Methods and apparatus for suspension set up

Information

  • Patent Grant
  • 11958328
  • Patent Number
    11,958,328
  • Date Filed
    Wednesday, August 26, 2020
    3 years ago
  • Date Issued
    Tuesday, April 16, 2024
    18 days ago
Abstract
A method and apparatus are disclosed that assist a user in performing proper setup of a vehicle suspension. A user may utilize a device equipped with an image sensor to assist the user in proper setup of a vehicle suspension. The device executes an application that prompts the user for input and instructs the user to perform a number of steps for adjusting the suspension components. In one embodiment, the application does not communicate with sensors on the vehicle. In another embodiment, the application may communicate with various sensors located on the vehicle to provide feedback to the device during the setup routine. In one embodiment, the device may analyze a digital image of a suspension component to provide feedback about a physical characteristic of the component.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates generally to vehicle suspensions and, more specifically, to a system for adjusting operational characteristics of a vehicle suspension system.


Description of the Related Art

Vehicle suspension systems typically include a spring component or components and a damping component or components. Often, mechanical springs, like helical springs, are used with some type of viscous fluid-based damping mechanism, the spring and damper being mounted functionally in parallel. In some instances a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there-through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.


Despite efforts to educate product managers, retailers, and end consumers on the importance of proper initial vehicle suspension set up, it is evident at event support and trail side encounters that many vehicles such as mountain bikes and motorcycles are ridden with improper initial suspension settings. An important initial setting is suspension “sag,” which is the measured distance a shock absorber compresses while the rider, preferably wearing intended riding gear, is seated on, e.g., a bicycle, motorcycle, or four-wheeled vehicle in a riding position compared to a fully extended suspension position. Suspension sag also applies to all-terrain vehicles (ATVs), trucks, and other vehicles equipped with a suspension. Getting the sag setting correct allows the wheels or vehicle suspension to react to negative terrain features (i.e., dips requiring suspension extension) without the entire vehicle “falling” into such terrain features. Often any attention that is paid to the initial sag setting is focused on the rear suspension, especially in motorcycle applications, but making sure that both the front and rear sag settings are correct is equally important.


Another important initial setting is the rebound damping setting for the rear and front vehicle suspensions. Rebound damping dissipates stored system spring energy after a suspension compression event and results in a controlled rate of return of the suspension to a more extended condition. Preventing the suspension from rebounding too quickly is an important aspect of the quality of vehicle suspension setup. In the case of rear suspension, an improper amount of rebound damping can result in the rear of the vehicle “kicking” off the ground and pitching the rider forward after encountering a bump or sharp compression obstacle, also known as “bucking.” In the case of front suspension, an improper amount of rebound damping can cause impact to the rider's hands as the front suspension kicks back directly toward the rider. Conversely, preventing the suspension from rebounding too slowly is also an important aspect of the quality of vehicle suspension setup. An improper amount of rebound damping, where the amount of damping is too high, can result in the suspension not returning quickly enough to respond to the next bump in a series of bumps, ultimately causing the suspension to “ratchet” down into a compressed state. Such a “ratcheting” sequence is commonly referred to as suspension packing. Packing can result in the suspension being overly stiff due to retained compression through the middle to the end of a series of bumps, causing the back of the vehicle to kick off the ground and pitch the rider forward (in the case of the rear suspension) and causing the suspension to get overly stiff and steering geometry to get steep and unstable (in the case of the front suspension). Compression damping settings are similarly important.


As the foregoing illustrates, what is needed in the art are improved techniques for assisting the operator of a vehicle to prepare and adjust one or more operating parameters of the vehicle for an optimum riding experience.


SUMMARY OF THE INVENTION

One embodiment of the present disclosure sets forth a computer-readable storage medium including instructions that, when executed by a processor, cause the processor to perform a plurality of steps. The steps include receiving a weight value that indicates a load to be carried by the vehicle, receiving a digital image of the suspension component, and cropping the digital image to generate a portion of the digital image, where the portion of the digital image comprises a plurality of pixels associated with a shaft of the suspension component and an o-ring positioned to indicate a level of sag of the suspension component under the load. The steps further include analyzing, via an object recognition algorithm executed by a processor, the portion of the digital image to determine a location of the o-ring on the shaft of the suspension component, and determining an adjustment to the suspension component based on the location of the o-ring.


Another embodiment of the present disclosure sets forth a system for adjusting a suspension component on a vehicle. The system includes an image sensor, a display, a memory storing an application, and a processor coupled to the memory, the image sensor, and the display. The processor is configured to receive a weight value that indicates a load to be carried by the vehicle, receive a digital image of the suspension component, and crop the digital image to generate a portion of the digital image, where the portion of the digital image comprises a plurality of pixels associated with a shaft of the suspension component and an o-ring positioned to indicate a level of sag of the suspension component under the load. The processor is further configured to analyze, via an object recognition algorithm, the portion of the digital image to determine a location of the o-ring on the shaft of the suspension component, and determine an adjustment to the suspension component based on the location of the o-ring.


Yet another embodiment of the present disclosure sets forth a system for adjusting a suspension component on a vehicle. The system includes a display, a memory storing an application, and a processor coupled to the memory, and the display. The processor is configured to receive a weight value that indicates a load to be carried by the vehicle, determine a target pressure for an air spring of the suspension component based on the weight value, measure a loaded position of the suspension component, and determine an adjustment to the suspension component based on the loaded position.


In other embodiments, there is provided a vehicle damper comprising a piston and shaft telescopically mounted within a cylinder, wherein a portion of the shaft is visible when the damper is mounted on a vehicle and the vehicle is not in use, the vehicle damper further comprising a code for identifying the vehicle damper within an electronic database of vehicle dampers, and a member mounted on the visible portion of the shaft. The member adapted to be movable along the shaft by the cylinder during a compression of the damper, but which member retains a position on the shaft indicating the furthest movement of the cylinder during compression of the damper.


In yet other embodiments, there is provided a system that includes a shock absorber having a first member and a second member mounted movably relative thereto such that the shock absorber is positioned at or between an extended position and a compressed position. The system further includes a sensor configured to measure the position of the shock absorber, a memory for storing a plurality of sensor readings (e.g., digitally), a processor executing a program for calculating a force applied to the shock absorber based on a difference between a first position and a second position and a spring setting (i.e., target pressure) such that the force applied to the shock absorber causes the shock absorber to be compressed to a third position (i.e., proper sag position), and a user interface for displaying the spring setting to a user. The program calculates a rebound damping setting (and/or a compression damping setting) for the shock absorber based on the spring setting.


One advantage of the disclosed technique is that the device may use the physical characteristics of the suspension component and an intended load entered by the rider to automatically calculate target values for various settings of the suspension component that should result in a properly setup vehicle suspension. The device may also receive feedback, such as using images captured by the device, to determine whether the suspension should be adjusted from the target values in order to provide the correct result. Proper setup of a vehicle suspension helps create a more enjoyable experience for the rider.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features can be understood in detail, a more particular description, briefly summarized above, may be had by reference to certain example embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting the scope of the claims, which may admit to other equally effective embodiments.



FIG. 1 shows a vehicle used to perform a setup routine, according to one example embodiment;



FIGS. 2A and 2B show a suspension component assembly, according to one example embodiment;



FIG. 3 illustrates a suspension setup system that assists a user in proper setup of the vehicle suspension, according to one example embodiment;



FIGS. 4-22 set forth a graphical user interface displayed by the suspension setup system, according to one example embodiment;



FIGS. 23A-23F illustrate a technique for aligning a device with a suspension component, according to one example embodiment;



FIGS. 24A and 24B illustrate an object detection algorithm for determining the location of o-ring relative to the suspension component, according to one embodiment;



FIGS. 25A and 25B set forth flow diagrams of method steps for assisting a user in performing a setup routine, according to one embodiment; and



FIGS. 26A and 26B set forth flow diagrams of method steps for an object detection algorithm implemented by program, according to one embodiment.





For clarity, identical reference numbers have been used, where applicable, to designate identical elements that are common between figures. It is contemplated that features of one example embodiment may be incorporated in other example embodiments without further recitation.


DETAILED DESCRIPTION

Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by a mechanical spring or constructed in conjunction with an air spring. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. A mechanical spring may be a helically wound spring that surrounds the damper body. Various integrated shock absorber configurations are described in U.S. Pat. Nos. 6,311,962; 6,135,434; 5,044,614; 5,803,443; 5,553,836; and 7,293,764; each of which is herein incorporated by reference in its entirety.


Some shock absorbers utilize gas as a spring medium in place of, or in addition to, mechanical springs. Gas spring type shock absorbers, such as gas spring shock absorbers having integral dampers, are described in U.S. Pat. Nos. 6,135,434; 6,360,857; and 6,311,962, each of which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,360,857, which is incorporated herein by reference in its entirety, shows a shock absorber having selectively adjustable damping characteristics. U.S. Pat. No. 7,163,222, which is incorporated herein by reference in its entirety, describes a gas sprung front shock absorber for a bicycle (i.e., a bicycle fork) having a selective “lock out” and adjustable “blow off” function.


The spring mechanism (gas or mechanical) of some shock absorbers is adjustable so that it can be preset to varying initial states of compression. In some instances the shock spring may comprise different stages having varying spring rates, thereby giving the overall shock absorber a compound spring rate varying through the stroke length. In that way, the shock absorber can be adjusted to accommodate heavier or lighter carried weight, or greater or lesser anticipated impact loads. In vehicle applications, including motorcycle and bicycle applications and particularly off-road applications, shock absorbers should be pre-adjusted to account for varying terrain and anticipated speeds and jumps. Shocks may also be adjusted according to certain rider preferences (e.g., soft to firm).


For example, a type of integrated damper/spring shock absorber having a gas spring is shown in FIG. 28 of U.S. Pat. No. 7,374,028 (hereinafter “028 patent”), which is incorporated by reference herein in its entirety. The shock absorber of FIG. 28 also includes an “adjustable intensifier assembly 510.” The intensifier or reservoir accepts damping fluid from chamber 170 as the fluid is displaced from that chamber by the incursion of rod 620 into chamber 170 during a compression stroke of the shock. The intensifier valve assembly regulates flow of damping fluid into and out of the reservoir, and an embodiment of the valve assembly is shown in FIG. 17 of the '028 patent.


Although described herein with respect to a bicycle suspension system, the embodiments herein may be used with any type of suspended vehicle, as well as other types of suspension or damping systems.


Referring to FIG. 1 herein, a vehicle, such as a bicycle, generally identified by reference numeral 100, comprises a frame 40 and front forks 80. In one embodiment, the frame 40 has a suspension system comprising a swing arm assembly 10 that, in use, is able to move relative to the rest of the frame; this movement is permitted by, inter alia, a rear shock absorber and/or damping assembly 25. The front forks 80 also provide a suspension function via a damping assembly in at least one fork leg. As such, the bicycle 100 shown in FIG. 1 is a full suspension bicycle (such as an ATB or mountain bike), although the embodiments described herein are not limited to use on full suspension bicycles. In particular, the term “suspension system” is intended to include vehicles having either a front suspension or a rear suspension (or both), and other systems wherein motion damping is included (such as for example vehicle steering dampeners or machine part motion dampeners).


In one embodiment, a sensor 5 may be positioned proximate a rear axle 15 of the bicycle 100 for sensing changes in terrain. As shown in FIG. 1, the sensor 5 is mounted on swing arm assembly 10 proximate the rear axle 15 of the bicycle 100. In one embodiment, the angular orientation of a sensor 5 sensing axis is movable through a range or angle 20 (and is shown in each of two positions of many possible positions), thereby allowing alteration of a force component sensed by the sensor 5 in relation to a force (vector) input into the rear swing arm 10. It is understood that the sensor 5 may be moved or mounted in any suitable configuration and allowing for any suitable range of adjustment as may be desirable. In some embodiments, the sensor 5 may include one, two, three or more sensing axes, which is useful for adjusting the sensitivity of the sensor 5 to various anticipated terrain and bicycle speed conditions. The bicycle speed affects the vector direction of a force input to the bicycle wheel for a constant amplitude terrain disparity 55 or “bump/dip.” Varying size bumps and dips also affect the vector input angle to the wheel for constant bicycle speed. The movement of the swing arm 10 is however limited to a mechanically determined trajectory. In one embodiment, a second sensor 5b (also illustrated in FIG. 2A) may be coupled to the rear suspension, such as shock absorber and/or damper assembly 25, for measuring the operational characteristics of the rear suspension. In another embodiment, a third sensor 5c may be coupled to the front suspension, such as front forks 80, for measuring the operational characteristics of the front suspension. The operational characteristics may include at least one of position, velocity, acceleration, stroke, sag, compression, rebound, pressure, and temperature of the vehicle suspension.


