuit (e.g. position control circuit or other suitable electrical input as described herein) and, therefore, input wiring is desirable. The input wiring and terminals for the 122 version of the voice coil is shown at 150. The input wiring and terminals for the 124 version of the voice coil is shown at 151 and includes windings 152 to accommodate extension and contraction of the throughput wires 152 during operation of the valve assembly 511.
The valve assembly 511 is shown in a closed or downward 156, position. As such, piston 116 fully obstructs orifices 114 thereby preventing fluid from flowing from damper assembly 630, through channel 636, into upper chamber 153, through orifice 114, through valve outlet 157 and into floating piston compensator chamber 154. When current of an appropriate magnitude is applied to the voice coil 122 or 124, the magnet electromagnet combination of 122 and 124 causes the back iron 126, and correspondingly the valve piston 116, to move upward 155 in an amount proportional to the voice coil input. Such upward 155 movement is against spring 118, which biases the valve piston 116 downward 156 (i.e. toward closed) and, therefore, when the voice coil input balances with the force of spring 118, movement of the piston 116 will stop and the valve assembly 511 will be correspondingly throttled.
In operation, the sensor 5 (and/or sensors 5b, 5c, 35) puts out a voltage corresponding to an input force. The outputs from sensors 5, 5b, 5c, 35 may be reconciled in a controller or processor 65 (described in greater detail below) that implements an algorithm for weighting their respective inputs and generating a resulting singular command or signal based on a predetermined logic. In one embodiment, the sensor 5 senses an input force along the prescribed range or axis 20. A bump in the terrain 45 typically exerts a force on a tire/wheel 60 of the bicycle 100. The angle of the resolved force relative to the tire/wheel 60 is typically normal (substantially) to the tire/wheel 60 at the point of impact. That force then imparts a component of the impact to the axle 15 as dictated by the trajectory of the swing arm linkage 10. That component can be sensed by the sensor 5 at a magnitude corresponding to the orientation of the sensor range or angle 20. The sensor axis 20 orientation can be adjusted to make the sensor 5 more or less sensitive (by imparting more or less of the impact to the sensor range or axis 20) to bumps and dips in the terrain 45.
It is envisaged that there are various ways the remote lock/unlock function of the rear shock absorber 25 and/or front shock absorber 80 may be provided on the bicycle 100. In one embodiment, remote lock/unlock may be entirely automatically controlled by a controller 65 in response to the input from the sensors 5, 5b, 5c and/or 35 when the bicycle 100 is in use. Optionally, the user may be able to override and/or adjust this automatic control using a device 50. In one embodiment, the remote lock/unlock of the rear shock absorber 25 and/or front shock absorber in fork 80 may be entirely controlled at the user's discretion using the device 50; in such an embodiment, the sensors 5, 5b, 5c and/or 35 need not be provided on the bicycle 100 and the user locks and unlocks the suspension system according to his or her own preferences at the time.
In one embodiment, device 50 comprises a digital user interface device provided with buttons and/or a touch screen that enables the user to adjust the damper assembly 630 at will. The device 50 may comprise a suitable GPS (global positioning system) unit, bicycle computer, heart rate monitor, smart phone, personal computer, or cloud-connected computer, and may further comprise connectivity to a network such as the Internet. The device 50 may send and receive data via cell phone bands, satellite bands, or other suitable electromagnetic frequencies to connect with other computer networks for the sending and or receiving of data, wherein the data may be received by and transformed by an outside computing machine and transmitted to the device 50 in an altered form or in a new form corresponding to the result of the outside machine transformation. The functionality of the device 50 may be incorporated into performance recording devices and/or digital user interfaces such as, but not limited to, the Garmin® EDGE series of devices and smart phones such as the Apple® iPhone or Motorola® phones including the Android® Operating System.
Some or all components of embodiments described herein, including sensors, switches, processors, controllers, shock absorbers, intensifier assembly, and/or valve assembly, may be interconnected or connected by wired or wireless communication. The components may be connected to a network, such as a wide area network (WAN), local area network (LAN), or the Internet, and configured to implement communications via Bluetooth, Wi-Fi, ANT (i.e., Garmin low power usage protocol), or any other suitable power or signal transmitting protocol. In some embodiments, the components should ideally communicate wirelessly with controller 65. As the controller 65 receives the input signals from sensors 5 (as well as 5b, 5c, 35, etc.) the controller 65 responds to those signals by adjusting the damping rate of the damper assembly 630.
In one embodiment, the controller 65 takes a derivative (i.e., differentiation) of the suspension compression and/or extension acceleration to determine the rate of change of acceleration for forecasting and implementing adjustment of the valve assembly 511 or for determining a data rate or sample density required to adequately represent current suspension behavior. For example, if a bump 55 is encountered, followed immediately by a dip, it may be desirable to have the rebound of the tire into the dip occur very rapidly. If the valve assembly 511 were opened to an intermediate state as determined by the controller 65 and the controller determines that a bump has been followed by a large magnitude reversal of the derivative of the acceleration (i.e., indicated by the sensor 5), then the controller 65 may direct the power source to fully open the valve assembly 511 to allow the maximum rebound velocity. It is noted that embodiments herein of shock absorber/damping assembly 630 and related systems are equally applicable to vehicle front forks. Further, it is contemplated that the vehicle may include both shock absorbers and front forks, both of which having some or all of the features disclosed herein.
In one embodiment, the device 50 captures data 335 from the sensors in the memory 320 for processing by program 325. The data 335 may include suspension component relative position data (e.g., inches of compression or full extension or full compression or any suitable combination of such data) and/or other operational characteristics/features of the vehicle 100 that are measured by the sensors. The raw sensor data may be communicated to the controller 65 via wired and/or wireless communication, and the controller 65 may process the raw sensor data and communicate the processed data 335 to device 50 via, for example, an industry standard low power wireless protocol. The program 325 instructs the user on what adjustments to make to improve the vehicle suspension setup and/or to describe the current performance of the vehicle suspension system. In one embodiment, the user may use the device 50 to adjust one or more components of the vehicle 100, automatically, manually and/or remotely, wired and/or wirelessly, directly, manually and/or indirectly (such as via the controller 65) during and/or after operation of the vehicle 100.
In one embodiment, the sensors are mounted to vehicle suspension components, such as the front forks 80 of bicycle 100 illustrated in
In one embodiment, the controller 65 is relatively small (about 2″.times.3-3.5″.times.0.5-0.625″) and lightweight so as to not negatively impact the user of the vehicle 100. The controller 65 need not literally “control” anything but rather may cull data and send the result to the device 50 for processing. The controller 65 may contain one or more of the following major components: a low power microprocessor, a wireless communication chip (such as ANT+, Bluetooth, and/or Wi-Fi 802.11n), a battery, and flash memory. The controller 65 may also have other sensors on board such as a GPS, a compass, an accelerometer, an altimeter, and/or an air temperature sensor. The controller 65 may also have one or more external features such as multi-color LED's to communicate basic state of operation and battery charge to the user and buttons to toggle power and start/stop data logging. The controller 65 may also have an external mini USB connector to connect to a computer or other external device for uploading of data and charging the battery as well as external connectors to connect to any wired sensors.
In one embodiment, the controller 65 may record and evaluate the vehicle suspension data in real time. The controller 65 may analyze parameters like sag (static ride height), rebound and compression speed, top out and bottom out events. Then, after analysis is complete, the controller 65 may communicate the results of the analysis with the device 50. Because there are many user interface devices that already have ANT+ and/or Bluetooth built-in (e.g. Garmin® GPS, power meters, Apple® iPhone, etc.) it is contemplated that certain embodiments will be compatible with these protocols. These 3rd party user interface devices generally have large displays with a developed GUI and user navigation method via any or all of buttons, joystick, touch screen, etc. The built-in wireless capabilities are ideal for low density data transmittal, but are not well suited for high speed data acquisition (because low power wireless data rates are generally limited). By leveraging the existing device display and GUI capabilities, the applicability of the system is increased. In one embodiment, the device 50 is programmed with a data template or templates suitable for filling with data and/or calculations/suggestions from the controller 65. In another embodiment, the device 50 is programmed with input templates for facilitating user input of suspension model, user weight, vehicle type, etc. as may be useful in aiding the controller 65 to look up corresponding parameters. The controller 65 will communicate to the device 50 selected data or calculations (e.g. graphical, tabular, textual or other suitable format) to display to the user, such as suggestions for adjusting spring preload, air spring pressure (to adjust sag), rebound damping setting, compression damping setting, bottom out damper setting, etc. Communication will also work in reverse to allow the user to enter data, such as model of suspension, rider weight, etc., in the device 50 which will relay the information to the controller 65. From such model information the controller 65 will look up model relevant parameters and use those to aid in calculating suggestions or for processing raw sensor data.
In one embodiment, the controller 65 functions as a data receiver, processor, memory and data filter. The controller 65 receives high frequency (high sampling rate) data from the suspension sensor(s). Because current user interface devices, particularly those using wireless protocols, may not be capable of high enough data rates to directly monitor the suspension sensors, the controller 65 may act as a high data rate intermediary between the suspension sensors and the device 50. In one embodiment, the controller 65 is configured to prompt and accept high sampling rate data from the suspension sensors. The controller 65 then stores the data and processes selected data at selected intervals for transmission to a user interface of the device 50. In other words the controller 65 pares the effective data rate and makes that pared data transmission to the user interface in real time. Additionally, the controller 65 stores all un-transmitted data for later analysis if desired. The controller 65 can later be plugged into a computer system, such as a home computing device or laptop via a USB pigtail or dongle device. The controller 65 may also preprocess data and generate user friendly viewing formats for transmission to the user interface of the device 50. The controller 65 may calculate data trends of other useful data derivatives for periodic “real time” (effectively real time although not exact) display on the user interface of the device 50.
In one embodiment, each vehicle 100 suspension component is equipped with a position sensor for indicating the magnitude (or state) of extension or compression existing in the vehicle 100 suspension at any given moment. As the suspension is used over terrain, such a sensor will generate a tremendous amount of data. Relatively high sampling rates are needed to capture meaningful information in devices operating at such high frequencies. For example, in one embodiment, a suitable telescopic tube of the vehicle 100 suspension may be equipped or fitted with two piezoelectric sensors. One of the piezoelectric sensors is a high frequency exciter which is configured on the tube such that it (substantially) continuously induces impacts to a wall of the tube. In lay terms, the sensor thumps or pings the tube wall on a continual basis. The second piezoelectric sensor is an accelerometer fixed or configured with the tube wall so as to monitor vibration of the tube wall. The frequency of the exciter is intentionally set well outside any resonant mode of the suspension tube as it travels through its operational suspension stroke. In one embodiment, a sensing frequency of the monitor is selected to coincide (substantially) with at least one resonant mode range of the tube as it travels through its operational stroke.
The aforementioned exciter and monitor are calibrated, in conjunction with the controller 65, so that values for resonant frequencies (in a selected mode or modes) of the suspension tube (or other suitable and variably “ringing” suspension component) are correlated with axial extension/compression of the suspension containing or including the tube. Such correlation data is stored with the controller 65 for use in real time calculation of axial suspension position based on real time input from the suspension resonant frequency monitor. The tube will tend to resonate regardless of the exciter frequency so by monitoring the change in resonant frequency or tube “ringing”, with the monitor, the axial position of the suspension can be derived within the controller 65.
In one embodiment, the exciter and monitor act on and measure resonance with a cavity of the vehicle 100 suspension wherein cavity resonance versus axial suspension displacement is calibrated and correlated for use in the controller 65. In another embodiment, magnetic flux leakage of a suspension component, or magnetic imposition of current in a surrounding conductive structure, is correlated with axial suspension displacement. In yet another embodiment, optics may be used (e.g. Doppler effect) to measure displacement. In still another embodiment, a magnet is affixed to one portion of the suspension and a conductor is affixed to a relatively movable portion of the suspension so that when the suspension moves axially the relative movement between the magnet and the conductor generates a changing current of flux in the arrangement (and that can be correlated with axial movement). In another embodiment, sonic or ultrasonic waves are used to excite a portion of the suspension and the changing reflective sonic signals are monitored to determine axial disposition of the suspension.
In one embodiment, vehicle suspension components include scan compatible identification codes (e.g., bar codes or QR codes) specifying at least model type and possibly including details including performance specifications. The scan compatible identification codes may also specify other manufacture details such as lot, factory source, build date, inventory numbers, invoice or tracking numbers, subassembly/assembly numbers, etc. In one embodiment, the codes and/or data are included on a chip embedded in the suspension, such as an active or passive radio frequency identification (“RFID”) tag. The controller 65, which may include an RFID tag reader, detects the chip and, based on the data received there from, proceeds to configure, or suggest configuration for, the vehicle suspension.