The sensors, such as sensors 5, 5b, 5c, and a pedal force sensor (not shown), may be any suitable force or acceleration transducer (e.g. strain gage, wheatstone bridge, accelerometer, hydraulic cylinder, interferometer based, optical, thermal, acoustic or any suitable combination thereof). The sensors may utilize solid state electronics, electro-mechanical principles, or any other suitable mechanisms for monitoring the operational characteristics. In one embodiment, sensor 5 comprises a single-axis, self-powered accelerometer, such as for example ENDEVCO Model 2229C. The 2229C is a comparatively small device with overall dimensions of about 15 mm height by 10 mm diameter, and weighs about 4.9 g. The 2229C power is self-generated and therefore the total power requirements for the bicycle 100 are reduced; an important advantage, at least for some types of bicycle, where overall weight is a concern. In another embodiment, sensor 5 comprises the ENDEVCO 12M1A, which is of the surface-mount type. The 12M1A is a single-axis accelerometer comprising a bimorph sensing element which operates in the bender mode. This accelerometer is particularly small and light, measuring about 4.5 mm by 3.8 mm by 0.85 mm, and weighs about 0.12 g. In other embodiments, sensor 5 may be a tri-axial accelerometer, such as the ENDEVCO 67-100, which has overall dimensions of about 23 mm length and 15 mm width, and weighs about 14 g. Other sensors known in the art may be used with the embodiments described herein.


In one embodiment, the sensor 5 may be attached to the swing arm 10 directly, to any link thereof, to an intermediate mounting member or to any other portion or portions of the bicycle 100 as may be useful for purposes disclosed herein. In another embodiment, the sensor 5 may be attached to an un-sprung portion of the bicycle 100, such as for example the swing arm 10, and another sensor 35 (such as an accelerometer as described above) may be attached to a sprung portion of the bicycle 100, such as for example the frame 40. Data from each sensor can be registered relative to a common time datum, and suspension damping and/or spring effectiveness can be evaluated by comparing the data from the sensors on either “side” of the suspension unit. Sensors may be integrated with the vehicle structure and data processing system as described in U.S. Pat. Nos. 6,863,291; 4,773,671; 4,984,819; 5,390,949; 5,105,918; 6,427,812; 6,244,398; 5,027,303 and 6,935,157; each of which is incorporated herein by reference in its entirety. Sensors and valve actuators (e.g., electric solenoid, linear motor type, or rotary motor type) may be integrated herein utilizing principles outlined in SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series no. 910661 by Shiozaki et al. for the International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991, which is incorporated herein by reference in its entirety. Further, sensors and valves, or principles, of patents and other documents incorporated herein by reference, may be integrated into embodiments hereof, individually or in combination, as disclosed herein.


In one embodiment, the shock absorber 25 is operatively mounted between an unsprung portion of the bicycle 100, such as the swing arm 10 and rear axle 15, and a sprung portion of the bicycle 100, such as the frame 40. A representative example embodiment of the shock absorber 25 derives from a modification, as disclosed herein, of the shock absorber shown in FIG. 28 of the '028 patent.


Referring to FIG. 2A herein, an intensifier assembly 510 is shown in conjunction with a damper assembly 630, which may be implemented as part of damping assembly 25 in vehicle 100. In one embodiment, the damper assembly 630 is disclosed in FIG. 28 of the '028 patent and includes similar reference numerals. FIG. 2B shows an embodiment of a valve assembly 511, such as an intensifier valve, for use with the embodiments disclosed herein. In one embodiment, the valve assembly 511 of FIG. 2B replaces, or may be used with, the “adjustable intensifier assembly” 510, as shown in FIGS. 16, 17, 28 and elsewhere in the '028 patent. The valve assembly 511 is operable in response to electric current and is capable of being modulated or throttled for selective full opening, closing and intermediate opening or “throttle” positions. The valve assembly 511 comprises a valve portion 110 and an actuator portion 120. The valve portion 110 may include a cylinder 112 with one or more variable orifices 114 and a member (e.g. piston) 116 that moves within the cylinder 112 to control the opening of the orifice(s) 114. The valve assembly 511 is in a closed position when the piston 116 is covering the orifice(s) 114. The valve assembly 511 is in an open position when the piston 116 moves away from the orifice(s) 114 such that at least a portion of the orifice(s) 114 is opened. In the open position, fluid may flow into the valve portion 110 and may flow out of the valve portion 110. The position of the piston 116 relative to the orifice(s) 114 varies the orifice opening and the flow through the valve portion 110. The valve assembly 511 may thus provide an output pressure in response to an input flow.


The valve portion 110 may also include a spring 118 that applies a force against the piston 116 to bias the piston 116 toward the closed position. Fluid pressure against the piston 116 may result in a force that exceeds the spring force causing the piston 116 to move and open the orifice(s) 114. The actuator portion 120 may also apply a force to the piston 116. The actuator portion 120 may advantageously be back drivable to permit the pressure term to push open the valve, for example, during the onset of a high shock event. One embodiment of the actuator portion 120 is a voice coil type linear actuator including a voice coil 122, a magnet 124, and a back iron 126. The back iron 126 is coupled to the piston 116 such that linear movement of the back iron 126 causes linear movement of the piston 116.


The actuator portion 120 may be controlled using a command such as a voltage command, for example, provided by drive electronics. A voltage command or signal to the actuator portion 120 causes current to flow through the coil 122, creating a magnetic field that applies a force to the magnet 124 and back iron 126. Different voltage commands may thus correspond to different amounts of force applied to the piston 116 in the valve assembly 511. In one embodiment, the signals and actuator are configured to move the valve completely between a full open (“unlocked”) and a full closed position (“locked”) thereby allowing the damper to move or substantially locking it; i.e., adjusting the damping rate of the damping assembly 630 between minimum and maximum respectively.


Although one exemplary valve 110 is shown, those skilled in the art will recognize that other types of valves may be used. Although the exemplary actuator 120 is a voice coil type linear actuator, those skilled in the art will recognize that other types of actuator technologies may be used. For example, the sensors, switches, controllers, actuators and other operative elements hereof may comprise optical circuitry and as such the power source may comprises an optical (or other electromagnetic) generator such as a “LASER” and wiring and circuits used herein may comprises fiber optic and optic circuitry including Bragg grating technology and other suitable “electrical equivalents.” The elements hereof may be operable in whole or in part based on sonic wave or microwave transmission and suitable waveguide technology may be employed. An operation of an intensifier valve that may be used with the embodiments described herein is disclosed in U.S. Pat. No. 7,299,112; which is incorporated herein by reference in its entirety.


It should be noted that voice coil 122 and magnet 124 are interchangeable such that the voice coil may be either 122 or 124 and the magnet may be the other of 122 and 124, respectively. The voice coil 122 or 124 responds to input current from the power circuit (e.g. position control circuit or other suitable electrical input as described herein) and, therefore, input wiring is desirable. The input wiring and terminals for the 122 version of the voice coil is shown at 150. The input wiring and terminals for the 124 version of the voice coil is shown at 151 and includes windings 152 to accommodate extension and contraction of the throughput wires 152 during operation of the valve assembly 511.


The valve assembly 511 is shown in a closed or downward 156, position. As such, piston 116 fully obstructs orifices 114 thereby preventing fluid from flowing from damper assembly 630, through channel 636, into upper chamber 153, through orifice 114, through valve outlet 157 and into floating piston compensator chamber 154. When current of an appropriate magnitude is applied to the voice coil 122 or 124, the magnet electromagnet combination of 122 and 124 causes the back iron 126, and correspondingly the valve piston 116, to move upward 155 in an amount proportional to the voice coil input. Such upward 155 movement is against spring 118, which biases the valve piston 116 downward 156 (i.e. toward closed) and, therefore, when the voice coil input balances with the force of spring 118, movement of the piston 116 will stop and the valve assembly 511 will be correspondingly throttled.


In operation, the sensor 5 (and/or sensors 5b, 5c, 35) puts out a voltage corresponding to an input force. The outputs from sensors 5, 5b, 5c, 35 may be reconciled in a controller or processor 65 (described in greater detail below) that implements an algorithm for weighting their respective inputs and generating a resulting singular command or signal based on a predetermined logic. In one embodiment, the sensor 5 senses an input force along the prescribed range or axis 20. A bump in the terrain 45 typically exerts a force on a tire/wheel 60 of the bicycle 100. The angle of the resolved force relative to the tire/wheel 60 is typically normal (substantially) to the tire/wheel 60 at the point of impact. That force then imparts a component of the impact to the axle 15 as dictated by the trajectory of the swing arm linkage 10. That component can be sensed by the sensor 5 at a magnitude corresponding to the orientation of the sensor range or angle 20. The sensor axis 20 orientation can be adjusted to make the sensor 5 more or less sensitive (by imparting more or less of the impact to the sensor range or axis 20) to bumps and dips in the terrain 45.


It is envisaged that there are various ways the remote lock/unlock function of the rear shock absorber 25 and/or front shock absorber 80 may be provided on the bicycle 100. In one embodiment, remote lock/unlock may be entirely automatically controlled by a controller 65 in response to the input from the sensors 5, 5b, 5c and/or 35 when the bicycle 100 is in use. Optionally, the user may be able to override and/or adjust this automatic control using a device 50. In one embodiment, the remote lock/unlock of the rear shock absorber 25 and/or front shock absorber in fork 80 may be entirely controlled at the user's discretion using the device 50; in such an embodiment, the sensors 5, 5b, 5c and/or 35 need not be provided on the bicycle 100 and the user locks and unlocks the suspension system according to his or her own preferences at the time.


In one embodiment, device 50 comprises a digital user interface device provided with buttons and/or a touch screen that enables the user to adjust the damper assembly 630 at will. The device 50 may comprise a suitable GPS (global positioning system) unit, bicycle computer, heart rate monitor, smart phone, personal computer, or cloud-connected computer, and may further comprise connectivity to a network such as the Internet. The device 50 may send and receive data via cell phone bands, satellite bands, or other suitable electromagnetic frequencies to connect with other computer networks for the sending and or receiving of data, wherein the data may be received by and transformed by an outside computing machine and transmitted to the device 50 in an altered form or in a new form corresponding to the result of the outside machine transformation. The functionality of the device 50 may be incorporated into performance recording devices and/or digital user interfaces such as, but not limited to, the Garmin® EDGE series of devices and smart phones such as the Apple® iPhone or Motorola® phones including the Android® Operating System.


Some or all components of embodiments described herein, including sensors, switches, processors, controllers, shock absorbers, intensifier assembly, and/or valve assembly, may be interconnected or connected by wired or wireless communication. The components may be connected to a network, such as a wide area network (WAN), local area network (LAN), or the Internet, and configured to implement communications via Bluetooth, Wi-Fi, ANT (i.e., Garmin low power usage protocol), or any other suitable power or signal transmitting protocol. In some embodiments, the components should ideally communicate wirelessly with controller 65. As the controller 65 receives the input signals from sensors 5 (as well as 5b, 5c, 35, etc.) the controller 65 responds to those signals by adjusting the damping rate of the damper assembly 630.


In one embodiment, the controller 65 takes a derivative (i.e., differentiation) of the suspension compression and/or extension acceleration to determine the rate of change of acceleration for forecasting and implementing adjustment of the valve assembly 511 or for determining a data rate or sample density required to adequately represent current suspension behavior. For example, if a bump 55 is encountered, followed immediately by a dip, it may be desirable to have the rebound of the tire into the dip occur very rapidly. If the valve assembly 511 were opened to an intermediate state as determined by the controller 65 and the controller determines that a bump has been followed by a large magnitude reversal of the derivative of the acceleration (i.e., indicated by the sensor 5), then the controller 65 may direct the power source to fully open the valve assembly 511 to allow the maximum rebound velocity. It is noted that embodiments herein of shock absorber/damping assembly 630 and related systems are equally applicable to vehicle front forks. Further, it is contemplated that the vehicle may include both shock absorbers and front forks, both of which having some or all of the features disclosed herein.



FIG. 3 illustrates a suspension setup system 300 that assists a user in proper setup of the vehicle suspension, according to one example embodiment. The system 300 enables a user to set up a vehicle 100 (such as vehicle 100 described above) equipped with one or more sensors (such as sensors 5, 5b, 5c, 35 described above), a processor or controller 65, and a device 50. An operator or user, such as a rider of the vehicle 100, may use the system 300 according to the embodiments described herein. In one embodiment, the vehicle 100, such as a bicycle, is equipped with the device 50 comprising at least a memory 320 storing a program 325 that implements an algorithm for setting up the suspension of the vehicle 100, and a processor 310 for executing the program 325. In one embodiment, the device 50 includes a communication interface 330 to communicate with controller 65. Communication interface 330 may be a wireless network interface, a near-field communication interface, or any other technically feasible communication interface. Device 50 may also include a display 350 used to display a graphical user interface to a user and an image sensor 380 that enables live video or images to be captured by the device 50 and stored in memory 320. In one embodiment, display 350 comprises a touch-sensitive LCD screen that may be used both for display of the user interface and for receiving input from the user.


In one embodiment, the device 50 captures data 335 from the sensors in the memory 320 for processing by program 325. The data 335 may include suspension component relative position data (e.g., inches of compression or full extension or full compression or any suitable combination of such data) and/or other operational characteristics/features of the vehicle 100 that are measured by the sensors. The raw sensor data may be communicated to the controller 65 via wired and/or wireless communication, and the controller 65 may process the raw sensor data and communicate the processed data 335 to device 50 via, for example, an industry standard low power wireless protocol. The program 325 instructs the user on what adjustments to make to improve the vehicle suspension setup and/or to describe the current performance of the vehicle suspension system. In one embodiment, the user may use the device 50 to adjust one or more components of the vehicle 100, automatically, manually and/or remotely, wired and/or wirelessly, directly, manually and/or indirectly (such as via the controller 65) during and/or after operation of the vehicle 100.


In one embodiment, the sensors are mounted to vehicle suspension components, such as the front forks 80 of bicycle 100 illustrated in FIG. 1. The sensor may be coupled to the vehicle 100 and may be operable to measure an operational characteristic of a vehicle component. In one embodiment, the sensors may be directly coupled to the vehicle components for direct measurement of each component's operational characteristics. In another embodiment, the sensors may be coupled to portions of the vehicle 100 apart from the vehicle components and may be operable for indirect measurement of each component's operational characteristics. In yet another embodiment, the sensors may be positioned at any location relative to the vehicle 100 and may be operable to measure an operational characteristic of the vehicle 100 directly or indirectly (e.g. inferred from the position of a vehicle component), such as the position of the vehicle suspension linkage, or the sprung versus un-sprung portion of the vehicle component, for example. The sensors are used to determine the position, velocity, and/or acceleration of the suspension components (raw sensor data is used to calculate such parameters within the controller 65). Again, the sensors may be linear potentiometers, string potentiometers, contact or non-contact membrane potentiometers, rotary potentiometers (such as if used on a linkage fork or a rear suspension linkage), accelerometers, 3D global position sensors (“GPS”), pressure sensors (for measuring the air spring or coil spring compression), and/or other type of sensors. These sensors may communicate either wired or wirelessly to the controller 65 to communicate the sag position of the vehicle suspension or any other suitable data. In one embodiment, the data sampling rate for the sensors is about 500 Hz to allow sufficient sampling and resolution of the vehicle suspension movement during operation.


In one embodiment, the controller 65 is relatively small (about 2″.times.3-3.5″.times.0.5-0.625″) and lightweight so as to not negatively impact the user of the vehicle 100. The controller 65 need not literally “control” anything but rather may cull data and send the result to the device 50 for processing. The controller 65 may contain one or more of the following major components: a low power microprocessor, a wireless communication chip (such as ANT+, Bluetooth, and/or Wi-Fi 802.11n), a battery, and flash memory. The controller 65 may also have other sensors on board such as a GPS, a compass, an accelerometer, an altimeter, and/or an air temperature sensor. The controller 65 may also have one or more external features such as multi-color LED's to communicate basic state of operation and battery charge to the user and buttons to toggle power and start/stop data logging. The controller 65 may also have an external mini USB connector to connect to a computer or other external device for uploading of data and charging the battery as well as external connectors to connect to any wired sensors.


In one embodiment, the controller 65 may record and evaluate the vehicle suspension data in real time. The controller 65 may analyze parameters like sag (static ride height), rebound and compression speed, top out and bottom out events. Then, after analysis is complete, the controller 65 may communicate the results of the analysis with the device 50. Because there are many user interface devices that already have ANT+ and/or Bluetooth built-in (e.g. Garmin® GPS, power meters, Apple® iPhone, etc.) it is contemplated that certain embodiments will be compatible with these protocols. These 3rd party user interface devices generally have large displays with a developed GUI and user navigation method via any or all of buttons, joystick, touch screen, etc. The built-in wireless capabilities are ideal for low density data transmittal, but are not well suited for high speed data acquisition (because low power wireless data rates are generally limited). By leveraging the existing device display and GUI capabilities, the applicability of the system is increased. In one embodiment, the device 50 is programmed with a data template or templates suitable for filling with data and/or calculations/suggestions from the controller 65. In another embodiment, the device 50 is programmed with input templates for facilitating user input of suspension model, user weight, vehicle type, etc. as may be useful in aiding the controller 65 to look up corresponding parameters. The controller 65 will communicate to the device 50 selected data or calculations (e.g. graphical, tabular, textual or other suitable format) to display to the user, such as suggestions for adjusting spring preload, air spring pressure (to adjust sag), rebound damping setting, compression damping setting, bottom out damper setting, etc. Communication will also work in reverse to allow the user to enter data, such as model of suspension, rider weight, etc., in the device 50 which will relay the information to the controller 65. From such model information the controller 65 will look up model relevant parameters and use those to aid in calculating suggestions or for processing raw sensor data.


In one embodiment, the controller 65 functions as a data receiver, processor, memory and data filter. The controller 65 receives high frequency (high sampling rate) data from the suspension sensor(s). Because current user interface devices, particularly those using wireless protocols, may not be capable of high enough data rates to directly monitor the suspension sensors, the controller 65 may act as a high data rate intermediary between the suspension sensors and the device 50. In one embodiment, the controller 65 is configured to prompt and accept high sampling rate data from the suspension sensors. The controller 65 then stores the data and processes selected data at selected intervals for transmission to a user interface of the device 50. In other words the controller 65 pares the effective data rate and makes that pared data transmission to the user interface in real time. Additionally, the controller 65 stores all un-transmitted data for later analysis if desired. The controller 65 can later be plugged into a computer system, such as a home computing device or laptop via a USB pigtail or dongle device. The controller 65 may also preprocess data and generate user friendly viewing formats for transmission to the user interface of the device 50. The controller 65 may calculate data trends of other useful data derivatives for periodic “real time” (effectively real time although not exact) display on the user interface of the device 50.


In one embodiment, each vehicle 100 suspension component is equipped with a position sensor for indicating the magnitude (or state) of extension or compression existing in the vehicle 100 suspension at any given moment. As the suspension is used over terrain, such a sensor will generate a tremendous amount of data. Relatively high sampling rates are needed to capture meaningful information in devices operating at such high frequencies. For example, in one embodiment, a suitable telescopic tube of the vehicle 100 suspension may be equipped or fitted with two piezoelectric sensors. One of the piezoelectric sensors is a high frequency exciter which is configured on the tube such that it (substantially) continuously induces impacts to a wall of the tube. In lay terms, the sensor thumps or pings the tube wall on a continual basis. The second piezoelectric sensor is an accelerometer fixed or configured with the tube wall so as to monitor vibration of the tube wall. The frequency of the exciter is intentionally set well outside any resonant mode of the suspension tube as it travels through its operational suspension stroke. In one embodiment, a sensing frequency of the monitor is selected to coincide (substantially) with at least one resonant mode range of the tube as it travels through its operational stroke.


The aforementioned exciter and monitor are calibrated, in conjunction with the controller 65, so that values for resonant frequencies (in a selected mode or modes) of the suspension tube (or other suitable and variably “ringing” suspension component) are correlated with axial extension/compression of the suspension containing or including the tube. Such correlation data is stored with the controller 65 for use in real time calculation of axial suspension position based on real time input from the suspension resonant frequency monitor. The tube will tend to resonate regardless of the exciter frequency so by monitoring the change in resonant frequency or tube “ringing”, with the monitor, the axial position of the suspension can be derived within the controller 65.


In one embodiment, the exciter and monitor act on and measure resonance with a cavity of the vehicle 100 suspension wherein cavity resonance versus axial suspension displacement is calibrated and correlated for use in the controller 65. In another embodiment, magnetic flux leakage of a suspension component, or magnetic imposition of current in a surrounding conductive structure, is correlated with axial suspension displacement. In yet another embodiment, optics may be used (e.g. Doppler effect) to measure displacement. In still another embodiment, a magnet is affixed to one portion of the suspension and a conductor is affixed to a relatively movable portion of the suspension so that when the suspension moves axially the relative movement between the magnet and the conductor generates a changing current of flux in the arrangement (and that can be correlated with axial movement). In another embodiment, sonic or ultrasonic waves are used to excite a portion of the suspension and the changing reflective sonic signals are monitored to determine axial disposition of the suspension.


In one embodiment, vehicle suspension components include scan compatible identification codes (e.g., bar codes or QR codes) specifying at least model type and possibly including details including performance specifications. The scan compatible identification codes may also specify other manufacture details such as lot, factory source, build date, inventory numbers, invoice or tracking numbers, subassembly/assembly numbers, etc. In one embodiment, the codes and/or data are included on a chip embedded in the suspension, such as an active or passive radio frequency identification (“RFID”) tag. The controller 65, which may include an RFID tag reader, detects the chip and, based on the data received there from, proceeds to configure, or suggest configuration for, the vehicle suspension.


In one embodiment, the controller 65 and/or device 50 operates in a setup mode where rider input weight and suspension product data are used to suggest initial spring preload and damper settings for the vehicle suspension components. The controller 65 and/or device 50 may also operate in a ride mode wherein suspension movement (e.g. average travel used versus available, portion or range of travel used, number and severity of bottom out or top out events) is monitored and used in conjunction with the rider and suspension data to suggest changes to the suspension setup that better utilize or maximize usage of the suspension capabilities. In another embodiment, the controller 65 and/or device 50 monitors compression range of the suspension to determine whether or not the suspension is setup for optimal use of its range over a given terrain 45. Too many top out events or bottom out events, or operation generally over only a portion of the available range, will indicate a possible need for adjustment to the spring pressure and/or damping rate, and the controller 65, upon calculating such range usage, sends an appropriate suggestion to the device 50, which is displayed to the user. In one embodiment, a GPS unit transmits real time GPS data to the controller 65 and such data is overlayed or paired with corresponding suspension data along an elapsed (or relative sequence) time synchronous data marker (or other suitable common data marker or “datum” type).


In one embodiment, a rebound setting can be automatically achieved by utilizing the air spring pressure or coil spring preload needed to achieve proper sag. The rebound setting is then achieved via feeding the air spring pressure for an air shock, or an oil pressure signal for a coil shock, down the damper shaft to a pressure sensitive damping valve at the damper shaft piston. Rebound damping requirements will vary depending on the stiffness of the suspension spring. A stiffer (or softer) spring normally indicates more (or less) rebound damping as a requirement. In one embodiment, a rebound damper setting is calculated from the sag calculation spring setting recommendation. In one embodiment, there is an external rebound adjustor to make incremental changes from the predetermined setting to account for varied terrain/conditions, and/or riding style and preference.


In one embodiment, an initial sag setting can be automatically set and facilitated by having a position valve within the shock for a given length bleed off air pressure until a specific sag level is achieved. Each shock stroke would have a specific length of sag/position valve. The user would pressurize their shock to a maximum shock pressure of, for example, 300 psi or so. The actual max number is not important at this point. The idea is to over pressurize the shock beyond any reasonable properly set sag pressure. The user then switches the shock to be in setup or sag mode and sits on the bike. The shock will bleed air from the air spring until the position valve encounters a shut off abutment which thereby shuts the bleed valve. In one embodiment, the device 50 or controller 65 “knows” a vehicle suspension component is extended beyond a proper sag level and a an electrically actuated valve (or other type of remote actuated valve) is opened to bleed air pressure from the air spring in a controlled manner until the proper predetermined sag level is reached, at which point the valve automatically closes and the shock opts itself out of sag mode. Alternatively, the user can switch the sag set up mode off upon reaching a proper sag setting. When in a normal riding mode, more pressure can be added to the air spring or pressure can be reduced from the air spring to accommodate different rider styles and or terrain 45. This auto sag feature can be achieved electronically as well, by having a position sensor in the shock, and the shock model data allowing the controller 65 to adjust spring preload (e.g. air pressure) appropriately for the given model (as determined by the controller 65 in a query). An electronically controlled pressure relief valve is utilized to bleed off air spring pressure until the sensor determines the shock is at its' proper sag. The pressure relief valve is then directed to close and proper sag level is achieved.