In one embodiment, the controller 65 and/or device 50 operates in a setup mode where rider input weight and suspension product data are used to suggest initial spring preload and damper settings for the vehicle suspension components. The controller 65 and/or device 50 may also operate in a ride mode wherein suspension movement (e.g. average travel used versus available, portion or range of travel used, number and severity of bottom out or top out events) is monitored and used in conjunction with the rider and suspension data to suggest changes to the suspension setup that better utilize or maximize usage of the suspension capabilities. In another embodiment, the controller 65 and/or device 50 monitors compression range of the suspension to determine whether or not the suspension is setup for optimal use of its range over a given terrain 45. Too many top out events or bottom out events, or operation generally over only a portion of the available range, will indicate a possible need for adjustment to the spring pressure and/or damping rate, and the controller 65, upon calculating such range usage, sends an appropriate suggestion to the device 50, which is displayed to the user. In one embodiment, a GPS unit transmits real time GPS data to the controller 65 and such data is overlayed or paired with corresponding suspension data along an elapsed (or relative sequence) time synchronous data marker (or other suitable common data marker or “datum” type).
In one embodiment, a rebound setting can be automatically achieved by utilizing the air spring pressure or coil spring preload needed to achieve proper sag. The rebound setting is then achieved via feeding the air spring pressure for an air shock, or an oil pressure signal for a coil shock, down the damper shaft to a pressure sensitive damping valve at the damper shaft piston. Rebound damping requirements will vary depending on the stiffness of the suspension spring. A stiffer (or softer) spring normally indicates more (or less) rebound damping as a requirement. In one embodiment, a rebound damper setting is calculated from the sag calculation spring setting recommendation. In one embodiment, there is an external rebound adjustor to make incremental changes from the predetermined setting to account for varied terrain/conditions, and/or riding style and preference.
In one embodiment, an initial sag setting can be automatically set and facilitated by having a position valve within the shock for a given length bleed off air pressure until a specific sag level is achieved. Each shock stroke would have a specific length of sag/position valve. The user would pressurize their shock to a maximum shock pressure of, for example, 300 psi or so. The actual max number is not important at this point. The idea is to over pressurize the shock beyond any reasonable properly set sag pressure. The user then switches the shock to be in setup or sag mode and sits on the bike. The shock will bleed air from the air spring until the position valve encounters a shut off abutment which thereby shuts the bleed valve. In one embodiment, the device 50 or controller 65 “knows” a vehicle suspension component is extended beyond a proper sag level and a an electrically actuated valve (or other type of remote actuated valve) is opened to bleed air pressure from the air spring in a controlled manner until the proper predetermined sag level is reached, at which point the valve automatically closes and the shock opts itself out of sag mode. Alternatively, the user can switch the sag set up mode off upon reaching a proper sag setting. When in a normal riding mode, more pressure can be added to the air spring or pressure can be reduced from the air spring to accommodate different rider styles and or terrain 45. This auto sag feature can be achieved electronically as well, by having a position sensor in the shock, and the shock model data allowing the controller 65 to adjust spring preload (e.g. air pressure) appropriately for the given model (as determined by the controller 65 in a query). An electronically controlled pressure relief valve is utilized to bleed off air spring pressure until the sensor determines the shock is at its' proper sag. The pressure relief valve is then directed to close and proper sag level is achieved.
In one embodiment, the system 300 can be utilized by integrating certain data collection sensors to both assist in the initial setup of the vehicle and to provide hints on how to tweak the vehicle 100 suspension system beyond an initial setup. The sensors communicate with the controller 65. Data (e.g. model, specifications) corresponding to all possible suspension products that may interface with the controller 65 would be stored in the controller 65 so when one or another of those products is plugged in, or booted up if wirelessly connected, the controller 65 would know lengths, travels, external adjustment features etc. For each product connected to the controller 65, the controller 65 (or device 50) would then walk the user through a proper setup routine, starting with sag for example, using the user interface provided by device 50. The user would sit on the bike and the rider sag measurement for the fork and shock would be displayed on the device 50 for example. The controller 65 will know what product it is trying to get adjusted properly and will make pressure recommendations for the user to input to the shock or fork. The user then sits on the bike again and, in this iterative and interactive process, will arrive at initial sag setting for the fork and shock product being used.
In a more elaborate system, the controller 65 will “know” what pressure is in the fork and shock, and will make rebound recommendations based on those settings. In a simpler form, the controller 65 will ask the user to input their final sag attaining pressures and will then make rebound recommendations based on the product and pressures. The controller 65 will also make compression damping setting recommendations based on the product connected to the controller 65. The user then goes out and rides the vehicle. The controller 65 will transfer to data logging mode once the bike is being ridden or in a simpler form when the user puts the system into ride mode. The controller 65 will log and save bottom out events, average travel used, identify too quick or too slow rebound events, etc. If average travel is more than a specified amount, the controller 65 will make recommendations on settings to have the system respond better in the stroke. If the average travel used in less than a specified amount the controller 65 will make recommendations on settings to utilize more travel. Full travel events will be evaluated versus the average travel used data and make recommendations on how to reduce or increase the amount of full travel events. Computer (PC/laptop) software may be utilized so the data logged can be downloaded to a computer system for further evaluation.
A website, such as the FOX RACING SHOX website, can be utilized as a place for riders to go to check out settings other riders are using and why, and to provide a way to spend time in a community, such as a FOX RACING SHOX community. In one embodiment, the controller 65 will log ridden hours and will prompt the user to perform certain maintenance operations, and when data is downloaded to the computer system, such as a desktop/laptop machine, a link to the service procedure for the particular recommended service will pop up. The link will be to a video guild on how to perform the service, tools needed etc., if a user is at the max of a particular adjustment feature on the closed or open side, the controller 65 will make a recommendation to have a service provider, such as FOX RACING SHOX, re-valve their system to get that particular adjustment feature into the middle of its' range again, and will make recommendations to a service technician, such as a FOX RACING SHOX service tech, on what direction to make the valving changes, etc. A more elaborate system 300 can incorporate accelerometers, pressure sensors, etc.
In one embodiment, program 325 is used to manually setup front fork 80 and shock absorber 25 of vehicle 100. In some embodiments, vehicle 100 does not include sensors (5, 5b, 5c, etc.) for measuring the position of the vehicle suspension components. The vehicle suspension components may not include actuators, such as valve assembly 511, configured to adjust the damping rate remotely. In such embodiments, program 325 assists the user in manually adjusting the pressure in the air spring and the damping rate of the damping components in the shock absorbers. Furthermore, device 50 may be “dumb” in that device 50 does not communicate with a controller 65 to receive information about the operational characteristics of the vehicle suspension components.
If acquiring the program 325 for the first time, the user may connect to the online repository (e.g., iTunes) for downloading like programs 325 and either download the program 325 directly to device 50 or download the program 325 to a computer that is then synched to device 50 to transfer the program 325 to the device 50. Once the program 325 is loaded onto the device 50, the user can open the program 325 to begin the setup routine. Once the program 325 is loaded, the program displays a set of templates that allow the user to read instructions on how to setup the various components of the vehicle suspension, prompt the user for input such as the component IDs of the various suspension components or the user's weight with full riding gear, and display pictures or videos that show the user how to properly setup the vehicle suspension. The various screen shots of one embodiment of program 325 are described in more detail below.
As shown in
As shown in
As shown in
As shown in
User input entered in the fourth screen shot 400d may control the order that subsequent screen shots are displayed while performing the setup routine. For example, if a user only enters the component ID for the front fork 80, then only those screen shots associated with proper setup of the front fork 80 will be displayed. Similarly, if a user only enters the component ID for the shock absorber 25, then only those screen shots associated with proper setup of the shock absorber 25 will be displayed.
The component ID enables program 325 to query a database to retrieve product information related to the specific vehicle suspension component. The product information may include, but is not limited to, product name/model, the available external adjustments available for the component, the length of travel of the component, a preferred sag setting for the component, the range of adjustment for each of the external adjustors available for the component, and physical characteristics of the component such as air spring piston area, air volume compression ratio, composite spring curve shape, upper tube outside diameter for a fork, and shock body outside diameter for a shock. Once a user enters a component ID into user interface elements 412 or 414, program 325 may check the entered component ID against the product information in the database and indicate whether a match was found. For example, program 325 may display an error message when a match is not found for the entered component ID. Program 325 may display text or a graphic next to the user interface elements 412 and 414 when a match is found that indicates to a user that product information associated with the component ID was located. For example, a thumbnail image of the component may be displayed next to the user interface element 412 or 414.
As shown in
As shown in
The seventh screen shot 400g includes a second interface element 418 that indicates a target pressure at which the air spring in the fork should be set and a third interface element 420 that lets a user toggle between imperial units and metric units. For example, as shown, imperial units (i.e., pounds and pounds per square inch) are displayed in user interface element 416 and 418. Although not shown, the user may be instructed in how to attach and use the shock pump with the fork 80 via a description or graphical or video depiction. The target pressure is derived via a calculation based on the fully-loaded weight of the rider and the physical parameters of the suspension component retrieved in the product information. For example, the air spring compression ratio, the air spring piston area, the negative spring length, the negative spring rate, and the top-out spring rate can be used to calculate a more exact starting pressure. For example, the program 325 may be configured to calculate a starting pressure corresponding to a particular sag setting (e.g., 25%). Given the retrieved product information, the program 325 can determine a starting pressure that would result in the shock absorber 25 being compressed to 25% under a load equal to the selected fully-loaded weight. In one embodiment, the target pressure is calculated dynamically based on the product information. In another embodiment, the target pressure is pre-calculated for each possible fully-loaded weight and stored in an array that may be accessed by program 325. The seventh screen shot 400g also includes a button 406 to go to the previous screen (e.g., 400f) and a button 410 to proceed to the next screen (e.g., 400h).
It is to be noted however, that the invention is not limited to the use of an o-ring as the indicator member. In other embodiments, the indicator member can be any suitable e.g. a full or part ring of plastics material. When in the form of a part-ring, the user could clip the indicator member to the shaft for the purposes of sag adjustment and then remove the part-ring when finished. In other embodiments, a full or part-ring is fitted to the suspension component at point of manufacture. The indicator member can be any colour or combination of colours that enables it to be identified by an object recognition algorithm when mounted on the suspension component.
As shown in
As shown in
In alternative embodiments, the graphical overlay may include indicators that provide the user with feedback as to whether the proper sag setting has been achieved. For example, the graphical overlay may include a line or other indicator that indicates the approximate location of the o-ring corresponding to a preferred sag setting (e.g., 1.5 inches of travel for a fork with 6 inches of total travel corresponding to 25% sag). In some embodiments, the graphical overlay may also include gradient indicators in combination with pressure delta recommendations indicating whether the user should refine the pressure in the air spring. For example, if the sag setting is off by more than 5%, the color gradient may change from green to yellow indicating that further adjustment of the pressure in the air spring is appropriate. If the sag setting is off by 20%, then the color gradient may change from yellow to red indicating that further adjustment of the pressure in the air spring is necessary. The ninth screen shot 400i also includes a button 406 to go to the previous screen (e.g., 400h) and, although not shown explicitly, a button 410 to proceed to the next screen (e.g., 400j). The scan user interface button 432, once pressed, may be replaced with button 410. In other embodiments, the scan user interface button 432 as well as buttons 406 and 410 may be displayed simultaneously.
As shown in
As shown in
Once the user has adjusted the rebound damping to the correct setting, the fork 80 is properly setup. As long as the user has entered a valid component ID for a shock absorber 25 into user interface element 414 of
As shown in
Returning to the first screen shot 400a of
Selecting any of the saved setup routines listed in the eighteenth screen shot 400r causes program 325 to display the nineteenth screen shot 400s, as shown in
The image overlay view of the ninth screen shot 400i or the fourteenth screen shot 400n helps the user measure and properly set a vehicle suspensions sag. The view comprises a graphical overlay on top of a live view as seen from an image sensor 380. This technique for viewing a live image with a graphical overlay may sometimes be referred to as a heads-up display or HUD. The user may move and orient the device 50 via 6 degrees of freedom (i.e., translation in x, y, and z coordinates as well as rotation around each of the three axes). Thus, the user can line up the live view of the suspension component with the static overlay of the graphical representation of the component.