In one embodiment, the system 300 can be utilized by integrating certain data collection sensors to both assist in the initial setup of the vehicle and to provide hints on how to tweak the vehicle 100 suspension system beyond an initial setup. The sensors communicate with the controller 65. Data (e.g. model, specifications) corresponding to all possible suspension products that may interface with the controller 65 would be stored in the controller 65 so when one or another of those products is plugged in, or booted up if wirelessly connected, the controller 65 would know lengths, travels, external adjustment features etc. For each product connected to the controller 65, the controller 65 (or device 50) would then walk the user through a proper setup routine, starting with sag for example, using the user interface provided by device 50. The user would sit on the bike and the rider sag measurement for the fork and shock would be displayed on the device 50 for example. The controller 65 will know what product it is trying to get adjusted properly and will make pressure recommendations for the user to input to the shock or fork. The user then sits on the bike again and, in this iterative and interactive process, will arrive at initial sag setting for the fork and shock product being used.


In a more elaborate system, the controller 65 will “know” what pressure is in the fork and shock, and will make rebound recommendations based on those settings. In a simpler form, the controller 65 will ask the user to input their final sag attaining pressures and will then make rebound recommendations based on the product and pressures. The controller 65 will also make compression damping setting recommendations based on the product connected to the controller 65. The user then goes out and rides the vehicle. The controller 65 will transfer to data logging mode once the bike is being ridden or in a simpler form when the user puts the system into ride mode. The controller 65 will log and save bottom out events, average travel used, identify too quick or too slow rebound events, etc. If average travel is more than a specified amount, the controller 65 will make recommendations on settings to have the system respond better in the stroke. If the average travel used in less than a specified amount the controller 65 will make recommendations on settings to utilize more travel. Full travel events will be evaluated versus the average travel used data and make recommendations on how to reduce or increase the amount of full travel events. Computer (PC/laptop) software may be utilized so the data logged can be downloaded to a computer system for further evaluation.


A website, such as the FOX RACING SHOX website, can be utilized as a place for riders to go to check out settings other riders are using and why, and to provide a way to spend time in a community, such as a FOX RACING SHOX community. In one embodiment, the controller 65 will log ridden hours and will prompt the user to perform certain maintenance operations, and when data is downloaded to the computer system, such as a desktop/laptop machine, a link to the service procedure for the particular recommended service will pop up. The link will be to a video guild on how to perform the service, tools needed etc., if a user is at the max of a particular adjustment feature on the closed or open side, the controller 65 will make a recommendation to have a service provider, such as FOX RACING SHOX, re-valve their system to get that particular adjustment feature into the middle of its' range again, and will make recommendations to a service technician, such as a FOX RACING SHOX service tech, on what direction to make the valving changes, etc. A more elaborate system 300 can incorporate accelerometers, pressure sensors, etc.



FIGS. 4 through 22 illustrate templates for a program 325 executed on device 50, according to one embodiment. Program 325 may be implemented to assist a user in performing an initial setup of the vehicle 100 suspension. Program 325 is configured to run on a smartphone, tablet, iPod®, or other Internet enabled mobile device. Portions of program 325 may be supported and enabled for devices that include an image sensor 380 or video camera. In some embodiments, program 325 may be configured to be executed on a laptop or desktop computer. Program 325 may be installed on device 50 from an online repository containing applications compatible with device 50. For example, device 50 may be a smart phone such as Apple® iPhone and program 325 may be an application downloadable from the iTunes® store. Program 325 may be updated periodically via the Internet, may transmit saved settings to remote storage, and may download current suspension product information and physical characteristics. Product information, which may be used automatically in some calculations performed by program 325, may be stored in a database on device 50 or stored remotely on a location accessible through the device's network connection (e.g., wireless connection to the Internet).


In one embodiment, program 325 is used to manually setup front fork 80 and shock absorber 25 of vehicle 100. In some embodiments, vehicle 100 does not include sensors (5, 5b, 5c, etc.) for measuring the position of the vehicle suspension components. The vehicle suspension components may not include actuators, such as valve assembly 511, configured to adjust the damping rate remotely. In such embodiments, program 325 assists the user in manually adjusting the pressure in the air spring and the damping rate of the damping components in the shock absorbers. Furthermore, device 50 may be “dumb” in that device 50 does not communicate with a controller 65 to receive information about the operational characteristics of the vehicle suspension components.


If acquiring the program 325 for the first time, the user may connect to the online repository (e.g., iTunes) for downloading like programs 325 and either download the program 325 directly to device 50 or download the program 325 to a computer that is then synched to device 50 to transfer the program 325 to the device 50. Once the program 325 is loaded onto the device 50, the user can open the program 325 to begin the setup routine. Once the program 325 is loaded, the program displays a set of templates that allow the user to read instructions on how to setup the various components of the vehicle suspension, prompt the user for input such as the component IDs of the various suspension components or the user's weight with full riding gear, and display pictures or videos that show the user how to properly setup the vehicle suspension. The various screen shots of one embodiment of program 325 are described in more detail below.


As shown in FIG. 4, program 325, when executed by processor 310, is configured to display a graphical user interface (GUI) 400 that includes a plurality of templates such as the first screen shot 400a. GUI 400 includes a status bar at the top of the display that includes information such as a time, cellular connectivity information, and battery status. It will be appreciated that other types of information may be included in the status bar. Furthermore, in some embodiments, the status bar may be controlled by an operating system executed by device 50 and not directly configured by program 325. The first screen shot 400a also displays a logo and description of the program 325. The first screen shot 400a includes user interface elements such as button 402 and button 404. As described above, display 350 may comprise a touch sensitive LCD panel that enables a user to touch the screen proximate to buttons 402 and 404 to provide input to program 325. As shown in FIG. 4, a user is given the option to create a new setup routine by selecting button 402 or to load a previously saved setup routine by selecting button 404.


As shown in FIG. 5, when a user selects button 402 to create a new setup routine, program 325 displays a second screen shot 400b that includes a button 406 to go back to the first screen shot 400a. The second screen shot 400b includes information for a user that instructs the user that further information may be available from a source such as a vehicle suspension component supplier. The second screen shot 400b also includes a button 408 that, when selected, begins the setup routine.


As shown in FIG. 6, a third screen shot 400c shows a user how to locate product identification information on vehicle forks 80 and shocks 25. As shown, product labels may include labels that provide a component ID (i.e., a unique code that specifies the particular suspension component installed on the vehicle 100). In one embodiment, the component ID comprises a 4-digit alpha-numeric code that uniquely identifies each suspension component type. The labels may include bar codes or QR codes that can be scanned using an image sensor 380 included in device 50. For example, a user may use an image sensor 380 to capture an image of the bar code on each of the fork 80 and shock absorber 25. Program 325 may then decipher the bar codes to automatically retrieve the component ID for the various vehicle suspension components. Again, the third screen shot 400c includes button 406 to go to the previous screen (e.g., 400b) and includes a button 410 to proceed to the next screen (e.g., 400d).


As shown in FIG. 7, a fourth screen shot 400d enables a user to manually input component IDs for both the fork 80 and the shock 25 for vehicle 100. Again, if the vehicle suspension component labels include a bar code or QR code, then the fourth screen shot 400d may include user interface elements that enable a user to automatically scan the labels to retrieve the component IDs. However, as shown in FIG. 7, the fourth screen shot 400d includes a first user interface element 412 and a second user interface element 414 that enable a user to manually enter component IDs for both the front fork 80 and the shock absorber 25, respectively. Touching either the first user interface element 412 or the second user interface element 414 may cause a keyboard to be displayed that lets a user type in the component IDs read from the labels. The fourth screen shot 400d also includes a button 406 to go to the previous screen (e.g., 400c) and a button 410 to proceed to the next screen (e.g., 400e).


User input entered in the fourth screen shot 400d may control the order that subsequent screen shots are displayed while performing the setup routine. For example, if a user only enters the component ID for the front fork 80, then only those screen shots associated with proper setup of the front fork 80 will be displayed. Similarly, if a user only enters the component ID for the shock absorber 25, then only those screen shots associated with proper setup of the shock absorber 25 will be displayed.


The component ID enables program 325 to query a database to retrieve product information related to the specific vehicle suspension component. The product information may include, but is not limited to, product name/model, the available external adjustments available for the component, the length of travel of the component, a preferred sag setting for the component, the range of adjustment for each of the external adjustors available for the component, and physical characteristics of the component such as air spring piston area, air volume compression ratio, composite spring curve shape, upper tube outside diameter for a fork, and shock body outside diameter for a shock. Once a user enters a component ID into user interface elements 412 or 414, program 325 may check the entered component ID against the product information in the database and indicate whether a match was found. For example, program 325 may display an error message when a match is not found for the entered component ID. Program 325 may display text or a graphic next to the user interface elements 412 and 414 when a match is found that indicates to a user that product information associated with the component ID was located. For example, a thumbnail image of the component may be displayed next to the user interface element 412 or 414.


As shown in FIG. 8, a fifth screen shot 400e instructs a user to prepare the fork 80 and shock 25 for proper setup. The fifth screen shot 400e depicts how the fork compression damping adjusters and the fork rebound adjusters look on the product as well as how to set the adjusters at the beginning of the setup routine. The fifth screen shot 400e also includes a button 406 to go to the previous screen (e.g., 400d) and a button 410 to proceed to the next screen (e.g., 400f).


As shown in FIG. 9, a sixth screen shot 400f instructs a user to remove the air valve caps for the fork 80 and the shock absorber 25. In order to perform the setup routine, a user will need an air pump to properly set the air pressure in the fork 80 and shock absorber 25. The air pump may include an integrated air pressure gauge used to determine the current air pressure in the fork 80 or shock absorber 25. In some embodiments, the air pump may include an integrated pressure transducer that instructs the air pump how much pressure is in the fork 80 or the shock absorber 25. The user may set the air pump to pressurize the fork 80 or shock absorber 25 to a specific pressure and the air pump may automatically add air to the fork 80 or shock absorber 25 to the specific pressure. In some embodiments, the air pump may communicate directly with the device 50 such that the program 325 automatically configures the set points (i.e., suggested pressure) for pressurizing the fork 80 or shock absorber 25. The sixth screen shot 400f also includes a button 406 to go to the previous screen (e.g., 400e) and a button 410 to proceed to the next screen (e.g., 400g).



FIGS. 10 through 14 illustrate the fork adjustment specific screens displayed by program 325. As shown in FIG. 10, a seventh screen shot 400g enables a user to determine an initial pressure setting for the fork 80 depending on a fully-loaded weight of the user. The seventh screen shot 400g includes a first user interface element 416 that enables a user to enter the fully-loaded weight for the intended riding conditions. As shown, the first user interface element 416 may be a selector wheel that can be moved up or down to select the desired fully-loaded weight. In alternative embodiments, the first user interface element 416 may be similar to user interface elements 412 or 414 that enable a user to enter the weight using a keyboard. In yet other embodiments, device 50 may be in communication with a scale or other sensor that measures the fully-loaded weight of the user. For example, a user may be able to sit on a vehicle and a sensor, such as a strain gauge and wheatstone bridge, may be used to measure the fully-loaded weight of the user.


The seventh screen shot 400g includes a second interface element 418 that indicates a target pressure at which the air spring in the fork should be set and a third interface element 420 that lets a user toggle between imperial units and metric units. For example, as shown, imperial units (i.e., pounds and pounds per square inch) are displayed in user interface element 416 and 418. Although not shown, the user may be instructed in how to attach and use the shock pump with the fork 80 via a description or graphical or video depiction. The target pressure is derived via a calculation based on the fully-loaded weight of the rider and the physical parameters of the suspension component retrieved in the product information. For example, the air spring compression ratio, the air spring piston area, the negative spring length, the negative spring rate, and the top-out spring rate can be used to calculate a more exact starting pressure. For example, the program 325 may be configured to calculate a starting pressure corresponding to a particular sag setting (e.g., 25%). Given the retrieved product information, the program 325 can determine a starting pressure that would result in the shock absorber 25 being compressed to 25% under a load equal to the selected fully-loaded weight. In one embodiment, the target pressure is calculated dynamically based on the product information. In another embodiment, the target pressure is pre-calculated for each possible fully-loaded weight and stored in an array that may be accessed by program 325. The seventh screen shot 400g also includes a button 406 to go to the previous screen (e.g., 400f) and a button 410 to proceed to the next screen (e.g., 400h).



FIGS. 11A through 11D illustrate an eighth screen shot 400h that provides a graphical depiction of how to set an indicator member located on a tube of the fork 80 to indicate a position of the fork 80 when fully-loaded. In this embodiment, the indicator member comprises an o-ring, but it is intended that similar or equivalent functionality can be provided by other structures, as described herein. For example, other structures may include a plastic member that fits tightly over the shaft of the suspension component (i.e., fork 80 or shock absorber 25) and is movable relative thereto. In a first step, as graphically depicted in FIG. 11A, the user is instructed to remove the pump from the valve of the air spring of the fork 80. In a second step, as graphically depicted in FIG. 11B, the user is instructed to get on the vehicle in a riding position. The user should be equipped with the proper riding gear to approximately match the fully-loaded weight entered by the user in the seventh screen shot 400g. In a third step, as graphically depicted in FIG. 11C, the user is instructed to slide the o-ring to the seal on the top of the lower tube on the fork 80. In a fourth step, as graphically depicted in FIG. 11D, the user is instructed to dismount the vehicle 100. As the fork 80 expands, the o-ring remains in position on the upper tube indicating an amount of travel between the fork 80 as compressed by the fully-loaded weight and the fork 80 as compressed only by the weight of the vehicle 100. It will be appreciated that the user should take care when dismounting the vehicle 100 to avoid further compressing the fork 80 past the steady state position based on the fully-loaded weight of the rider and intended riding gear. The eighth screen shot 400h also includes a button 406 to go to the previous screen (e.g., 400g) and a button 410 to proceed to the next screen (e.g., 400i).


It is to be noted however, that the invention is not limited to the use of an o-ring as the indicator member. In other embodiments, the indicator member can be any suitable e.g. a full or part ring of plastics material. When in the form of a part-ring, the user could clip the indicator member to the shaft for the purposes of sag adjustment and then remove the part-ring when finished. In other embodiments, a full or part-ring is fitted to the suspension component at point of manufacture. The indicator member can be any colour or combination of colours that enables it to be identified by an object recognition algorithm when mounted on the suspension component.


As shown in FIG. 12A, a ninth screen shot 400i shows a graphical overlay to be used in conjunction with a camera mode of the device 50. The graphical overlay is a depiction of the air spring leg of the front fork 80 and is selected from one or more graphical overlays corresponding to the various vehicle suspension components. The particular graphical overlay displayed in the ninth screen shot 400i is selected based on the front fork component ID entered on the fourth screen shot 400d. The graphical overlay includes portions 422 and 424 that correspond to the approximate shape of the upper portion of the lower tube and the cap for the upper tube, respectively. The graphical overlay also includes a partially transparent portion 426 that corresponds to the shaft for the upper tube of the air spring leg of the fork 80.


As shown in FIG. 12B, when program 325 displays the ninth screen shot 400i, program 325 may activate a camera mode of device 50. In the camera mode, program 325 may display an image captured using an image sensor 380 under the graphical overlay of the front fork. The image may be updated periodically such as in a video mode where a new image is captured every 33 ms (i.e., 30 frames per second). Periodically updating the image in a video mode enables the user to align the scene with the fork 80 with the graphical overlay portions 422, 424. The user moves the device 50 such that the seal 428 on the top edge of the lower tube of the fork 80 is approximately aligned with the portion 422 of the graphical overlay corresponding to the upper portion of the lower tube. The user also moves the device 50 such that the scale of the lower tube is approximately equal to a scale of the graphical overlay such as by matching the captured diameter of the lower tube of the fork to the width of the portion 422 of the graphical overlay. When the device 50 is in the correct relative position to capture an image of the fork 80 at the correct scale and orientation, the user may select the scan user interface element 432 to capture an image of the fork 80. In one embodiment, because the diameter of the lower tube is known from the product information specified by the component ID, the program 325 can measure the width of the lower tube, in pixels, of the fork captured by the image sensor 380 and compare that to the distance, in pixels, between the seal 428 of the lower tube and the position of the o-ring 430. The ratio of the distance to width, in pixels, may be multiplied by the known diameter of the lower tube to determine an amount of compression of the fork 80 based on the fully-loaded weight of the rider (i.e., amount of sag). In some embodiments, the fork 80 or shock 25 may include markings, such as index marks or dots, on the component that enable program 325 to register a scale of the component. For example, the markings may be of high contrast with the surface of the shock component and equally spaced such that object recognition is easily performed. In another embodiment, the program 325 may assume that the user has captured the image of the fork 80 at the same scale as the graphical overlay. Therefore, program 325 may only measure the position of the o-ring 430 in the image relative to pixels corresponding to the edge of the portion 422 of the graphical overlay. The program 325 may implement an image processing algorithm, described more fully below in connection with FIGS. 24A-26B, to determine the location of the o-ring 430 in relation to the graphical overlay.


In alternative embodiments, the graphical overlay may include indicators that provide the user with feedback as to whether the proper sag setting has been achieved. For example, the graphical overlay may include a line or other indicator that indicates the approximate location of the o-ring corresponding to a preferred sag setting (e.g., 1.5 inches of travel for a fork with 6 inches of total travel corresponding to 25% sag). In some embodiments, the graphical overlay may also include gradient indicators in combination with pressure delta recommendations indicating whether the user should refine the pressure in the air spring. For example, if the sag setting is off by more than 5%, the color gradient may change from green to yellow indicating that further adjustment of the pressure in the air spring is appropriate. If the sag setting is off by 20%, then the color gradient may change from yellow to red indicating that further adjustment of the pressure in the air spring is necessary. The ninth screen shot 400i also includes a button 406 to go to the previous screen (e.g., 400h) and, although not shown explicitly, a button 410 to proceed to the next screen (e.g., 400j). The scan user interface button 432, once pressed, may be replaced with button 410. In other embodiments, the scan user interface button 432 as well as buttons 406 and 410 may be displayed simultaneously.


As shown in FIG. 13, a tenth screen shot 400j instructs a user to make an adjustment to the air pressure in the air spring of the fork 80. The tenth screen shot 400j includes a user interface element 434 that specifies the new adjusted pressure for the air spring based on the measured o-ring 430 position. The tenth screen shot 400j also includes a button 406 to go to the previous screen (e.g., 400i) and a button 410 to proceed to the next screen (e.g., 400k).


As shown in FIG. 14, an eleventh screen shot 400k instructs a user to make an adjustment to the rebound damping setting for the fork 80. In one embodiment, the rebound damping setting is calculated based on the adjusted air pressure setting of the air spring of the fork 80. In one embodiment, the fork 80 includes an external adjuster for adjusting the amount of rebound damping in the damping leg of the fork 80. The rebound damping is adjusted by turning the knob counter-clockwise to increase the damping, thereby slowing how quickly the fork 80 extends after being compressed by terrain. The eleventh screen shot 400k includes a user interface element 436 that specifies the setting for the external rebound adjuster. For example, as shown, a user may turn the external rebound adjuster fully clockwise, corresponding to the minimum amount of rebound damping. Then, the user turns the external rebound adjuster clockwise by the specified number of clicks, each click corresponding to a discrete adjustment point. In alternative embodiments, fork 80 may include other means for adjusting the amount of damping implemented in the damping leg of the fork 80. For example, the rebound damping may be adjusted by a level, a dial, a cam, an electrically or pneumatically controlled actuator, or any other technically feasible mechanism for adjusting the rebound damping. In the alternative embodiments, the instructions and user interface element 436 may reflect instructions and settings for these alternative mechanisms. In some embodiments, the eleventh screen shot 400k instructs a user to make an adjustment to the compression damping setting for the fork 80. The compression damping setting may also be calculated based on the adjusted air pressure setting of the air spring of the fork 80.


Once the user has adjusted the rebound damping to the correct setting, the fork 80 is properly setup. As long as the user has entered a valid component ID for a shock absorber 25 into user interface element 414 of FIG. 7, the setup routine continues by displaying the set of templates associated with the setup of a shock absorber 25. The eleventh screen shot 400k includes a button 406 to go to the previous screen (e.g., 400j) and a button 410 to proceed to the next screen (e.g., 400l).



FIGS. 15 through 19 illustrate screen shots 400l through 400p displayed to assist the user in performing proper setup of a shock absorber 25. Screen shots 400l through 400p are similar to screen shots 400g through 400k of FIGS. 10 through 14, except displaying information and graphical overlays related to the shock absorber 25 identified by the component ID entered into user interface element 414 rather than the fork 80 identified by the component ID entered into user interface element 412. As shown, each screen shot 400l through 400p includes a button 406 to go to the previous screen and a button 410 to proceed to the next screen. Some of the graphical depictions may be changed to show the location of controls or adjusters associated with shock absorber 25 instead of fork 80. Once setup of shock absorber 25 is complete, a user may select button 410 of sixteenth screen shot 400p to proceed to the next screen (e.g., 400q).


As shown in FIG. 20, a seventeenth screen shot 400q displays a summary of the setup parameters to the user. Setup parameters for the fork 80 include a target air pressure for the air spring of the fork 80 and a rebound damping setting for the damper of the fork 80. Setup parameters for the shock absorber 25 include a target air pressure for the air spring of the shock absorber 25 and a rebound damping setting for the damper of the shock absorber 25. The seventeenth screen shot 400q includes a first button 438 that enables a user to save the setup parameters associated with the just completed setup routine. An user interface element 440 enables a user to type a name for the saved setup routine. If the user so chooses, a button 442 enables the user to discard the setup parameters and return to the home screen 400a. The seventeenth screen shot 400q also includes button 406 to go back to the previous screen (e.g., 400p).


Returning to the first screen shot 400a of FIG. 4, instead of performing a new setup routine by selecting button 402, a user may simply refer to setup parameters stored in saved setup routines by selecting button 404 and proceeding to an eighteenth screen shot 400r. As shown in FIG. 21, an eighteenth screen shot 400r displays a list of saved setup routines. The eighteenth screen shot 400r includes a button 444 that enables a user to edit each of the saved setup routines. In one embodiment, selecting the button 444 lets a user delete any of the saved setup routines. In another embodiment, selecting the button 44 lets a user change any of the saved parameters in the setup routine. For example, after performing a setup routine and riding the vehicle for a period of time, a user may determine that they prefer a stiffer suspension and, therefore, may edit the parameters in the setup routine to indicate higher air pressures for the air spring of the fork 80 or the air spring of the shock absorber 25, or both. The eighteenth screen shot 400r also includes a button 406 to go back to the previous screen (e.g., 400a).


Selecting any of the saved setup routines listed in the eighteenth screen shot 400r causes program 325 to display the nineteenth screen shot 400s, as shown in FIG. 22. The nineteenth screen shot 400s displays the setup parameters for the selected setup routine. The nineteenth screen shot 400s also includes a button 406 to go back to the previous screen (e.g., 400r).


The image overlay view of the ninth screen shot 400i or the fourteenth screen shot 400n helps the user measure and properly set a vehicle suspensions sag. The view comprises a graphical overlay on top of a live view as seen from an image sensor 380. This technique for viewing a live image with a graphical overlay may sometimes be referred to as a heads-up display or HUD. The user may move and orient the device 50 via 6 degrees of freedom (i.e., translation in x, y, and z coordinates as well as rotation around each of the three axes). Thus, the user can line up the live view of the suspension component with the static overlay of the graphical representation of the component.


Various methods exist to align and orient the live view with the graphical overlay. In one embodiment, the user may align two or more indicators in the graphical overlay with corresponding points on the suspension component. For example, the user may align one indicator with a left edge of the lower tube of the fork 80 in the view and a second indicator with a right edge of the lower tube of the fork 80 in the view. Aligning these two indicators with the corresponding opposite edges of the lower tube will ensure that the live view is correctly scaled to the graphical overlay. Aligning the top edge of the lower tube (i.e., a seal) with a third indicator will then ensure that the graphical overlay is correctly positioned. The size and scale of the graphical overlay corresponds to the physical dimensions of the suspension component.