Various methods exist to align and orient the live view with the graphical overlay. In one embodiment, the user may align two or more indicators in the graphical overlay with corresponding points on the suspension component. For example, the user may align one indicator with a left edge of the lower tube of the fork 80 in the view and a second indicator with a right edge of the lower tube of the fork 80 in the view. Aligning these two indicators with the corresponding opposite edges of the lower tube will ensure that the live view is correctly scaled to the graphical overlay. Aligning the top edge of the lower tube (i.e., a seal) with a third indicator will then ensure that the graphical overlay is correctly positioned. The size and scale of the graphical overlay corresponds to the physical dimensions of the suspension component.
Once the live image 710 has been correctly aligned with the graphical overlay 720, the program 325 analyzes one or more frames 800 captured from the image sensor 380 to recognize and determine an o-ring 430 position on the shaft of the suspension component.
In one embodiment, for each frame 800, program 325 analyzes a portion 810 of the frame 800 that, if the live image 510 was properly aligned with device 50, corresponds to the shaft of the suspension component. Program 325 crops the frame 800 so that the analysis is only performed on the smaller portion 810 comprising a subset of pixels of frame 800, which should correspond to pixels associated with the surface of the shaft and a portion of the o-ring 430. Program 325 also converts the portion 810 from a color format to a grayscale format (i.e., 8 bits per pixel that represents an intensity level between white (255) and black (0)). Typically, most devices with integrated image sensors include a CMOS sensor or CCD sensor with an integrated color filter array that captures color images. However, the object detection algorithm implemented by the program 325 does not detect objects, or edges of objects, based on color. Therefore, converting the image data to grayscale may reduce the complexity of calculations during image processing.
It will be appreciated that the shaft of the suspension components is typically a tube of machined aluminum or some other type of curved surface of various metallic materials. The curved surface of the shaft results in specular highlights reflected off the surface such that the intensity values associated with the surface of the shaft as captured by the image sensor 380 have a wide range in values. However, specular reflection depends largely on the orientation of the surface from the light source. In other words, across the width of the shaft, the intensity of the pixel may vary wildly across the shaft, but along the length of the shaft (i.e., parallel to the longitudinal axis), the intensity of the pixels should be relatively similar except at discontinuities in the surface such as located at the edges of the o-ring 430. Thus, in one embodiment, program 325 creates slices 820 of the portion 810 of the frame 800 and analyzes each slice 820 independently, as described below. In one embodiment, each slice 820 is equivalent to one row of pixels from the portion 810 of the frame 800.
In one embodiment, for each slice 820, program 325 normalizes the intensity levels for each of the pixels included in the slice 820. Again, for each pixel represented as a grayscale 8-bit intensity value, 0 represents black and 255 represents white with shades of gray represented between 0 and 255. Normalizing the intensity value for the pixels increases the contrast of that particular slice 820. For example, if the range of intensity values for all pixels in the slice 820 is between 53 and 112, normalizing the intensity values of the pixels comprises setting each pixel's intensity value to between 0 and 255 based on the relative position of the old intensity value to the range between 53 and 112. After the first normalizing step is complete, program 325 clips the intensity values for all pixels in the normalized slice 820 above a threshold intensity level to be equal to the threshold intensity level. For example, any pixels having an intensity value above 50 are clipped such that all pixels have a maximum intensity value of 50. The resulting clipped slice 820 includes black pixels and pixels at various dark shades of grey. Program 325 then normalizes the intensity levels again, setting all pixels having an intensity value of 50 to equal 255 and the intensity levels for all other pixels between 0 and 254, where at least one pixel (i.e., the pixels in the original, unprocessed slice 820 with the lowest intensity value) has an intensity level of 0 (i.e., fully black).
Program 325 then combines the normalized slices 820 to form a high contrast image that is then filtered to generate a filtered image 850, as shown in
The above described technique for finding the likely location of the o-ring 430 includes a number of processing steps that may take time in some simple devices 50. In some embodiments, processing may be reduced by relying on a simpler technique that doesn't attempt to filter out noise and irregularities in the captured portion 810 of the frame 800. Although not as reliable as the technique described above, this alternative technique is less computationally intensive. In an alternative embodiment, program 325 sums the intensity values for pixels in each column of pixels for the portion 810 of the original captured frame 800 to generate a single row of intensity sums for each column. The column of pixels associated with the lowest total intensity sum is then selected as the likely location of the o-ring 430. In other words, the column of pixels in portion 810 having the lowest average intensity value is selected as the likely location of the o-ring 430.
As shown, a method 900 begins at step 902, where processor 310 executes program 325 on device 50. Program 325 displays a GUI 400 on display 350. At step 904, program 325 prompts a user to enter one or more component IDs that identify the suspension components installed on the vehicle 100. Component IDs may be typed into a user interface element in GUI 400 or scanned in automatically using an image sensor 380. Program 325 may check a database, stored locally or remotely, to determine whether the component IDs match a particular suspension product stored in the database. Program 325 may then retrieve product information associated with the suspension product specified by the component IDs. At step 906, program 325 prompts a user to set external adjusters for the air spring and rebound settings of the suspension component, as applicable. For example, program 325 may display instructions as text in a GUI 400, as shown in screen shot 400e
At step 908, program 325 prompts a user to enter a fully-loaded riding weight. In one embodiment, program 325 displays user interface elements as part of GUI 400 that enable a user to enter a fully-loaded riding weight, as shown in screen shots 400g and 400l. In another embodiment, program 325 may automatically read a fully-loaded riding weight by querying a load sensor on vehicle 100 when the user indicates that the vehicle has been fully-loaded. At step 910, program 325 prompts a user to set a pressure of the air spring in the suspension component based on the fully-loaded riding weight. In one embodiment, program 325 calculates a target air pressure for the air spring based on the fully-loaded riding weight entered in step 908 and one or more physical characteristic values associated with the suspension component that are retrieved from a database based on the component ID. Program 325 may display the target air pressure in a user interface element of GUI 400, as shown in screen shots 400g and 400l. At step 912, program 325 prompts a user to sit on the vehicle 100 and adjust an o-ring 430 to mark a compression level of the suspension component. In one embodiment, program 325 displays instructions through a series of textual and graphical elements in GUI 400, as shown in screen shots 400h and 400m. Once the o-ring 430 is adjusted, the user may dismount the vehicle 100 such that the o-ring remains at a location on the shaft of the suspension component and indicates the amount of compression of the suspension component when compressed by the fully-loaded riding weight.
At step 914, program 325 captures a digital image of the suspension component in an unloaded state (e.g., fully extended). A user may use an image sensor 380 to capture an image of the suspension component that is properly aligned and oriented relative to the device 50. In one embodiment, program 325 displays a graphical overlay on top of a live view captured by the image sensor 380 on display 350, as shown in screen shots 400i and 400n. At step 916, program 325 analyzes the digital image to determine a location of the o-ring 430. In one embodiment, program 325 analyzes the digital image using an object detection algorithm described below in conjunction with
At step 918, program 325 prompts the user to adjust the pressure of the air spring based on the detected o-ring 430 location. At step 920, program 325 prompts the user to adjust the rebound damping setting to a suggested rebound setting. The rebound damping setting is calculated based on the adjusted pressure of the air spring. In one embodiment, program 325 may also prompt the user to adjust the compression damping setting to a suggested compression setting based on the adjusted pressure of the air spring. At step 922, program 325 prompts the user to save the recommended setup parameters generated by the setup routine. After the user is allowed to save the setup parameters, method 900 terminates.
As shown, a method 1000 begins at step 1002, where program 325 receives a portion 810 of a digital image 800 to be analyzed. In one embodiment, program 325 crops an image captured with image sensor 380 to generate a cropped image that should correspond to an image of the shaft of the suspension component and an o-ring 430. The extents of the portion 810 may be determined based on product information retrieved from the database using the component ID and specified in conjunction with the graphical overlay for the suspension component. At step 1004, program 325 divides the portion 810 of the digital image into a plurality of slices 820. In one embodiment, each slice 820 represents a row of pixels from the portion 810 of the digital image 800.
For each slice, at step 1006, program 325 normalizes the intensity value associated with each pixel of the slice 820 during a first pass. At step 1008, program 325 clips the intensity value for any pixels having an intensity value above a threshold value. At step 1010, program 325 normalizes the intensity value associated with each pixel in the slice 820 during a second pass. At step 1012, program 325 determines whether more slices 820 need to be processed. If more slices 820 need to be processed, then method 1000 repeats steps 1006, 1008, and 1010 for the next slice 820. If all the slices 820 in the portion 810 of the digital image 800 have been processed, then, at step 1014, program 325 generates a processed image by combining the plurality of normalized slices 820 into a composite image corresponding to portion 810.
In one embodiment, at step 1016, program 325 filters the processed image. For example, program 325 may implement any technically feasible filtering algorithm to remove excess noise from the processed image such as by adjusting a pixels intensity value based on the intensity values of two or more proximate pixels. At step 1018, program 325 processes the filtered image using an edge detection algorithm to find one or more substantially vertical lines in the processed image, which may be any technically feasible edge detection algorithm commonly known to those of skill in the art. Program 325 uses the edge detection algorithm to determine the locations of one or more substantially vertical edges in the portion 810. At step 1020, program 325 selects the location of the median substantially vertical line in the processed image as the location of the o-ring 430. Program 325 may sort the plurality of substantially vertical edges by location and then select the median location associated with a substantially vertical edge.
In sum, a user may utilize a mobile device equipped with an image sensor, such as a smart-phone, tablet computer, or laptop, to assist the user in proper setup of a vehicle suspension. The device executes an application that prompts the user for input and instructs the user to perform a series of steps for adjusting the suspension components. The application may not communicate with sensors on the vehicle, or the application may communicate with various sensors located on the vehicle to provide feedback to the device during the setup routine. In one embodiment, the system analyzes a digital image of the suspension component to provide feedback to the application about a physical characteristic of the component, such as the amount of sag of the vehicle suspension when loaded. The application may use this feedback information to assist the user in further adjustment to the vehicle suspension
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. For example, aspects of the present invention may be implemented in hardware or software or in a combination of hardware and software. One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored. Such computer-readable storage media, when carrying computer-readable instructions that direct the functions of the present invention, are embodiments of the invention.