FIGS. 23A-F illustrate one technique for aligning a live view 710 captured by an image sensor 380 with a graphical overlay 720 shown on the display 350 of the device 50, according to one embodiment. A live view 710 captured from the image sensor 380 is shown in FIG. 23A. The live view 710 includes an image of a shock absorber captured by the image sensor 380. FIG. 23B shows a graphical overlay 720 displayed on the display 350 and superimposed on top of the live view 710 captured by the image sensor 380. The graphical overlay 720 includes three indicators 722, 724, and 726 (e.g., lines) used to align and orient the live view 710 of the shock absorber with the device 50. FIG. 23C shows a composite image 730 of the live view 710 aligned with the graphical overlay 720. FIG. 23D shows another composite image 740 of the live view 710 aligned with a second graphical overlay having two indicators; a first indicator 742 aligned with the sealed end of the shaft of the shock absorber and a second indicator 744 aligned with a bushing end of the shaft of the shock absorber. FIG. 23E shows a third graphical overlay 750 that includes graphical representations for one or more portions of the shock absorber. In the example shown in FIG. 23E, a portion of the sealed end of the main cylinder body of the shock absorber is shown along with a bushing at the other end of the shaft. FIG. 23F shows yet another composite image 760 of the live view 710 aligned with a third graphical overlay 750.


Once the live image 710 has been correctly aligned with the graphical overlay 720, the program 325 analyzes one or more frames 800 captured from the image sensor 380 to recognize and determine an o-ring 430 position on the shaft of the suspension component. FIGS. 24A and 24B illustrate an object detection algorithm for determining the location of o-ring 430 relative to the suspension component, according to one embodiment. As shown in FIG. 24A, frame 800 comprises a digital image of the suspension component captured by the image sensor 380. The format of frame 800 may be in any technically feasible digital image format (e.g., a bitmap or JPEG (Joint Pictures Expert Group)), that stores digital image data for a plurality of pixels. For example, for bitmaps at 24 bpp (bits per pixel) in an RGBA format, each pixel is associated with 4 channels of color data (i.e., red, green, blue, and alpha) at 8 bits per channel (i.e., each color is stored as an intensity value that ranges between 0-255). Program 325 analyzes each of the one or more frames 800 to determine a location of the o-ring 430 on the shaft.


In one embodiment, for each frame 800, program 325 analyzes a portion 810 of the frame 800 that, if the live image 510 was properly aligned with device 50, corresponds to the shaft of the suspension component. Program 325 crops the frame 800 so that the analysis is only performed on the smaller portion 810 comprising a subset of pixels of frame 800, which should correspond to pixels associated with the surface of the shaft and a portion of the o-ring 430. Program 325 also converts the portion 810 from a color format to a grayscale format (i.e., 8 bits per pixel that represents an intensity level between white (255) and black (0)). Typically, most devices with integrated image sensors include a CMOS sensor or CCD sensor with an integrated color filter array that captures color images. However, the object detection algorithm implemented by the program 325 does not detect objects, or edges of objects, based on color. Therefore, converting the image data to grayscale may reduce the complexity of calculations during image processing.


It will be appreciated that the shaft of the suspension components is typically a tube of machined aluminum or some other type of curved surface of various metallic materials. The curved surface of the shaft results in specular highlights reflected off the surface such that the intensity values associated with the surface of the shaft as captured by the image sensor 380 have a wide range in values. However, specular reflection depends largely on the orientation of the surface from the light source. In other words, across the width of the shaft, the intensity of the pixel may vary wildly across the shaft, but along the length of the shaft (i.e., parallel to the longitudinal axis), the intensity of the pixels should be relatively similar except at discontinuities in the surface such as located at the edges of the o-ring 430. Thus, in one embodiment, program 325 creates slices 820 of the portion 810 of the frame 800 and analyzes each slice 820 independently, as described below. In one embodiment, each slice 820 is equivalent to one row of pixels from the portion 810 of the frame 800.


In one embodiment, for each slice 820, program 325 normalizes the intensity levels for each of the pixels included in the slice 820. Again, for each pixel represented as a grayscale 8-bit intensity value, 0 represents black and 255 represents white with shades of gray represented between 0 and 255. Normalizing the intensity value for the pixels increases the contrast of that particular slice 820. For example, if the range of intensity values for all pixels in the slice 820 is between 53 and 112, normalizing the intensity values of the pixels comprises setting each pixel's intensity value to between 0 and 255 based on the relative position of the old intensity value to the range between 53 and 112. After the first normalizing step is complete, program 325 clips the intensity values for all pixels in the normalized slice 820 above a threshold intensity level to be equal to the threshold intensity level. For example, any pixels having an intensity value above 50 are clipped such that all pixels have a maximum intensity value of 50. The resulting clipped slice 820 includes black pixels and pixels at various dark shades of grey. Program 325 then normalizes the intensity levels again, setting all pixels having an intensity value of 50 to equal 255 and the intensity levels for all other pixels between 0 and 254, where at least one pixel (i.e., the pixels in the original, unprocessed slice 820 with the lowest intensity value) has an intensity level of 0 (i.e., fully black).


Program 325 then combines the normalized slices 820 to form a high contrast image that is then filtered to generate a filtered image 850, as shown in FIG. 24B, of the portion 810 of the frame 800. The normalized slices 820 are combined into a new image and filtered to remove stray pixels and other noise that may be captured by the image sensor 380. For example, multiple lights and/or shadows may create low intensity pixels at locations on the surface of the shaft that are not at the location of the o-ring 430. As shown in FIG. 24B, the resulting filtered image 850 includes a large area of white (high intensity) that corresponds to the surface of the shaft of the suspension component as well as a plurality of black pixels that should correspond to the edges of the o-ring 430. Program 325 analyzes the filtered image 850 to find the edges for any objects in the filtered image 850. At least some of these edges should correspond to the edges seen at the perimeter of the o-ring 430. Program 325 then analyzes the detected edges to find all substantially vertical lines formed by the edges and selects the median vertical line position as the likely location of the o-ring 430.


The above described technique for finding the likely location of the o-ring 430 includes a number of processing steps that may take time in some simple devices 50. In some embodiments, processing may be reduced by relying on a simpler technique that doesn't attempt to filter out noise and irregularities in the captured portion 810 of the frame 800. Although not as reliable as the technique described above, this alternative technique is less computationally intensive. In an alternative embodiment, program 325 sums the intensity values for pixels in each column of pixels for the portion 810 of the original captured frame 800 to generate a single row of intensity sums for each column. The column of pixels associated with the lowest total intensity sum is then selected as the likely location of the o-ring 430. In other words, the column of pixels in portion 810 having the lowest average intensity value is selected as the likely location of the o-ring 430.



FIGS. 25A and 25B set forth flow diagrams of method steps for assisting a user in performing a setup routine, according to one embodiment. Although the method steps are described in conjunction with the systems of FIGS. 1-24B, persons of ordinary skill in the art will understand that any system configured to perform the method steps, in any order, is within the scope of the present invention.


As shown, a method 900 begins at step 902, where processor 310 executes program 325 on device 50. Program 325 displays a GUI 400 on display 350. At step 904, program 325 prompts a user to enter one or more component IDs that identify the suspension components installed on the vehicle 100. Component IDs may be typed into a user interface element in GUI 400 or scanned in automatically using an image sensor 380. Program 325 may check a database, stored locally or remotely, to determine whether the component IDs match a particular suspension product stored in the database. Program 325 may then retrieve product information associated with the suspension product specified by the component IDs. At step 906, program 325 prompts a user to set external adjusters for the air spring and rebound settings of the suspension component, as applicable. For example, program 325 may display instructions as text in a GUI 400, as shown in screen shot 400e


At step 908, program 325 prompts a user to enter a fully-loaded riding weight. In one embodiment, program 325 displays user interface elements as part of GUI 400 that enable a user to enter a fully-loaded riding weight, as shown in screen shots 400g and 400l. In another embodiment, program 325 may automatically read a fully-loaded riding weight by querying a load sensor on vehicle 100 when the user indicates that the vehicle has been fully-loaded. At step 910, program 325 prompts a user to set a pressure of the air spring in the suspension component based on the fully-loaded riding weight. In one embodiment, program 325 calculates a target air pressure for the air spring based on the fully-loaded riding weight entered in step 908 and one or more physical characteristic values associated with the suspension component that are retrieved from a database based on the component ID. Program 325 may display the target air pressure in a user interface element of GUI 400, as shown in screen shots 400g and 400l. At step 912, program 325 prompts a user to sit on the vehicle 100 and adjust an o-ring 430 to mark a compression level of the suspension component. In one embodiment, program 325 displays instructions through a series of textual and graphical elements in GUI 400, as shown in screen shots 400h and 400m. Once the o-ring 430 is adjusted, the user may dismount the vehicle 100 such that the o-ring remains at a location on the shaft of the suspension component and indicates the amount of compression of the suspension component when compressed by the fully-loaded riding weight.


At step 914, program 325 captures a digital image of the suspension component in an unloaded state (e.g., fully extended). A user may use an image sensor 380 to capture an image of the suspension component that is properly aligned and oriented relative to the device 50. In one embodiment, program 325 displays a graphical overlay on top of a live view captured by the image sensor 380 on display 350, as shown in screen shots 400i and 400n. At step 916, program 325 analyzes the digital image to determine a location of the o-ring 430. In one embodiment, program 325 analyzes the digital image using an object detection algorithm described below in conjunction with FIGS. 26A and 26B.


At step 918, program 325 prompts the user to adjust the pressure of the air spring based on the detected o-ring 430 location. At step 920, program 325 prompts the user to adjust the rebound damping setting to a suggested rebound setting. The rebound damping setting is calculated based on the adjusted pressure of the air spring. In one embodiment, program 325 may also prompt the user to adjust the compression damping setting to a suggested compression setting based on the adjusted pressure of the air spring. At step 922, program 325 prompts the user to save the recommended setup parameters generated by the setup routine. After the user is allowed to save the setup parameters, method 900 terminates.



FIGS. 26A and 26B set forth flow diagrams of method steps for an object detection algorithm implemented by program 325, according to one embodiment. Although the method steps are described in conjunction with the systems of FIGS. 1-24B, persons of ordinary skill in the art will understand that any system configured to perform the method steps, in any order, is within the scope of the present invention.


As shown, a method 1000 begins at step 1002, where program 325 receives a portion 810 of a digital image 800 to be analyzed. In one embodiment, program 325 crops an image captured with image sensor 380 to generate a cropped image that should correspond to an image of the shaft of the suspension component and an o-ring 430. The extents of the portion 810 may be determined based on product information retrieved from the database using the component ID and specified in conjunction with the graphical overlay for the suspension component. At step 1004, program 325 divides the portion 810 of the digital image into a plurality of slices 820. In one embodiment, each slice 820 represents a row of pixels from the portion 810 of the digital image 800.


For each slice, at step 1006, program 325 normalizes the intensity value associated with each pixel of the slice 820 during a first pass. At step 1008, program 325 clips the intensity value for any pixels having an intensity value above a threshold value. At step 1010, program 325 normalizes the intensity value associated with each pixel in the slice 820 during a second pass. At step 1012, program 325 determines whether more slices 820 need to be processed. If more slices 820 need to be processed, then method 1000 repeats steps 1006, 1008, and 1010 for the next slice 820. If all the slices 820 in the portion 810 of the digital image 800 have been processed, then, at step 1014, program 325 generates a processed image by combining the plurality of normalized slices 820 into a composite image corresponding to portion 810.


In one embodiment, at step 1016, program 325 filters the processed image. For example, program 325 may implement any technically feasible filtering algorithm to remove excess noise from the processed image such as by adjusting a pixels intensity value based on the intensity values of two or more proximate pixels. At step 1018, program 325 processes the filtered image using an edge detection algorithm to find one or more substantially vertical lines in the processed image, which may be any technically feasible edge detection algorithm commonly known to those of skill in the art. Program 325 uses the edge detection algorithm to determine the locations of one or more substantially vertical edges in the portion 810. At step 1020, program 325 selects the location of the median substantially vertical line in the processed image as the location of the o-ring 430. Program 325 may sort the plurality of substantially vertical edges by location and then select the median location associated with a substantially vertical edge.


In sum, a user may utilize a mobile device equipped with an image sensor, such as a smart-phone, tablet computer, or laptop, to assist the user in proper setup of a vehicle suspension. The device executes an application that prompts the user for input and instructs the user to perform a series of steps for adjusting the suspension components. The application may not communicate with sensors on the vehicle, or the application may communicate with various sensors located on the vehicle to provide feedback to the device during the setup routine. In one embodiment, the system analyzes a digital image of the suspension component to provide feedback to the application about a physical characteristic of the component, such as the amount of sag of the vehicle suspension when loaded. The application may use this feedback information to assist the user in further adjustment to the vehicle suspension


While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. For example, aspects of the present invention may be implemented in hardware or software or in a combination of hardware and software. One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored. Such computer-readable storage media, when carrying computer-readable instructions that direct the functions of the present invention, are embodiments of the invention.


The disclosure has been described above with reference to specific embodiments. Persons of ordinary skill in the art, however, will understand that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A non-transitory computer-readable storage medium including instructions that, when executed by a processor, cause the processor to perform steps for enabling initial set up of a suspension component of a vehicle, the steps comprising: receive a weight value that indicates a load to be carried by the vehicle;determine a target pressure for an air spring of the suspension component based on the weight value;measure a loaded position of the suspension component;determine an adjustment to the suspension component based on the loaded position and the target pressure;measure the loaded position of the suspension component by using the image sensor to capture a digital image of the suspension component in the loaded position;analyzing the digital image using a computer-implemented object recognition process to determine a location of an indicator member, such as an o-ring, on the suspension component andwherein said computer-implemented object recognition process further comprises instructions for performing the following steps: converting the portion of the digital image from a color format into a grayscale format before analyzing the portion to locate said indicator member.
  • 2. The non-transitory computer-readable storage medium of claim 1 wherein said computer-implemented object recognition process comprises instructions for performing the following steps: cropping the digital image to generate a portion of the digital image, wherein the portion of the digital image comprises a plurality of pixels associated with a shaft of the suspension component and the indicator member;analyzing the portion of the digital image to determine a location of the indicator member on the suspension component; andproviding an output indicating the loaded position of the suspension component based on the location of the indicator member.
  • 3. The non-transitory computer-readable storage medium of claim 2 wherein said computer-implemented object recognition process further comprises instructions for performing the following steps: dividing the portion into a plurality of slices, wherein each slice comprises a row of pixels of the portion of the digital image, and each pixel is associated with an intensity value;for each slice in the plurality of slices, normalizing, in a first pass, the intensity value associated with each pixel in the slice, clipping the intensity value for any pixels having intensity values above a threshold value, and normalizing, in a second pass, the intensity value associated with each pixel in the slice;generating a processed image by combining the plurality of slices that have been normalized in the first pass, clipped, and normalized in the second pass;filtering the processed image;performing an edge detection algorithm to find one or more substantially vertical lines in the processed image; andselecting the location of the median substantially vertical line in the processed image as the location of the indicator member.
  • 4. The non-transitory computer-readable storage medium of claim 1 wherein said computer-implemented object recognition process further comprises instructions for performing the following steps: for each column of pixels in the portion of the digital image, summing the intensity values for each pixel in the column to generate a column intensity sum; andselecting the location of the column associated with the minimum column intensity sum as the location of the indicator member.
  • 5. The non-transitory computer-readable storage medium of claim 1 wherein the computer-executable instructions are configured to cause a user's device to perform the following steps: provide on a display, a graphical overlay associated with the suspension component, wherein the graphical overlay indicates an alignment and an orientation on a live picture viewed using the image sensor of the user's device; andcapturing the digital image when a user indicates that the live picture of the suspension component matches the alignment and the orientation indicated by the graphical overlay.
  • 6. The non-transitory computer-readable storage medium of claim 5 wherein the computer-executable instructions are configured to cause the user's device to perform the following steps: receive a component identifier associated with the suspension component; andquery a database to retrieve product information about the suspension component, such as at least one of an air spring compression ratio, an air spring piston area, a negative spring length, a negative spring rate, and a top-out spring rate.
  • 7. The non-transitory computer-readable storage medium of claim 6 wherein the target pressure is determined from a calculation based on the product information associated with the suspension component retrieved from the database.
  • 8. The non-transitory computer-readable storage medium of claim 5 wherein the computer-executable instructions further comprise instructions for causing the user's device to determine a rebound damping setting of the suspension component.
  • 9. The non-transitory computer-readable storage medium of claim 8 wherein the rebound damping setting is determined based on the adjustment determined for the suspension component.
  • 10. The non-transitory computer-readable storage medium of claim 9 wherein the adjustment to the suspension component comprises a modified target pressure of the air spring.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation application of and claims the benefit of U.S. patent application Ser. No. 16/147,200, filed Sep. 28, 2018, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 16/147,200 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 15/061,735, filed Mar. 4, 2016, now U.S. issued U.S. Pat. No. 10,086,670, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 15/061,735 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/446,179, filed Jul. 29, 2014, now U.S. issued U.S. Pat. No. 9,278,598, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 14/446,179 is a continuation application of and claims the benefit of patented U.S. patent application Ser. No. 13/612,679, filed Sep. 12, 2012, now U.S. issued U.S. Pat. No. 8,838,335, entitled, “METHODS AND APPARATUS FOR SUSPENSION SET UP”, by Galasso et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The application Ser. No. 13/612,679 claims benefit of U.S. Provisional Patent Application Ser. No. 61/533,712, filed Sep. 12, 2011, and U.S. Provisional Patent Application Ser. No. 61/624,895, filed Apr. 16, 2012, which is incorporated herein in its entirety by reference thereto. The application Ser. No. 13/612,679 is related to U.S. patent application Ser. No. 13/022,346, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/302,070, filed Feb. 5, 2010, and U.S. Provisional Patent Application 61/411,901, filed Nov. 9, 2010, and U.S. patent application Ser. No. 12/727,915, filed Mar. 19, 2010, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/161,552, filed Mar. 19, 2009, and U.S. Provisional Patent Application Ser. No. 61/161,620, filed Mar. 19, 2009, and U.S. patent application Ser. No. 12/773,671, filed May 4, 2010, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/175,422, filed May 4, 2009. Each of the aforementioned patent applications is herein incorporated by reference in its entirety.