The disclosure has been described above with reference to specific embodiments. Persons of ordinary skill in the art, however, will understand that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This patent application is a continuation application of and claims the benefit of U.S. patent application Ser. No. 16/147,200, filed Sep. 28, 2018, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 16/147,200 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 15/061,735, filed Mar. 4, 2016, now U.S. issued U.S. Pat. No. 10,086,670, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 15/061,735 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/446,179, filed Jul. 29, 2014, now U.S. issued U.S. Pat. No. 9,278,598, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 14/446,179 is a continuation application of and claims the benefit of patented U.S. patent application Ser. No. 13/612,679, filed Sep. 12, 2012, now U.S. issued U.S. Pat. No. 8,838,335, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The application Ser. No. 13/612,679 claims benefit of U.S. Provisional Patent Application Ser. No. 61/533,712, filed Sep. 12, 2011, and U.S. Provisional Patent Application Ser. No. 61/624,895, filed Apr. 16, 2012, which is incorporated herein in its entirety by reference thereto. The application Ser. No. 13/612,679 is related to U.S. patent application Ser. No. 13/022,346, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/302,070, filed Feb. 5, 2010, and U.S. Provisional Patent Application 61/411,901, filed Nov. 9, 2010, and U.S. patent application Ser. No. 12/727,915, filed Mar. 19, 2010, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/161,552, filed Mar. 19, 2009, and U.S. Provisional Patent Application Ser. No. 61/161,620, filed Mar. 19, 2009, and U.S. patent application Ser. No. 12/773,671, filed May 4, 2010, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/175,422, filed May 4, 2009. Each of the aforementioned patent applications is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
435995 | Dunlop | Sep 1890 | A |
1078060 | Newman | Nov 1913 | A |
1307502 | Martin | Jun 1919 | A |
1313763 | Thomas | Aug 1919 | A |
1409849 | Haeberlein | Mar 1922 | A |
1468652 | Storey et al. | Sep 1923 | A |
1492731 | Kerr | May 1924 | A |
1560477 | Kessler | Nov 1925 | A |
1571788 | Bramlette, Jr. | Feb 1926 | A |
1575973 | Coleman | Mar 1926 | A |
1655786 | Guerritore et al. | Jan 1928 | A |
1923011 | Moulton | Aug 1933 | A |
1948600 | Templeton | Feb 1934 | A |
1970239 | Klaas | Aug 1934 | A |
2018312 | Moulton | Oct 1935 | A |
2098119 | White | Nov 1937 | A |
2115072 | Hunt et al. | Apr 1938 | A |
2122407 | Chisholm | Jul 1938 | A |
2186266 | Henry | Jan 1940 | A |
2259437 | Dean | Oct 1941 | A |
2354340 | Utter | Jul 1944 | A |
2363867 | Isely | Nov 1944 | A |
2492331 | Spring | Dec 1949 | A |
2518553 | Kieber | Aug 1950 | A |
2540525 | Howarth et al. | Feb 1951 | A |
2559633 | Maurice et al. | Jul 1951 | A |
2588520 | Halgren et al. | Mar 1952 | A |
2697600 | Gregoire | Dec 1954 | A |
2705119 | Ingwer | Mar 1955 | A |
2725076 | Hansen et al. | Nov 1955 | A |
2729308 | Koski et al. | Jan 1956 | A |
2778378 | Presnell | Jan 1957 | A |
2784962 | Sherburne | Mar 1957 | A |
2809722 | Smith | Oct 1957 | A |
2838140 | Rasmusson et al. | Jun 1958 | A |
2846028 | Gunther | Aug 1958 | A |
2853974 | Hewitt | Sep 1958 | A |
2879971 | Demay | Mar 1959 | A |
2883181 | Hogan et al. | Apr 1959 | A |
2897613 | Davidson et al. | Aug 1959 | A |
2924304 | Patriquin | Feb 1960 | A |
2941629 | Etienne et al. | Jun 1960 | A |
2967065 | Schwendner | Jan 1961 | A |
2973744 | Hennells | Mar 1961 | A |
2991804 | Merkle | Jul 1961 | A |
3003595 | Patriquin et al. | Oct 1961 | A |
3056598 | Ransom et al. | Oct 1962 | A |
3071394 | John | Jan 1963 | A |
3073586 | Hartel et al. | Jan 1963 | A |
3074709 | Ellis et al. | Jan 1963 | A |
3085530 | Williamson | Apr 1963 | A |
3087583 | Bruns | Apr 1963 | A |
3107753 | Georgette et al. | Oct 1963 | A |
3127958 | Szostak | Apr 1964 | A |
3175645 | Schafer et al. | Mar 1965 | A |
3202413 | Colmerauer | Aug 1965 | A |
3206153 | Burke | Sep 1965 | A |
3207270 | Ellis | Sep 1965 | A |
3216535 | Schultze | Nov 1965 | A |
3238850 | Desmarchelier | Mar 1966 | A |
3284076 | Gibson | Nov 1966 | A |
3286797 | Leibfritz et al. | Nov 1966 | A |
3405625 | Carlson et al. | Oct 1968 | A |
3419849 | Anderson et al. | Dec 1968 | A |
3420493 | Kraft et al. | Jan 1969 | A |
3447644 | Duckett | Jun 1969 | A |
3494606 | Hanchen | Feb 1970 | A |
3528700 | Janu et al. | Sep 1970 | A |
3537722 | Moulton | Nov 1970 | A |
3556137 | Billeter et al. | Jan 1971 | A |
3559027 | Arsem | Jan 1971 | A |
3560033 | Barkus | Feb 1971 | A |
3575442 | Elliott et al. | Apr 1971 | A |
3584331 | Richard et al. | Jun 1971 | A |
3603575 | Arlasky et al. | Sep 1971 | A |
3605960 | Singer | Sep 1971 | A |
3618972 | Buhl | Nov 1971 | A |
3621950 | Lutz | Nov 1971 | A |
3650033 | Behne et al. | Mar 1972 | A |
3701544 | Stankovich | Oct 1972 | A |
3714953 | Solvang | Feb 1973 | A |
3750856 | Kenworthy et al. | Aug 1973 | A |
3784228 | Hoffmann et al. | Jan 1974 | A |
3791408 | Saitou et al. | Feb 1974 | A |
3792644 | Ferguson et al. | Feb 1974 | A |
3795291 | Naito et al. | Mar 1974 | A |
3830482 | Norris | Aug 1974 | A |
3842753 | Ross et al. | Oct 1974 | A |
3861487 | Gill | Jan 1975 | A |
3903613 | Bisberg | Sep 1975 | A |
3941402 | Yankowski et al. | Mar 1976 | A |
3981204 | Starbard et al. | Sep 1976 | A |
3981479 | Foster et al. | Sep 1976 | A |
3986118 | Madigan | Oct 1976 | A |
3995883 | Glaze | Dec 1976 | A |
4022113 | Blatt et al. | May 1977 | A |
4032829 | Schenavar et al. | Jun 1977 | A |
4036335 | Thompson et al. | Jul 1977 | A |
4045008 | Bauer | Aug 1977 | A |
4072087 | Mueller et al. | Feb 1978 | A |
4103881 | Simich | Aug 1978 | A |
4106522 | Manesse | Aug 1978 | A |
4114735 | Kato | Sep 1978 | A |
4121610 | Harms et al. | Oct 1978 | A |
4131657 | Ball et al. | Dec 1978 | A |
4139186 | Postema et al. | Feb 1979 | A |
4153237 | Supalla | May 1979 | A |
4159106 | Nyman et al. | Jun 1979 | A |
4166612 | Freitag et al. | Sep 1979 | A |
4174098 | Baker et al. | Nov 1979 | A |
4183509 | Nishikawa et al. | Jan 1980 | A |
4236613 | Van Der Lely | Dec 1980 | A |
4287812 | Iizumi | Sep 1981 | A |
4291850 | Sharples | Sep 1981 | A |
4305566 | Grawunde | Dec 1981 | A |
4311302 | Heyer et al. | Jan 1982 | A |
4333668 | Hendrickson et al. | Jun 1982 | A |
4334711 | Mazur et al. | Jun 1982 | A |
4337850 | Shimokura et al. | Jul 1982 | A |
4348016 | Milly | Sep 1982 | A |
4351515 | Yoshida | Sep 1982 | A |
4366969 | Benya et al. | Jan 1983 | A |
4387781 | Ezell et al. | Jun 1983 | A |
4437548 | Ashiba et al. | Mar 1984 | A |
4465299 | Stone et al. | Aug 1984 | A |
4474363 | Numazawa et al. | Oct 1984 | A |
4491207 | Boonchanta et al. | Jan 1985 | A |
4500827 | Merritt et al. | Feb 1985 | A |
4502673 | Clark et al. | Mar 1985 | A |
4529180 | Hill | Jul 1985 | A |
4546959 | Tanno | Oct 1985 | A |
4548233 | Wolfges | Oct 1985 | A |
4550899 | Holley | Nov 1985 | A |
4570851 | Cirillo et al. | Feb 1986 | A |
4572317 | Isono et al. | Feb 1986 | A |
4616810 | Richardson et al. | Oct 1986 | A |
4620619 | Emura et al. | Nov 1986 | A |
4624346 | Katz et al. | Nov 1986 | A |
4630818 | Saarinen | Dec 1986 | A |
4634142 | Woods et al. | Jan 1987 | A |
4647068 | Asami et al. | Mar 1987 | A |
4655440 | Eckert | Apr 1987 | A |
4657280 | Ohmori et al. | Apr 1987 | A |
4659104 | Tanaka et al. | Apr 1987 | A |
4660689 | Hayashi et al. | Apr 1987 | A |
4662616 | Hennells | May 1987 | A |
4673194 | Sugasawa | Jun 1987 | A |
4696489 | Fujishiro et al. | Sep 1987 | A |
4709779 | Fakehara | Dec 1987 | A |
4723753 | Torimoto et al. | Feb 1988 | A |
4729459 | Inagaki et al. | Mar 1988 | A |
4732244 | Verkuylen | Mar 1988 | A |
4743000 | Karnopp | May 1988 | A |
4744444 | Gillingham | May 1988 | A |
4750735 | Furgerson et al. | Jun 1988 | A |
4765648 | Wander et al. | Aug 1988 | A |
4773671 | Inagaki | Sep 1988 | A |
4786034 | Heess et al. | Nov 1988 | A |
4802561 | Knecht et al. | Feb 1989 | A |
4806082 | Schenk | Feb 1989 | A |
4815575 | Murty et al. | Mar 1989 | A |
4821852 | Yokoya | Apr 1989 | A |
4826207 | Yoshioka et al. | May 1989 | A |
4830395 | Foley | May 1989 | A |
4836578 | Soltis | Jun 1989 | A |
4838306 | Horn et al. | Jun 1989 | A |
4838394 | Lemme et al. | Jun 1989 | A |
4838527 | Holley | Jun 1989 | A |
4846317 | Hudgens | Jul 1989 | A |
4858733 | Noguchi et al. | Aug 1989 | A |
4892328 | Kurtzman et al. | Jan 1990 | A |
4919166 | Sims et al. | Apr 1990 | A |
4936423 | Karnopp | Jun 1990 | A |
4936424 | Costa | Jun 1990 | A |
4938228 | Righter | Jul 1990 | A |
4949262 | Buma et al. | Aug 1990 | A |
4949989 | Kakizaki et al. | Aug 1990 | A |
4958706 | Richardson et al. | Sep 1990 | A |
4972928 | Sirven | Nov 1990 | A |
4975849 | Ema et al. | Dec 1990 | A |
4984819 | Kakizaki et al. | Jan 1991 | A |
4986393 | Preukschat et al. | Jan 1991 | A |
5027303 | Witte | Jun 1991 | A |
5031455 | Cline | Jul 1991 | A |
5036934 | Nishina et al. | Aug 1991 | A |
5040381 | Hazen | Aug 1991 | A |
5044614 | Rau | Sep 1991 | A |
5060910 | Iwata et al. | Oct 1991 | A |
5060959 | Davis et al. | Oct 1991 | A |
5072812 | Imaizumi | Dec 1991 | A |
5074624 | Stauble et al. | Dec 1991 | A |
5076404 | Gustafsson | Dec 1991 | A |
5080392 | Bazergui | Jan 1992 | A |
5094325 | Smith | Mar 1992 | A |
5105918 | Hagiwara et al. | Apr 1992 | A |
5113980 | Furrer et al. | May 1992 | A |
5127634 | Le Gourvellec | Jul 1992 | A |
5152547 | Davis | Oct 1992 | A |
5161653 | Hare | Nov 1992 | A |
5161817 | Daum et al. | Nov 1992 | A |
5163742 | Topfer et al. | Nov 1992 | A |
5178242 | Nakamura et al. | Jan 1993 | A |
5186481 | Turner | Feb 1993 | A |
5203584 | Butsuen et al. | Apr 1993 | A |
5207774 | Wolfe et al. | May 1993 | A |
5230364 | Leng et al. | Jul 1993 | A |
5231583 | Lizell | Jul 1993 | A |
5236169 | Johnsen et al. | Aug 1993 | A |
5246247 | Runkel | Sep 1993 | A |
5248014 | Ashiba | Sep 1993 | A |
5259487 | Petek et al. | Nov 1993 | A |
5263559 | Mettner | Nov 1993 | A |
5265902 | Lewis | Nov 1993 | A |
5275086 | Stallings, Jr. | Jan 1994 | A |
5277283 | Yamaoka et al. | Jan 1994 | A |
5283733 | Colley | Feb 1994 | A |
5284330 | Carlson et al. | Feb 1994 | A |
5293971 | Kanari | Mar 1994 | A |
5295074 | Williams | Mar 1994 | A |
5295563 | Benneii | Mar 1994 | A |
5297045 | Williams et al. | Mar 1994 | A |
5301776 | Beck | Apr 1994 | A |
5307907 | Nakamura et al. | May 1994 | A |
5310203 | Chen | May 1994 | A |
5311709 | Kobori et al. | May 1994 | A |
5318066 | Burgorf et al. | Jun 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5346242 | Karnopp | Sep 1994 | A |
5347186 | Konotchick et al. | Sep 1994 | A |
5348112 | Vaillancourt | Sep 1994 | A |
5372223 | Dekock et al. | Dec 1994 | A |
5372224 | Samonil et al. | Dec 1994 | A |
5381952 | Duprez | Jan 1995 | A |
5390121 | Wolfe | Feb 1995 | A |
5390949 | Naganathan et al. | Feb 1995 | A |
5392885 | Patzenhauer et al. | Feb 1995 | A |
5392886 | Drummond | Feb 1995 | A |
5396973 | Schwemmer et al. | Mar 1995 | A |
5398787 | Woessner et al. | Mar 1995 | A |
5413196 | Forster | May 1995 | A |
5445366 | Shih et al. | Aug 1995 | A |
5467280 | Kimura | Nov 1995 | A |
5475593 | Townend | Dec 1995 | A |
5480011 | Nagai et al. | Jan 1996 | A |
5485417 | Wolf et al. | Jan 1996 | A |
5487006 | Kakizaki et al. | Jan 1996 | A |
5503258 | Clarke et al. | Apr 1996 | A |
5517898 | Kim et al. | May 1996 | A |
5542150 | Tu | Aug 1996 | A |
5551674 | Johnsen | Sep 1996 | A |
5553836 | Ericson | Sep 1996 | A |
5558190 | Chang | Sep 1996 | A |
5566794 | Wiard | Oct 1996 | A |
5578877 | Tiemann | Nov 1996 | A |
5586637 | Aidlin et al. | Dec 1996 | A |
5588510 | Wilke | Dec 1996 | A |
5592401 | Kramer | Jan 1997 | A |
5597180 | Ganzel et al. | Jan 1997 | A |
5598337 | Butsuen et al. | Jan 1997 | A |
5601164 | Ohsaki et al. | Feb 1997 | A |
5611413 | Feigel | Mar 1997 | A |
5634563 | Peng | Jun 1997 | A |
5651433 | Wirth et al. | Jul 1997 | A |
5657840 | Lizell | Aug 1997 | A |
5687575 | Keville et al. | Nov 1997 | A |
5697477 | Hiramoto et al. | Dec 1997 | A |
5699885 | Forster | Dec 1997 | A |
5722645 | Reitter | Mar 1998 | A |
5735372 | Hamilton et al. | Apr 1998 | A |
5803443 | Chang | Sep 1998 | A |
5806159 | Ohnishi et al. | Sep 1998 | A |
5810128 | Eriksson et al. | Sep 1998 | A |
5810384 | Iwasaki et al. | Sep 1998 | A |
5813456 | Milner et al. | Sep 1998 | A |
5813731 | Newman et al. | Sep 1998 | A |
5816281 | Mixon | Oct 1998 | A |
5818132 | Konotchick et al. | Oct 1998 | A |
5826935 | Defreitas et al. | Oct 1998 | A |
5828843 | Samuel et al. | Oct 1998 | A |
5829733 | Becker | Nov 1998 | A |
5833036 | Gillespie | Nov 1998 | A |
5850352 | Moezzi et al. | Dec 1998 | A |
5850896 | Tanaka | Dec 1998 | A |
5853071 | Robinson | Dec 1998 | A |
5872418 | Wischnewskiy | Feb 1999 | A |
5884921 | Katsuda et al. | Mar 1999 | A |
5937975 | Forster | Aug 1999 | A |
5947238 | Jolly et al. | Sep 1999 | A |
5952823 | Sprecher et al. | Sep 1999 | A |
5954318 | Kluhsman | Sep 1999 | A |
5956951 | O'Callaghan | Sep 1999 | A |
5957252 | Berthold | Sep 1999 | A |
5971116 | Franklin | Oct 1999 | A |
5987368 | Kamimae et al. | Nov 1999 | A |
5988330 | Morris | Nov 1999 | A |
5988655 | Sakai et al. | Nov 1999 | A |
5992450 | Parker et al. | Nov 1999 | A |
5996745 | Jones et al. | Dec 1999 | A |
5996746 | Turner et al. | Dec 1999 | A |
5999868 | Beno et al. | Dec 1999 | A |
6000702 | Streiter | Dec 1999 | A |
6013007 | Root et al. | Jan 2000 | A |
6017047 | Hoose | Jan 2000 | A |
6029958 | Larsson et al. | Feb 2000 | A |
6035979 | Forster | Mar 2000 | A |
6050583 | Bohn | Apr 2000 | A |
6058340 | Uchiyama et al. | May 2000 | A |
6067490 | Ichimaru et al. | May 2000 | A |
6073536 | Campbell | Jun 2000 | A |
6073700 | Tsuji et al. | Jun 2000 | A |
6073736 | Franklin | Jun 2000 | A |
6092011 | Hiramoto et al. | Jul 2000 | A |
6092816 | Sekine et al. | Jul 2000 | A |
6105988 | Turner et al. | Aug 2000 | A |
6112868 | Graham et al. | Sep 2000 | A |
6120049 | Gonzalez et al. | Sep 2000 | A |
6131709 | Jolly et al. | Oct 2000 | A |
6135434 | Marking | Oct 2000 | A |
6141969 | Launchbury et al. | Nov 2000 | A |
6151930 | Carlson | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6157103 | Ohta et al. | Dec 2000 | A |
6179098 | Hayakawa et al. | Jan 2001 | B1 |
6196555 | Gaibler | Mar 2001 | B1 |
6199669 | Huang et al. | Mar 2001 | B1 |
6203026 | Jones | Mar 2001 | B1 |
6213263 | De Frenne | Apr 2001 | B1 |
6215217 | Kurosawa et al. | Apr 2001 | B1 |
6217049 | Becker | Apr 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6244398 | Girvin et al. | Jun 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6279702 | Koh | Aug 2001 | B1 |
6290034 | Ichimaru | Sep 2001 | B1 |
6293530 | Delorenzis et al. | Sep 2001 | B1 |
6296092 | Marking et al. | Oct 2001 | B1 |
6311962 | Marking | Nov 2001 | B1 |
6318525 | Vignocchi et al. | Nov 2001 | B1 |
6321888 | Reybrouck et al. | Nov 2001 | B1 |
6322468 | Wing et al. | Nov 2001 | B1 |
6336648 | Bohn | Jan 2002 | B1 |
6343807 | Rathbun | Feb 2002 | B1 |
6359837 | Tsukamoto et al. | Mar 2002 | B1 |
6360857 | Fox et al. | Mar 2002 | B1 |
6371262 | Katou et al. | Apr 2002 | B1 |
6371267 | Kao et al. | Apr 2002 | B1 |
6378816 | Pfister | Apr 2002 | B1 |
6378885 | Ellsworth et al. | Apr 2002 | B1 |
6382370 | Girvin | May 2002 | B1 |
6389341 | Davis | May 2002 | B1 |
6390747 | Commins | May 2002 | B1 |
6394238 | Rogala | May 2002 | B1 |
6401883 | Nyce et al. | Jun 2002 | B1 |
6412788 | Ichimaru | Jul 2002 | B1 |
6415895 | Marking et al. | Jul 2002 | B2 |
6418360 | Spivey et al. | Jul 2002 | B1 |
6427812 | Crawley et al. | Aug 2002 | B2 |
6434460 | Uchino et al. | Aug 2002 | B1 |
6446771 | Sintorn et al. | Sep 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6460567 | Hansen et al. | Oct 2002 | B1 |
6467593 | Corradini et al. | Oct 2002 | B1 |
6474454 | Matsumoto et al. | Nov 2002 | B2 |
6474753 | Rieth et al. | Nov 2002 | B1 |
6501554 | Hackney et al. | Dec 2002 | B1 |
6502837 | Hamilton et al. | Jan 2003 | B1 |
6510929 | Gordan et al. | Jan 2003 | B1 |
6520297 | Lumpkin et al. | Feb 2003 | B1 |
6527093 | Oliver et al. | Mar 2003 | B2 |
6592136 | Becker et al. | Jul 2003 | B2 |
6604751 | Fox | Aug 2003 | B2 |
6609686 | Malizia | Aug 2003 | B2 |
6619615 | Mayr et al. | Sep 2003 | B1 |
6623389 | Campagnolo | Sep 2003 | B1 |
6648109 | Farr et al. | Nov 2003 | B2 |
6651788 | Wohlfarth | Nov 2003 | B1 |
6659240 | Dernebo | Dec 2003 | B2 |
6659241 | Sendrea | Dec 2003 | B2 |
6672687 | Nishio | Jan 2004 | B2 |
6701234 | Vogelsang et al. | Mar 2004 | B1 |
6722678 | McAndrews | Apr 2004 | B2 |
6732033 | LaPlante et al. | May 2004 | B2 |
6755113 | Shih | Jun 2004 | B2 |
6782980 | Nakadate | Aug 2004 | B2 |
6817454 | Nezu et al. | Nov 2004 | B2 |
6837827 | Lee et al. | Jan 2005 | B1 |
6840257 | Dario et al. | Jan 2005 | B2 |
6853955 | Burrell et al. | Feb 2005 | B1 |
6857625 | Löser et al. | Feb 2005 | B2 |
6863291 | Miyoshi | Mar 2005 | B2 |
6883650 | Van Wonderen et al. | Apr 2005 | B2 |
6902513 | McClure et al. | Jun 2005 | B1 |
6905203 | Kremers et al. | Jun 2005 | B2 |
6920951 | Song et al. | Jul 2005 | B2 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6923853 | Kremers et al. | Aug 2005 | B2 |
6935157 | Miller | Aug 2005 | B2 |
6952060 | Goldner et al. | Oct 2005 | B2 |
6959906 | Hoenig et al. | Nov 2005 | B2 |
6959921 | Rose | Nov 2005 | B2 |
6966412 | Braswell et al. | Nov 2005 | B2 |
6978871 | Holiviers | Dec 2005 | B2 |
6978872 | Turner | Dec 2005 | B2 |
6991076 | McAndrews | Jan 2006 | B2 |
7025367 | McKinnon et al. | Apr 2006 | B2 |
7076351 | Hamilton et al. | Jul 2006 | B2 |
7128192 | Fox | Oct 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7135794 | Kühnel | Nov 2006 | B2 |
7147207 | Jordan et al. | Dec 2006 | B2 |
7163222 | Becker et al. | Jan 2007 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Ashby et al. | Jan 2007 | B2 |
7204466 | Hsieh | Apr 2007 | B2 |
7208845 | Schaefer et al. | Apr 2007 | B2 |
7217224 | Thomas | May 2007 | B2 |
7234574 | Matsunaga et al. | Jun 2007 | B2 |
7234575 | Anderfaas et al. | Jun 2007 | B2 |
7234680 | Hull et al. | Jun 2007 | B2 |
7243763 | Carlson | Jul 2007 | B2 |
7255210 | Larsson et al. | Aug 2007 | B2 |
7270221 | McAndrews | Sep 2007 | B2 |
7270222 | Aymar et al. | Sep 2007 | B1 |
7287760 | Quick et al. | Oct 2007 | B1 |
7289138 | Foote et al. | Oct 2007 | B2 |
7292867 | Werner et al. | Nov 2007 | B2 |
7293764 | Fang | Nov 2007 | B2 |
7299112 | LaPlante et al. | Nov 2007 | B2 |
7302961 | Martin et al. | Dec 2007 | B2 |
7306206 | Turner | Dec 2007 | B2 |
7316406 | Kimura et al. | Jan 2008 | B2 |
7325660 | Norgaard et al. | Feb 2008 | B2 |
7363129 | Barnicle et al. | Apr 2008 | B1 |
7374028 | Fox | May 2008 | B2 |
7397355 | Tracy | Jul 2008 | B2 |
7413062 | Vandewal | Aug 2008 | B2 |
7413063 | Davis | Aug 2008 | B1 |
7415336 | Burch et al. | Aug 2008 | B1 |
7422092 | Hitchcock et al. | Sep 2008 | B2 |
7441638 | Hanawa | Oct 2008 | B2 |
7469910 | Münster et al. | Dec 2008 | B2 |
7484603 | Fox | Feb 2009 | B2 |
7490705 | Fox | Feb 2009 | B2 |
7513490 | Robertson | Apr 2009 | B2 |
7523617 | Colpitts et al. | Apr 2009 | B2 |
7558313 | Feher | Jul 2009 | B2 |
7558574 | Feher et al. | Jul 2009 | B2 |
7566290 | Lee et al. | Jul 2009 | B2 |
7569952 | Bono et al. | Aug 2009 | B1 |
7581743 | Graney et al. | Sep 2009 | B2 |
7591352 | Hanawa | Sep 2009 | B2 |
7600616 | Anderfaas et al. | Oct 2009 | B2 |
7628259 | Norgaard et al. | Dec 2009 | B2 |
7628414 | Dobson et al. | Dec 2009 | B2 |
7631882 | Hirao et al. | Dec 2009 | B2 |
7654369 | Murray et al. | Feb 2010 | B2 |
7673936 | Hsu et al. | Mar 2010 | B2 |
7684911 | Seifert et al. | Mar 2010 | B2 |
7694785 | Nakadate | Apr 2010 | B2 |
7694987 | McAndrews | Apr 2010 | B2 |
7699753 | Daikeler et al. | Apr 2010 | B2 |
7703585 | Fox | Apr 2010 | B2 |
7722056 | Inoue et al. | May 2010 | B2 |
7722069 | Shirai | May 2010 | B2 |
7726042 | Meschan | Jun 2010 | B2 |
7730906 | Kleinert et al. | Jun 2010 | B2 |
7736272 | Martens | Jun 2010 | B2 |
7764990 | Martikka et al. | Jul 2010 | B2 |
7766794 | Oliver et al. | Aug 2010 | B2 |
7770701 | Davis | Aug 2010 | B1 |
7775128 | Roessingh et al. | Aug 2010 | B2 |
7779974 | Timoney et al. | Aug 2010 | B2 |
7795711 | Sauciuc et al. | Sep 2010 | B2 |
7828125 | Sekiya et al. | Nov 2010 | B2 |
7828126 | Lun | Nov 2010 | B2 |
7837213 | Colegrove et al. | Nov 2010 | B2 |
7840346 | Huhtala et al. | Nov 2010 | B2 |
7841258 | Komatsu et al. | Nov 2010 | B2 |
7845602 | Young et al. | Dec 2010 | B1 |
7857325 | Copsey et al. | Dec 2010 | B2 |
7872764 | Higgins-Luthman et al. | Jan 2011 | B2 |
7874567 | Ichida et al. | Jan 2011 | B2 |
7901292 | Uhlir et al. | Mar 2011 | B1 |
7909348 | Klieber et al. | Mar 2011 | B2 |
7927253 | Dibenedei et al. | Apr 2011 | B2 |
7931132 | Braun | Apr 2011 | B2 |
7931563 | Shaw et al. | Apr 2011 | B2 |
7946163 | Gartner | May 2011 | B2 |
7975814 | Soederdahl | Jul 2011 | B2 |
8016349 | Mouri et al. | Sep 2011 | B2 |
8021270 | D'Eredita | Sep 2011 | B2 |
8042427 | Kawakami et al. | Oct 2011 | B2 |
8056392 | Ryan et al. | Nov 2011 | B2 |
8069964 | Deferme et al. | Dec 2011 | B2 |
8087676 | McIntyre | Jan 2012 | B2 |
8091910 | Hara et al. | Jan 2012 | B2 |
8104591 | Barefoot et al. | Jan 2012 | B2 |
8121757 | Extance et al. | Feb 2012 | B2 |
8121785 | Swisher et al. | Feb 2012 | B2 |
8127900 | Inoue | Mar 2012 | B2 |
8136877 | Walsh et al. | Mar 2012 | B2 |
8141438 | Roessingh et al. | Mar 2012 | B2 |
8151952 | Lenz et al. | Apr 2012 | B2 |
8157629 | Yanke et al. | Apr 2012 | B2 |
8191964 | Hsu et al. | Jun 2012 | B2 |
8201476 | Miyama | Jun 2012 | B2 |
8210106 | Tai et al. | Jul 2012 | B2 |
8210330 | Vandewal | Jul 2012 | B2 |
8246065 | Kodama et al. | Aug 2012 | B1 |
8256587 | Bakke et al. | Sep 2012 | B2 |
8256732 | Young et al. | Sep 2012 | B1 |
8262058 | Kot | Sep 2012 | B2 |
8262062 | Kamo et al. | Sep 2012 | B2 |
8262100 | Thomas | Sep 2012 | B2 |
8265825 | Kajino et al. | Sep 2012 | B2 |
8285447 | Bennett et al. | Oct 2012 | B2 |
8286982 | Plantet et al. | Oct 2012 | B2 |
8291889 | Shafer et al. | Oct 2012 | B2 |
8292274 | Adoline et al. | Oct 2012 | B2 |
8307965 | Föster et al. | Nov 2012 | B2 |
8308124 | Hsu | Nov 2012 | B2 |
8317261 | Walsh et al. | Nov 2012 | B2 |
8322497 | Marjoram et al. | Dec 2012 | B2 |
8328454 | McAndrews et al. | Dec 2012 | B2 |
8336683 | McAndrews et al. | Dec 2012 | B2 |
8364389 | Dorogusker et al. | Jan 2013 | B2 |
8393446 | Haugen | Mar 2013 | B2 |
8413773 | Anderfaas et al. | Apr 2013 | B2 |
8423244 | Proemm et al. | Apr 2013 | B2 |
8430770 | Dugan et al. | Apr 2013 | B2 |
8458080 | Shirai | Jun 2013 | B2 |
8459619 | Frinh et al. | Jun 2013 | B2 |
8480064 | Talavasek | Jul 2013 | B2 |
8495947 | Hata | Jul 2013 | B2 |
8550223 | Cox et al. | Oct 2013 | B2 |
8550551 | Shirai | Oct 2013 | B2 |
8556048 | Maeda et al. | Oct 2013 | B2 |
8556049 | Jee | Oct 2013 | B2 |
8596663 | Shirai et al. | Dec 2013 | B2 |
8616351 | Roessle et al. | Dec 2013 | B2 |
8622180 | Wootten et al. | Jan 2014 | B2 |
8627932 | Marking | Jan 2014 | B2 |
8641073 | Lee et al. | Feb 2014 | B2 |
8651251 | Preukschat et al. | Feb 2014 | B2 |
8655548 | Ichida et al. | Feb 2014 | B2 |
8684367 | Haugen | Apr 2014 | B2 |
8727947 | Tagliabue | May 2014 | B2 |
8744699 | Yamaguchi et al. | Jun 2014 | B2 |
8752682 | Park et al. | Jun 2014 | B2 |
8763770 | Marking | Jul 2014 | B2 |
8770357 | Sims et al. | Jul 2014 | B2 |
8781680 | Ichida et al. | Jul 2014 | B2 |
8781690 | Hara et al. | Jul 2014 | B2 |
8814109 | Laird et al. | Aug 2014 | B2 |
8833786 | Camp et al. | Sep 2014 | B2 |
8838335 | Bass et al. | Sep 2014 | B2 |
8845496 | Arrasvuori et al. | Sep 2014 | B2 |
8857580 | Marking | Oct 2014 | B2 |
8868253 | Hashimoto et al. | Oct 2014 | B2 |
8888115 | Chubbuck et al. | Nov 2014 | B2 |
8935036 | Christensen et al. | Jan 2015 | B1 |
8936139 | Galasso et al. | Jan 2015 | B2 |
8950771 | Felsl et al. | Feb 2015 | B2 |
8955653 | Marking | Feb 2015 | B2 |
8967343 | Battlogg et al. | Mar 2015 | B2 |
8985594 | Yabumoto | Mar 2015 | B2 |
8991571 | Murakami | Mar 2015 | B2 |
9033122 | Ericksen et al. | May 2015 | B2 |
9038791 | Marking | May 2015 | B2 |
9047778 | Cazanas et al. | Jun 2015 | B1 |
9057416 | Talavasek | Jun 2015 | B2 |
9073592 | Hsu | Jul 2015 | B2 |
9103400 | Becker | Aug 2015 | B2 |
9108098 | Galasso et al. | Aug 2015 | B2 |
9120362 | Marking | Sep 2015 | B2 |
9126647 | Kuo | Sep 2015 | B2 |
9140325 | Cox et al. | Sep 2015 | B2 |
9157523 | Miki et al. | Oct 2015 | B2 |
9186949 | Galasso et al. | Nov 2015 | B2 |
9194456 | Laird et al. | Nov 2015 | B2 |
9199690 | Watarai | Dec 2015 | B2 |
9229712 | Takamoto et al. | Jan 2016 | B2 |
9239090 | Marking et al. | Jan 2016 | B2 |
9278598 | Galasso et al. | Mar 2016 | B2 |
9303712 | Cox | Apr 2016 | B2 |
9353818 | Marking | May 2016 | B2 |
9366307 | Marking | Jun 2016 | B2 |
9415659 | Kikuchi et al. | Aug 2016 | B2 |
9422018 | Pelot et al. | Aug 2016 | B2 |
9422025 | Pezzi et al. | Aug 2016 | B2 |
9452654 | Ericksen et al. | Sep 2016 | B2 |
9523406 | Galasso et al. | Dec 2016 | B2 |
9528565 | Marking | Dec 2016 | B2 |
9550405 | Marking et al. | Jan 2017 | B2 |
9556925 | Marking | Jan 2017 | B2 |
9616728 | Marking | Apr 2017 | B2 |
9650094 | Laird et al. | May 2017 | B2 |
9663181 | Ericksen et al. | May 2017 | B2 |
9682604 | Cox et al. | Jun 2017 | B2 |
9784333 | Marking | Oct 2017 | B2 |
9810282 | Roessle et al. | Nov 2017 | B2 |
9975598 | Bender et al. | May 2018 | B2 |
10029172 | Galasso et al. | Jul 2018 | B2 |
10036443 | Galasso | Jul 2018 | B2 |
10040328 | Marking | Aug 2018 | B2 |
10040329 | Ericksen et al. | Aug 2018 | B2 |
10054185 | Cox | Aug 2018 | B2 |
10072724 | Haugen et al. | Sep 2018 | B2 |
10086670 | Galasso et al. | Oct 2018 | B2 |
10089868 | Hayward | Oct 2018 | B1 |
10094443 | Marking | Oct 2018 | B2 |
10145435 | Galasso | Dec 2018 | B2 |
10180171 | Laird et al. | Jan 2019 | B2 |
10330171 | Cox et al. | Jun 2019 | B2 |
10336148 | Ericksen et al. | Jul 2019 | B2 |
10336149 | Ericksen et al. | Jul 2019 | B2 |
10406883 | Marking | Sep 2019 | B2 |
10415662 | Marking | Sep 2019 | B2 |
10443671 | Marking | Oct 2019 | B2 |
10473179 | Ripa | Nov 2019 | B2 |
10550909 | Haugen | Feb 2020 | B2 |
10591015 | Galasso et al. | Mar 2020 | B2 |
10697514 | Marking | Jun 2020 | B2 |
10718397 | Marking | Jul 2020 | B2 |
10737546 | Tong | Aug 2020 | B2 |
10933709 | Shaw et al. | Mar 2021 | B2 |
11162555 | Haugen | Nov 2021 | B2 |
11279198 | Marking | Mar 2022 | B2 |
11472252 | Tong | Oct 2022 | B2 |
20010017334 | Vincent | Aug 2001 | A1 |
20010022621 | Squibbs | Sep 2001 | A1 |
20010030408 | Miyoshi et al. | Oct 2001 | A1 |
20010042663 | Marking et al. | Nov 2001 | A1 |
20010055373 | Yamashita | Dec 2001 | A1 |
20020000352 | Matsumoto et al. | Jan 2002 | A1 |
20020032508 | Uchino et al. | Mar 2002 | A1 |
20020045987 | Ohata et al. | Apr 2002 | A1 |
20020050112 | Koch et al. | May 2002 | A1 |
20020050518 | Roustaei | May 2002 | A1 |
20020053493 | Sintorn et al. | May 2002 | A1 |
20020055422 | Airmet et al. | May 2002 | A1 |
20020063469 | Nishio | May 2002 | A1 |
20020089107 | Koh | Jul 2002 | A1 |
20020095979 | Shirato et al. | Jul 2002 | A1 |
20020113347 | Robbins et al. | Aug 2002 | A1 |
20020121416 | Katayama et al. | Sep 2002 | A1 |
20020130000 | Lisenker et al. | Sep 2002 | A1 |
20020130003 | Lisenker et al. | Sep 2002 | A1 |
20020185581 | Trask et al. | Dec 2002 | A1 |
20020187867 | Ichida et al. | Dec 2002 | A1 |
20030001346 | Hamilton et al. | Jan 2003 | A1 |
20030001358 | Becker et al. | Jan 2003 | A1 |
20030034697 | Goldner et al. | Feb 2003 | A1 |
20030040348 | Martens et al. | Feb 2003 | A1 |
20030051954 | Sendrea | Mar 2003 | A1 |
20030054327 | Evensen | Mar 2003 | A1 |
20030065430 | Lu et al. | Apr 2003 | A1 |
20030075403 | Dernebo | Apr 2003 | A1 |
20030103651 | Novak | Jun 2003 | A1 |
20030128275 | Maguire | Jul 2003 | A1 |
20030160369 | Laplante et al. | Aug 2003 | A1 |
20030191567 | Gentilcore | Oct 2003 | A1 |
20030216845 | Williston | Nov 2003 | A1 |
20040004659 | Foote et al. | Jan 2004 | A1 |
20040017455 | Kremers et al. | Jan 2004 | A1 |
20040021754 | Kremers et al. | Feb 2004 | A1 |
20040075350 | Kuhnel | Apr 2004 | A1 |
20040091111 | Levy et al. | May 2004 | A1 |
20040099312 | Boyer et al. | May 2004 | A1 |
20040103146 | Park | May 2004 | A1 |
20040172178 | Takeda et al. | Sep 2004 | A1 |
20040208687 | Sicz et al. | Oct 2004 | A1 |
20040220708 | Owen et al. | Nov 2004 | A1 |
20040220712 | Takeda et al. | Nov 2004 | A1 |
20040222056 | Fox | Nov 2004 | A1 |
20040256778 | Verriet | Dec 2004 | A1 |
20050055156 | Maltagliati et al. | Mar 2005 | A1 |
20050056507 | De Molina et al. | Mar 2005 | A1 |
20050077131 | Russell | Apr 2005 | A1 |
20050098401 | Hamilton et al. | May 2005 | A1 |
20050104320 | Wesling et al. | May 2005 | A1 |
20050107216 | Lee et al. | May 2005 | A1 |
20050110229 | Kimura et al. | May 2005 | A1 |
20050121269 | Namuduri | Jun 2005 | A1 |
20050173849 | Vandewal | Aug 2005 | A1 |
20050195094 | White | Sep 2005 | A1 |
20050199455 | Browne et al. | Sep 2005 | A1 |
20050216186 | Dorfman et al. | Sep 2005 | A1 |
20050227798 | Ichida et al. | Oct 2005 | A1 |
20050239601 | Thomas | Oct 2005 | A1 |
20050288154 | Lee et al. | Dec 2005 | A1 |
20060040793 | Martens et al. | Feb 2006 | A1 |
20060064223 | Voss | Mar 2006 | A1 |
20060065496 | Fox | Mar 2006 | A1 |
20060066074 | Turner et al. | Mar 2006 | A1 |
20060076757 | Bromley | Apr 2006 | A1 |
20060081431 | Breese et al. | Apr 2006 | A1 |
20060096817 | Norgaard et al. | May 2006 | A1 |
20060113834 | Hanawa | Jun 2006 | A1 |
20060120080 | Sipinski et al. | Jun 2006 | A1 |
20060124414 | Hanawa | Jun 2006 | A1 |
20060136173 | Case et al. | Jun 2006 | A1 |
20060137934 | Kurth | Jun 2006 | A1 |
20060163551 | Coenen et al. | Jul 2006 | A1 |
20060163787 | Munster et al. | Jul 2006 | A1 |
20060175792 | Sicz et al. | Aug 2006 | A1 |
20060176216 | Hipskind | Aug 2006 | A1 |
20060185951 | Tanaka | Aug 2006 | A1 |
20060213082 | Meschan | Sep 2006 | A1 |
20060219503 | Kim | Oct 2006 | A1 |
20060225976 | Nakadate | Oct 2006 | A1 |
20060231359 | Matsunaga et al. | Oct 2006 | A1 |
20060237272 | Huang | Oct 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20060254365 | Hamel | Nov 2006 | A1 |
20060265144 | Frolik | Nov 2006 | A1 |
20060289258 | Fox | Dec 2006 | A1 |
20070006489 | Case et al. | Jan 2007 | A1 |
20070007743 | Becker et al. | Jan 2007 | A1 |
20070008096 | Tracy | Jan 2007 | A1 |
20070021885 | Soehren | Jan 2007 | A1 |
20070032981 | Merkel et al. | Feb 2007 | A1 |
20070034464 | Barefoot | Feb 2007 | A1 |
20070039790 | Timoney et al. | Feb 2007 | A1 |
20070051573 | Norgaard et al. | Mar 2007 | A1 |
20070070069 | Samarasekera et al. | Mar 2007 | A1 |
20070080515 | McAndrews et al. | Apr 2007 | A1 |
20070088475 | Nordgren et al. | Apr 2007 | A1 |
20070090518 | Sauciuc et al. | Apr 2007 | A1 |
20070119669 | Anderfaas et al. | May 2007 | A1 |
20070170688 | Watson | Jul 2007 | A1 |
20070199401 | Kawakami et al. | Aug 2007 | A1 |
20070213126 | Deutsch et al. | Sep 2007 | A1 |
20070239479 | Arrasvuori et al. | Oct 2007 | A1 |
20070260372 | Langer | Nov 2007 | A1 |
20070272458 | Taniguchi et al. | Nov 2007 | A1 |
20080006494 | Vandewal | Jan 2008 | A1 |
20080009992 | Izawa et al. | Jan 2008 | A1 |
20080015089 | Hurwitz et al. | Jan 2008 | A1 |
20080018065 | Hirao et al. | Jan 2008 | A1 |
20080029730 | Kamo et al. | Feb 2008 | A1 |
20080041677 | Namuduri | Feb 2008 | A1 |
20080059025 | Furuichi et al. | Mar 2008 | A1 |
20080067019 | Jensen et al. | Mar 2008 | A1 |
20080093820 | McAndrews | Apr 2008 | A1 |
20080096726 | Riley et al. | Apr 2008 | A1 |
20080099968 | Schroeder | May 2008 | A1 |
20080109158 | Huhtala et al. | May 2008 | A1 |
20080116622 | Fox | May 2008 | A1 |
20080119330 | Chiang et al. | May 2008 | A1 |
20080163718 | Chiang | Jul 2008 | A1 |
20080185244 | Maeda et al. | Aug 2008 | A1 |
20080200310 | Tagliabue | Aug 2008 | A1 |
20080250844 | Gartner | Oct 2008 | A1 |
20080254944 | Muri et al. | Oct 2008 | A1 |
20080303320 | Schranz et al. | Dec 2008 | A1 |
20080312799 | Miglioranza | Dec 2008 | A1 |
20080314706 | Lun et al. | Dec 2008 | A1 |
20090000885 | McAndrews | Jan 2009 | A1 |
20090001684 | McAndrews et al. | Jan 2009 | A1 |
20090020382 | Van Weelden et al. | Jan 2009 | A1 |
20090038897 | Murakami | Feb 2009 | A1 |
20090048070 | Vincent et al. | Feb 2009 | A1 |
20090069972 | Templeton et al. | Mar 2009 | A1 |
20090070037 | Templeton et al. | Mar 2009 | A1 |
20090071772 | Cho et al. | Mar 2009 | A1 |
20090071773 | Lun | Mar 2009 | A1 |
20090098981 | Del et al. | Apr 2009 | A1 |
20090118100 | Oliver et al. | May 2009 | A1 |
20090121398 | Inoue | May 2009 | A1 |
20090131224 | Yuen | May 2009 | A1 |
20090138157 | Hagglund et al. | May 2009 | A1 |
20090140501 | Taylor et al. | Jun 2009 | A1 |
20090171532 | Ryan et al. | Jul 2009 | A1 |
20090192673 | Song | Jul 2009 | A1 |
20090200126 | Kondo et al. | Aug 2009 | A1 |
20090200760 | Gartner et al. | Aug 2009 | A1 |
20090236807 | Wootten et al. | Sep 2009 | A1 |
20090258710 | Ouatrochi et al. | Oct 2009 | A1 |
20090261542 | McIntyre | Oct 2009 | A1 |
20090277736 | McAndrews et al. | Nov 2009 | A1 |
20090288924 | Murray et al. | Nov 2009 | A1 |
20090294231 | Carlson et al. | Dec 2009 | A1 |
20090302558 | Shirai | Dec 2009 | A1 |
20090314592 | Nygren | Dec 2009 | A1 |
20090324327 | McAndrews et al. | Dec 2009 | A1 |
20100004097 | D'Eredita | Jan 2010 | A1 |
20100010709 | Song | Jan 2010 | A1 |
20100025946 | Inoue | Feb 2010 | A1 |
20100032254 | Anderfaas et al. | Feb 2010 | A1 |
20100044975 | Yablon et al. | Feb 2010 | A1 |
20100059964 | Morris | Mar 2010 | A1 |
20100066051 | Haugen | Mar 2010 | A1 |
20100109277 | Furrer | May 2010 | A1 |
20100133764 | Greaves | Jun 2010 | A1 |
20100139442 | Miyama | Jun 2010 | A1 |
20100147640 | Jones et al. | Jun 2010 | A1 |
20100160014 | Galasso et al. | Jun 2010 | A1 |
20100164705 | Blanchard | Jul 2010 | A1 |
20100170760 | Marking | Jul 2010 | A1 |
20100186836 | Yoshihiro et al. | Jul 2010 | A1 |
20100198453 | Dorogusker et al. | Aug 2010 | A1 |
20100207351 | Klieber et al. | Aug 2010 | A1 |
20100224454 | Chen et al. | Sep 2010 | A1 |
20100244340 | Wootten et al. | Sep 2010 | A1 |
20100252972 | Cox et al. | Oct 2010 | A1 |
20100276238 | Crasset | Nov 2010 | A1 |
20100276906 | Galasso et al. | Nov 2010 | A1 |
20100308628 | Hsu et al. | Dec 2010 | A1 |
20100314917 | Hsieh et al. | Dec 2010 | A1 |
20100324781 | Gagliano | Dec 2010 | A1 |
20100326780 | Murakami | Dec 2010 | A1 |
20100327542 | Hara et al. | Dec 2010 | A1 |
20110022266 | Ippolito et al. | Jan 2011 | A1 |
20110067965 | McAndrews | Mar 2011 | A1 |
20110086686 | Avent et al. | Apr 2011 | A1 |
20110095507 | Plantet et al. | Apr 2011 | A1 |
20110097139 | Hsu et al. | Apr 2011 | A1 |
20110109060 | Earle et al. | May 2011 | A1 |
20110127706 | Sims et al. | Jun 2011 | A1 |
20110174582 | Wootten et al. | Jul 2011 | A1 |
20110202236 | Galasso | Aug 2011 | A1 |
20110204201 | Kodama et al. | Aug 2011 | A1 |
20110214956 | Marking | Sep 2011 | A1 |
20110257848 | Shirai | Oct 2011 | A1 |
20110284333 | Krog et al. | Nov 2011 | A1 |
20110315494 | Marking | Dec 2011 | A1 |
20120006949 | Laird et al. | Jan 2012 | A1 |
20120007327 | Talavasek | Jan 2012 | A1 |
20120018263 | Marking | Jan 2012 | A1 |
20120018264 | King | Jan 2012 | A1 |
20120048665 | Marking | Mar 2012 | A1 |
20120074660 | Thomas | Mar 2012 | A1 |
20120080279 | Galasso et al. | Apr 2012 | A1 |
20120136537 | Galasso et al. | May 2012 | A1 |
20120166044 | Battlogg et al. | Jun 2012 | A1 |
20120181126 | De Kock | Jul 2012 | A1 |
20120221228 | Noumura et al. | Aug 2012 | A1 |
20120222927 | Marking | Sep 2012 | A1 |
20120228906 | McAndrews et al. | Sep 2012 | A1 |
20120253599 | Shirai | Oct 2012 | A1 |
20120253600 | Ichida et al. | Oct 2012 | A1 |
20120274043 | Lee et al. | Nov 2012 | A1 |
20120305350 | Ericksen et al. | Dec 2012 | A1 |
20120312648 | Yu et al. | Dec 2012 | A1 |
20130001030 | Goldasz et al. | Jan 2013 | A1 |
20130037361 | Park et al. | Feb 2013 | A1 |
20130090195 | Yamaguchi et al. | Apr 2013 | A1 |
20130119634 | Camp et al. | May 2013 | A1 |
20130144489 | Galasso et al. | Jun 2013 | A1 |
20130168195 | Park et al. | Jul 2013 | A1 |
20130220110 | Zhan et al. | Aug 2013 | A1 |
20130221713 | Pelot et al. | Aug 2013 | A1 |
20130292218 | Ericksen et al. | Nov 2013 | A1 |
20130333993 | Yu | Dec 2013 | A1 |
20140008160 | Marking et al. | Jan 2014 | A1 |
20140027219 | Marking et al. | Jan 2014 | A1 |
20140048365 | Kim | Feb 2014 | A1 |
20140061419 | Wehage et al. | Mar 2014 | A1 |
20150073656 | Takamoto et al. | Mar 2015 | A1 |
20150081171 | Ericksen et al. | Mar 2015 | A1 |
20150090547 | Haugen | Apr 2015 | A1 |
20150141056 | Fefilatyev et al. | May 2015 | A1 |
20150175236 | Walthert et al. | Jun 2015 | A1 |
20150179062 | Ralston et al. | Jun 2015 | A1 |
20150191069 | Zuleger et al. | Jul 2015 | A1 |
20150197308 | Butora et al. | Jul 2015 | A1 |
20150233442 | Noguchi | Aug 2015 | A1 |
20150291248 | Fukao et al. | Oct 2015 | A1 |
20160003320 | Kamakura et al. | Jan 2016 | A1 |
20160025178 | Kamakura et al. | Jan 2016 | A1 |
20160031506 | Lloyd et al. | Feb 2016 | A1 |
20160076617 | Marking | Mar 2016 | A1 |
20160153515 | Ebersbach et al. | Jun 2016 | A1 |
20160153516 | Marking | Jun 2016 | A1 |
20160185178 | Galasso et al. | Jun 2016 | A1 |
20160200163 | Tsukahara | Jul 2016 | A1 |
20160200164 | Tabata et al. | Jul 2016 | A1 |
20160265615 | Marking | Sep 2016 | A1 |
20160290431 | Marking | Oct 2016 | A1 |
20160319899 | Franklin et al. | Nov 2016 | A1 |
20160355226 | Pelot et al. | Dec 2016 | A1 |
20160364989 | Speasl et al. | Dec 2016 | A1 |
20170008363 | Ericksen et al. | Jan 2017 | A1 |
20170136843 | Marking | May 2017 | A1 |
20170184174 | Marking | Jun 2017 | A1 |
20170247072 | Laird et al. | Aug 2017 | A1 |
20170259876 | Ericksen et al. | Sep 2017 | A1 |
20170268595 | Inagaki et al. | Sep 2017 | A1 |
20170282669 | Cox et al. | Oct 2017 | A1 |
20170291466 | Tong | Oct 2017 | A1 |
20180010666 | Marking | Jan 2018 | A1 |
20180031071 | Marking | Feb 2018 | A1 |
20180118302 | Fukao et al. | May 2018 | A1 |
20180150764 | Stenneth | May 2018 | A1 |
20180156300 | Sakai | Jun 2018 | A1 |
20180174446 | Wang | Jun 2018 | A1 |
20180208011 | Wigg et al. | Jul 2018 | A1 |
20180222541 | Madau et al. | Aug 2018 | A1 |
20180304149 | Galasso et al. | Oct 2018 | A1 |
20180326805 | Marking | Nov 2018 | A1 |
20180326808 | Ericksen et al. | Nov 2018 | A1 |
20180328442 | Galasso et al. | Nov 2018 | A1 |
20180328446 | Ericksen et al. | Nov 2018 | A1 |
20180334007 | Ericksen et al. | Nov 2018 | A1 |
20180334008 | Ericksen et al. | Nov 2018 | A1 |
20180335102 | Haugen | Nov 2018 | A1 |
20180339565 | Ericksen et al. | Nov 2018 | A1 |
20180339566 | Ericksen et al. | Nov 2018 | A1 |
20180339567 | Ericksen et al. | Nov 2018 | A1 |
20180355943 | Cox | Dec 2018 | A1 |
20180355946 | Ericksen et al. | Dec 2018 | A1 |
20190030975 | Galasso et al. | Jan 2019 | A1 |
20190031264 | Laird et al. | Jan 2019 | A1 |
20190032745 | Marking | Jan 2019 | A1 |
20190092116 | Magnus et al. | Mar 2019 | A1 |
20190154100 | Coaplen et al. | May 2019 | A1 |
20190176557 | Marking et al. | Jun 2019 | A1 |
20190184782 | Shaw et al. | Jun 2019 | A1 |
20190203798 | Cox et al. | Jul 2019 | A1 |
20190247744 | Galasso et al. | Aug 2019 | A1 |
20200191227 | Laird | Jun 2020 | A1 |
20220252129 | Haugen | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
101468587 | Jul 2009 | CN |
1555311 | Aug 1970 | DE |
3613386 | Oct 1986 | DE |
3532292 | Mar 1987 | DE |
3536655 | Apr 1987 | DE |
3709447 | Oct 1988 | DE |
3711442 | Oct 1988 | DE |
3738048 | May 1989 | DE |
3924166 | Feb 1991 | DE |
4022099 | Dec 1991 | DE |
4029090 | Mar 1992 | DE |
4406918 | Sep 1994 | DE |
202004005229 | Aug 2004 | DE |
10326675 | Dec 2004 | DE |
102005025811 | Dec 2006 | DE |
102007056313 | May 2009 | DE |
102007063365 | Jul 2009 | DE |
202008015968 | Apr 2010 | DE |
202010012738 | Dec 2010 | DE |
207409 | Jan 1987 | EP |
304801 | Mar 1989 | EP |
0306819 | Mar 1989 | EP |
0403803 | Dec 1990 | EP |
552568 | Jul 1993 | EP |
0735280 | Oct 1996 | EP |
0806587 | Nov 1997 | EP |
1050696 | Nov 2000 | EP |
1138530 | Oct 2001 | EP |
1188661 | Mar 2002 | EP |
1241087 | Sep 2002 | EP |
1355209 | Oct 2003 | EP |
1394439 | Mar 2004 | EP |
1449688 | Aug 2004 | EP |
1623856 | Feb 2006 | EP |
1662167 | May 2006 | EP |
1757473 | Feb 2007 | EP |
1825220 | Aug 2007 | EP |
2103512 | Sep 2009 | EP |
2116739 | Nov 2009 | EP |
2189191 | May 2010 | EP |
2248691 | Nov 2010 | EP |
2357098 | Aug 2011 | EP |
2410203 | Jan 2012 | EP |
2479095 | Jul 2012 | EP |
2495472 | Sep 2012 | EP |
2357098 | Oct 2014 | EP |
2848582 | Mar 2015 | EP |
2567839 | Mar 2019 | EP |
3786049 | Mar 2021 | EP |
3786049 | May 2023 | EP |
1343760 | Nov 1963 | FR |
2432424 | Feb 1980 | FR |
2449236 | Sep 1980 | FR |
2529002 | Dec 1983 | FR |
2617928 | Jan 1989 | FR |
2952031 | May 2011 | FR |
806307 | Dec 1958 | GB |
1185074 | Mar 1970 | GB |
2104183 | Mar 1983 | GB |
2159234 | Nov 1985 | GB |
2159604 | Dec 1985 | GB |
2180320 | Mar 1987 | GB |
2282864 | Apr 1995 | GB |
2289111 | Nov 1995 | GB |
57173632 | Oct 1982 | JP |
57173632 | Nov 1982 | JP |
57182506 | Nov 1982 | JP |
01106721 | Apr 1989 | JP |
H0193637 | Apr 1989 | JP |
H02168038 | Jun 1990 | JP |
H03113139 | May 1991 | JP |
04203540 | Jul 1992 | JP |
05149364 | Jun 1993 | JP |
H05319054 | Dec 1993 | JP |
06101735 | Apr 1994 | JP |
06185562 | Jul 1994 | JP |
084818 | Jan 1996 | JP |
2005119548 | May 2005 | JP |
2005119549 | May 2005 | JP |
2007302211 | Nov 2007 | JP |
2008238921 | Oct 2008 | JP |
20070076226 | Jul 2007 | KR |
20100041679 | Apr 2010 | KR |
2469224 | Dec 2012 | RU |
9840231 | Sep 1998 | WO |
9906231 | Feb 1999 | WO |
0027658 | May 2000 | WO |
03070546 | Aug 2003 | WO |
2006065235 | Jun 2006 | WO |
2007017739 | Feb 2007 | WO |
2007117884 | Oct 2007 | WO |
2008086605 | Jul 2008 | WO |
2008114445 | Sep 2008 | WO |
2013066159 | May 2013 | WO |
2021066819 | Apr 2021 | WO |
Entry |
---|
Electronic Translation of DE3709447A1. |
English language abstract for EP 0207409 (no date). |
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages. |
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages. |
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2. |
“European Search Report for European Application No. 10187320, 12 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”. |
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (dated Dec. 12, 2017)”. |
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages. |
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7. |
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich , Feb. 25-Mar. 1, 1991. |
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207. |
European Examination Report for EP Application No. 11188520.8, 9 pages, dated Jul. 19, 2022. |
European Examination Report for European Application No. 11275170.6, 6 pages, dated Oct. 20, 2022. |
European Search Report for European Application No. 19155995, 11 pages, dated Aug. 28, 2019. |
European Search Report for European Application No. 19206334.5, 6 pages, dated May 12, 2020 (dated May 12, 2020). |
European Search Report for European Application No. 19212356.0, 8 pages, dated May 7, 2020 (dated May 7, 2020). |
Machine translation DE3613386; Oct. 1986. |
Machine translation EP 0403803; Dec. 1990. |
Machine translation KR20100041679; Apr. 2010. |
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages. |
European Search Report for European Application No. 21170685.8, dated Nov. 10, 2021, 8 Pages. |
EP Search Report for European Application No. 21173940.4, dated Nov. 12, 2021, 9 Pages. |
European Search Report for European Application No. 20187747, dated Nov. 18, 2020, 11 Pages. |
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207. |
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages. |
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages. |
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages. |
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages. |
“Basis for Claims Filed Jan. 15, 2023”, European Patent Application No. 14189773.6, 2 Pages. |
“Communication Re Oral Proceedings for European Application No. 10161906, dated Feb. 15, 2013 (dated Feb. 15, 2013)”. |
“European Search Report for European Application No. 09159949, 2 pages, dated Sep. 11, 2017 (dated Sep. 11, 2017)”. |
“European Search Report for European Application No. 09177128, 4 pages, dated Aug. 25, 2010 (dated Aug. 25, 2010)”. |
“European Search Report for European Application No. 10161906, 3 pages, dated Sep. 15, 2010 (dated Sep. 15, 2010)”. |
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (dated Aug. 10, 2012))”. |
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”. |
“European Search Report for European Application No. 11172612, 2 pages, dated Oct. 6, 2011 (dated Oct. 6, 2011))”. |
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”. |
“European Search Report for European Application No. 11275170, 2 pages, dated Jan. 10, 2018 (dated Jan. 10, 2018)”. |
“European Search Report for European Application No. 12170370, 2 pages, dated Nov. 15, 2017 (dated Nov. 15, 2017)”. |
“European Search Report for European Application No. 13158034, 4 pages, dated Jun. 28, 2013 (dated Jun. 28, 2013))”. |
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (dated Jan. 8, 2018))”. |
“European Search Report for European Application No. 13189574, 2 pages, dated Feb. 19, 2014 (dated Feb. 19, 2014)”. |
“European Search Report for European Application No. 15167426, 4 pages, dated Sep. 18, 2015 (dated Sep. 18, 2015))”. |
“European Search Report for European Application No. 16167306, 2 pages, dated Mar. 23, 2017 (dated Mar. 23, 2017)”. |
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (dated Jun. 28, 2017)”. |
“European Search Report for European Application No. 17188022, 9 pages, dated Feb. 1, 2018 (dated Feb. 1, 2018))”. |
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (dated Aug. 28, 2018))”. |
“Notice of Intent to Grant EP Application 09159949.8 dated Nov. 14, 2019, p. 48”. |
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”. |
“The Lee Company Technical Hydraulic Handbook”, 1996, 1-696. |
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128. |
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages. |
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223. |
Puhn, “How To Make Your Car Handle”, HPBooks, 1981, 7 Pages. |
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, Dec. 13, 2018, 49 Pages. |
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39. |
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages. |
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics, vol. 37, No. 1, 2002, 3-28. |
Haller, E, EPO machine translation of CN 101468587 (A) Device with a suspension system and method for setting a suspension system, published on Jul. 1, 2009. |
Kensuke, Suspension Control Device, machine translation of JPH05319054 (A), 1993-12-03 (Year: 1993). |
Number | Date | Country | |
---|---|---|---|
20210023901 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
61624895 | Apr 2012 | US | |
61533712 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16147200 | Sep 2018 | US |
Child | 17003746 | US | |
Parent | 15061735 | Mar 2016 | US |
Child | 16147200 | US | |
Parent | 14446179 | Jul 2014 | US |
Child | 15061735 | US | |
Parent | 13612679 | Sep 2012 | US |
Child | 14446179 | US |