US Referenced Citations (923)
Number Name Date Kind
435995 Dunlop Sep 1890 A
1078060 Newman Nov 1913 A
1307502 Martin Jun 1919 A
1313763 Thomas Aug 1919 A
1409849 Haeberlein Mar 1922 A
1468652 Storey et al. Sep 1923 A
1492731 Kerr May 1924 A
1560477 Kessler Nov 1925 A
1571788 Bramlette, Jr. Feb 1926 A
1575973 Coleman Mar 1926 A
1655786 Guerritore et al. Jan 1928 A
1923011 Moulton Aug 1933 A
1948600 Templeton Feb 1934 A
1970239 Klaas Aug 1934 A
2018312 Moulton Oct 1935 A
2098119 White Nov 1937 A
2115072 Hunt et al. Apr 1938 A
2122407 Chisholm Jul 1938 A
2186266 Henry Jan 1940 A
2259437 Dean Oct 1941 A
2354340 Utter Jul 1944 A
2363867 Isely Nov 1944 A
2492331 Spring Dec 1949 A
2518553 Kieber Aug 1950 A
2540525 Howarth et al. Feb 1951 A
2559633 Maurice et al. Jul 1951 A
2588520 Halgren et al. Mar 1952 A
2697600 Gregoire Dec 1954 A
2705119 Ingwer Mar 1955 A
2725076 Hansen et al. Nov 1955 A
2729308 Koski et al. Jan 1956 A
2778378 Presnell Jan 1957 A
2784962 Sherburne Mar 1957 A
2809722 Smith Oct 1957 A
2838140 Rasmusson et al. Jun 1958 A
2846028 Gunther Aug 1958 A
2853974 Hewitt Sep 1958 A
2879971 Demay Mar 1959 A
2883181 Hogan et al. Apr 1959 A
2897613 Davidson et al. Aug 1959 A
2924304 Patriquin Feb 1960 A
2941629 Etienne et al. Jun 1960 A
2967065 Schwendner Jan 1961 A
2973744 Hennells Mar 1961 A
2991804 Merkle Jul 1961 A
3003595 Patriquin et al. Oct 1961 A
3056598 Ransom et al. Oct 1962 A
3071394 John Jan 1963 A
3073586 Hartel et al. Jan 1963 A
3074709 Ellis et al. Jan 1963 A
3085530 Williamson Apr 1963 A
3087583 Bruns Apr 1963 A
3107753 Georgette et al. Oct 1963 A
3127958 Szostak Apr 1964 A
3175645 Schafer et al. Mar 1965 A
3202413 Colmerauer Aug 1965 A
3206153 Burke Sep 1965 A
3207270 Ellis Sep 1965 A
3216535 Schultze Nov 1965 A
3238850 Desmarchelier Mar 1966 A
3284076 Gibson Nov 1966 A
3286797 Leibfritz et al. Nov 1966 A
3405625 Carlson et al. Oct 1968 A
3419849 Anderson et al. Dec 1968 A
3420493 Kraft et al. Jan 1969 A
3447644 Duckett Jun 1969 A
3494606 Hanchen Feb 1970 A
3528700 Janu et al. Sep 1970 A
3537722 Moulton Nov 1970 A
3556137 Billeter et al. Jan 1971 A
3559027 Arsem Jan 1971 A
3560033 Barkus Feb 1971 A
3575442 Elliott et al. Apr 1971 A
3584331 Richard et al. Jun 1971 A
3603575 Arlasky et al. Sep 1971 A
3605960 Singer Sep 1971 A
3618972 Buhl Nov 1971 A
3621950 Lutz Nov 1971 A
3650033 Behne et al. Mar 1972 A
3701544 Stankovich Oct 1972 A
3714953 Solvang Feb 1973 A
3750856 Kenworthy et al. Aug 1973 A
3784228 Hoffmann et al. Jan 1974 A
3791408 Saitou et al. Feb 1974 A
3792644 Ferguson et al. Feb 1974 A
3795291 Naito et al. Mar 1974 A
3830482 Norris Aug 1974 A
3842753 Ross et al. Oct 1974 A
3861487 Gill Jan 1975 A
3903613 Bisberg Sep 1975 A
3941402 Yankowski et al. Mar 1976 A
3981204 Starbard et al. Sep 1976 A
3981479 Foster et al. Sep 1976 A
3986118 Madigan Oct 1976 A
3995883 Glaze Dec 1976 A
4022113 Blatt et al. May 1977 A
4032829 Schenavar et al. Jun 1977 A
4036335 Thompson et al. Jul 1977 A
4045008 Bauer Aug 1977 A
4072087 Mueller et al. Feb 1978 A
4103881 Simich Aug 1978 A
4106522 Manesse Aug 1978 A
4114735 Kato Sep 1978 A
4121610 Harms et al. Oct 1978 A
4131657 Ball et al. Dec 1978 A
4139186 Postema et al. Feb 1979 A
4153237 Supalla May 1979 A
4159106 Nyman et al. Jun 1979 A
4166612 Freitag et al. Sep 1979 A
4174098 Baker et al. Nov 1979 A
4183509 Nishikawa et al. Jan 1980 A
4236613 Van Der Lely Dec 1980 A
4287812 Iizumi Sep 1981 A
4291850 Sharples Sep 1981 A
4305566 Grawunde Dec 1981 A
4311302 Heyer et al. Jan 1982 A
4333668 Hendrickson et al. Jun 1982 A
4334711 Mazur et al. Jun 1982 A
4337850 Shimokura et al. Jul 1982 A
4348016 Milly Sep 1982 A
4351515 Yoshida Sep 1982 A
4366969 Benya et al. Jan 1983 A
4387781 Ezell et al. Jun 1983 A
4437548 Ashiba et al. Mar 1984 A
4465299 Stone et al. Aug 1984 A
4474363 Numazawa et al. Oct 1984 A
4491207 Boonchanta et al. Jan 1985 A
4500827 Merritt et al. Feb 1985 A
4502673 Clark et al. Mar 1985 A
4529180 Hill Jul 1985 A
4546959 Tanno Oct 1985 A
4548233 Wolfges Oct 1985 A
4550899 Holley Nov 1985 A
4570851 Cirillo et al. Feb 1986 A
4572317 Isono et al. Feb 1986 A
4616810 Richardson et al. Oct 1986 A
4620619 Emura et al. Nov 1986 A
4624346 Katz et al. Nov 1986 A
4630818 Saarinen Dec 1986 A
4634142 Woods et al. Jan 1987 A
4647068 Asami et al. Mar 1987 A
4655440 Eckert Apr 1987 A
4657280 Ohmori et al. Apr 1987 A
4659104 Tanaka et al. Apr 1987 A
4660689 Hayashi et al. Apr 1987 A
4662616 Hennells May 1987 A
4673194 Sugasawa Jun 1987 A
4696489 Fujishiro et al. Sep 1987 A
4709779 Fakehara Dec 1987 A
4723753 Torimoto et al. Feb 1988 A
4729459 Inagaki et al. Mar 1988 A
4732244 Verkuylen Mar 1988 A
4743000 Karnopp May 1988 A
4744444 Gillingham May 1988 A
4750735 Furgerson et al. Jun 1988 A
4765648 Wander et al. Aug 1988 A
4773671 Inagaki Sep 1988 A
4786034 Heess et al. Nov 1988 A
4802561 Knecht et al. Feb 1989 A
4806082 Schenk Feb 1989 A
4815575 Murty et al. Mar 1989 A
4821852 Yokoya Apr 1989 A
4826207 Yoshioka et al. May 1989 A
4830395 Foley May 1989 A
4836578 Soltis Jun 1989 A
4838306 Horn et al. Jun 1989 A
4838394 Lemme et al. Jun 1989 A
4838527 Holley Jun 1989 A
4846317 Hudgens Jul 1989 A
4858733 Noguchi et al. Aug 1989 A
4892328 Kurtzman et al. Jan 1990 A
4919166 Sims et al. Apr 1990 A
4936423 Karnopp Jun 1990 A
4936424 Costa Jun 1990 A
4938228 Righter Jul 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4958706 Richardson et al. Sep 1990 A
4972928 Sirven Nov 1990 A
4975849 Ema et al. Dec 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat et al. Jan 1991 A
5027303 Witte Jun 1991 A
5031455 Cline Jul 1991 A
5036934 Nishina et al. Aug 1991 A
5040381 Hazen Aug 1991 A
5044614 Rau Sep 1991 A
5060910 Iwata et al. Oct 1991 A
5060959 Davis et al. Oct 1991 A
5072812 Imaizumi Dec 1991 A
5074624 Stauble et al. Dec 1991 A
5076404 Gustafsson Dec 1991 A
5080392 Bazergui Jan 1992 A
5094325 Smith Mar 1992 A
5105918 Hagiwara et al. Apr 1992 A
5113980 Furrer et al. May 1992 A
5127634 Le Gourvellec Jul 1992 A
5152547 Davis Oct 1992 A
5161653 Hare Nov 1992 A
5161817 Daum et al. Nov 1992 A
5163742 Topfer et al. Nov 1992 A
5178242 Nakamura et al. Jan 1993 A
5186481 Turner Feb 1993 A
5203584 Butsuen et al. Apr 1993 A
5207774 Wolfe et al. May 1993 A
5230364 Leng et al. Jul 1993 A
5231583 Lizell Jul 1993 A
5236169 Johnsen et al. Aug 1993 A
5246247 Runkel Sep 1993 A
5248014 Ashiba Sep 1993 A
5259487 Petek et al. Nov 1993 A
5263559 Mettner Nov 1993 A
5265902 Lewis Nov 1993 A
5275086 Stallings, Jr. Jan 1994 A
5277283 Yamaoka et al. Jan 1994 A
5283733 Colley Feb 1994 A
5284330 Carlson et al. Feb 1994 A
5293971 Kanari Mar 1994 A
5295074 Williams Mar 1994 A
5295563 Benneii Mar 1994 A
5297045 Williams et al. Mar 1994 A
5301776 Beck Apr 1994 A
5307907 Nakamura et al. May 1994 A
5310203 Chen May 1994 A
5311709 Kobori et al. May 1994 A
5318066 Burgorf et al. Jun 1994 A
5328004 Fannin et al. Jul 1994 A
5346242 Karnopp Sep 1994 A
5347186 Konotchick et al. Sep 1994 A
5348112 Vaillancourt Sep 1994 A
5372223 Dekock et al. Dec 1994 A
5372224 Samonil et al. Dec 1994 A
5381952 Duprez Jan 1995 A
5390121 Wolfe Feb 1995 A
5390949 Naganathan et al. Feb 1995 A
5392885 Patzenhauer et al. Feb 1995 A
5392886 Drummond Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5398787 Woessner et al. Mar 1995 A
5413196 Forster May 1995 A
5445366 Shih et al. Aug 1995 A
5467280 Kimura Nov 1995 A
5475593 Townend Dec 1995 A
5480011 Nagai et al. Jan 1996 A
5485417 Wolf et al. Jan 1996 A
5487006 Kakizaki et al. Jan 1996 A
5503258 Clarke et al. Apr 1996 A
5517898 Kim et al. May 1996 A
5542150 Tu Aug 1996 A
5551674 Johnsen Sep 1996 A
5553836 Ericson Sep 1996 A
5558190 Chang Sep 1996 A
5566794 Wiard Oct 1996 A
5578877 Tiemann Nov 1996 A
5586637 Aidlin et al. Dec 1996 A
5588510 Wilke Dec 1996 A
5592401 Kramer Jan 1997 A
5597180 Ganzel et al. Jan 1997 A
5598337 Butsuen et al. Jan 1997 A
5601164 Ohsaki et al. Feb 1997 A
5611413 Feigel Mar 1997 A
5634563 Peng Jun 1997 A
5651433 Wirth et al. Jul 1997 A
5657840 Lizell Aug 1997 A
5687575 Keville et al. Nov 1997 A
5697477 Hiramoto et al. Dec 1997 A
5699885 Forster Dec 1997 A
5722645 Reitter Mar 1998 A
5735372 Hamilton et al. Apr 1998 A
5803443 Chang Sep 1998 A
5806159 Ohnishi et al. Sep 1998 A
5810128 Eriksson et al. Sep 1998 A
5810384 Iwasaki et al. Sep 1998 A
5813456 Milner et al. Sep 1998 A
5813731 Newman et al. Sep 1998 A
5816281 Mixon Oct 1998 A
5818132 Konotchick et al. Oct 1998 A
5826935 Defreitas et al. Oct 1998 A
5828843 Samuel et al. Oct 1998 A
5829733 Becker Nov 1998 A
5833036 Gillespie Nov 1998 A
5850352 Moezzi et al. Dec 1998 A
5850896 Tanaka Dec 1998 A
5853071 Robinson Dec 1998 A
5872418 Wischnewskiy Feb 1999 A
5884921 Katsuda et al. Mar 1999 A
5937975 Forster Aug 1999 A
5947238 Jolly et al. Sep 1999 A
5952823 Sprecher et al. Sep 1999 A
5954318 Kluhsman Sep 1999 A
5956951 O'Callaghan Sep 1999 A
5957252 Berthold Sep 1999 A
5971116 Franklin Oct 1999 A
5987368 Kamimae et al. Nov 1999 A
5988330 Morris Nov 1999 A
5988655 Sakai et al. Nov 1999 A
5992450 Parker et al. Nov 1999 A
5996745 Jones et al. Dec 1999 A
5996746 Turner et al. Dec 1999 A
5999868 Beno et al. Dec 1999 A
6000702 Streiter Dec 1999 A
6013007 Root et al. Jan 2000 A
6017047 Hoose Jan 2000 A
6029958 Larsson et al. Feb 2000 A
6035979 Forster Mar 2000 A
6050583 Bohn Apr 2000 A
6058340 Uchiyama et al. May 2000 A
6067490 Ichimaru et al. May 2000 A
6073536 Campbell Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6073736 Franklin Jun 2000 A
6092011 Hiramoto et al. Jul 2000 A
6092816 Sekine et al. Jul 2000 A
6105988 Turner et al. Aug 2000 A
6112868 Graham et al. Sep 2000 A
6120049 Gonzalez et al. Sep 2000 A
6131709 Jolly et al. Oct 2000 A
6135434 Marking Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6151930 Carlson Nov 2000 A
6152856 Studor et al. Nov 2000 A
6157103 Ohta et al. Dec 2000 A
6179098 Hayakawa et al. Jan 2001 B1
6196555 Gaibler Mar 2001 B1
6199669 Huang et al. Mar 2001 B1
6203026 Jones Mar 2001 B1
6213263 De Frenne Apr 2001 B1
6215217 Kurosawa et al. Apr 2001 B1
6217049 Becker Apr 2001 B1
6219045 Leahy et al. Apr 2001 B1
6244398 Girvin et al. Jun 2001 B1
6254067 Yih Jul 2001 B1
6279702 Koh Aug 2001 B1
6290034 Ichimaru Sep 2001 B1
6293530 Delorenzis et al. Sep 2001 B1
6296092 Marking et al. Oct 2001 B1
6311962 Marking Nov 2001 B1
6318525 Vignocchi et al. Nov 2001 B1
6321888 Reybrouck et al. Nov 2001 B1
6322468 Wing et al. Nov 2001 B1
6336648 Bohn Jan 2002 B1
6343807 Rathbun Feb 2002 B1
6359837 Tsukamoto et al. Mar 2002 B1
6360857 Fox et al. Mar 2002 B1
6371262 Katou et al. Apr 2002 B1
6371267 Kao et al. Apr 2002 B1
6378816 Pfister Apr 2002 B1
6378885 Ellsworth et al. Apr 2002 B1
6382370 Girvin May 2002 B1
6389341 Davis May 2002 B1
6390747 Commins May 2002 B1
6394238 Rogala May 2002 B1
6401883 Nyce et al. Jun 2002 B1
6412788 Ichimaru Jul 2002 B1
6415895 Marking et al. Jul 2002 B2
6418360 Spivey et al. Jul 2002 B1
6427812 Crawley et al. Aug 2002 B2
6434460 Uchino et al. Aug 2002 B1
6446771 Sintorn et al. Sep 2002 B1
6458060 Watterson et al. Oct 2002 B1
6460567 Hansen et al. Oct 2002 B1
6467593 Corradini et al. Oct 2002 B1
6474454 Matsumoto et al. Nov 2002 B2
6474753 Rieth et al. Nov 2002 B1
6501554 Hackney et al. Dec 2002 B1
6502837 Hamilton et al. Jan 2003 B1
6510929 Gordan et al. Jan 2003 B1
6520297 Lumpkin et al. Feb 2003 B1
6527093 Oliver et al. Mar 2003 B2
6592136 Becker et al. Jul 2003 B2
6604751 Fox Aug 2003 B2
6609686 Malizia Aug 2003 B2
6619615 Mayr et al. Sep 2003 B1
6623389 Campagnolo Sep 2003 B1
6648109 Farr et al. Nov 2003 B2
6651788 Wohlfarth Nov 2003 B1
6659240 Dernebo Dec 2003 B2
6659241 Sendrea Dec 2003 B2
6672687 Nishio Jan 2004 B2
6701234 Vogelsang et al. Mar 2004 B1
6722678 McAndrews Apr 2004 B2
6732033 LaPlante et al. May 2004 B2
6755113 Shih Jun 2004 B2
6782980 Nakadate Aug 2004 B2
6817454 Nezu et al. Nov 2004 B2
6837827 Lee et al. Jan 2005 B1
6840257 Dario et al. Jan 2005 B2
6853955 Burrell et al. Feb 2005 B1
6857625 Löser et al. Feb 2005 B2
6863291 Miyoshi Mar 2005 B2
6883650 Van Wonderen et al. Apr 2005 B2
6902513 McClure et al. Jun 2005 B1
6905203 Kremers et al. Jun 2005 B2
6920951 Song et al. Jul 2005 B2
6921351 Hickman et al. Jul 2005 B1
6923853 Kremers et al. Aug 2005 B2
6935157 Miller Aug 2005 B2
6952060 Goldner et al. Oct 2005 B2
6959906 Hoenig et al. Nov 2005 B2
6959921 Rose Nov 2005 B2
6966412 Braswell et al. Nov 2005 B2
6978871 Holiviers Dec 2005 B2
6978872 Turner Dec 2005 B2
6991076 McAndrews Jan 2006 B2
7025367 McKinnon et al. Apr 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7128192 Fox Oct 2006 B2
7128693 Brown et al. Oct 2006 B2
7135794 Kühnel Nov 2006 B2
7147207 Jordan et al. Dec 2006 B2
7163222 Becker et al. Jan 2007 B2
7166062 Watterson et al. Jan 2007 B1
7166064 Ashby et al. Jan 2007 B2
7204466 Hsieh Apr 2007 B2
7208845 Schaefer et al. Apr 2007 B2
7217224 Thomas May 2007 B2
7234574 Matsunaga et al. Jun 2007 B2
7234575 Anderfaas et al. Jun 2007 B2
7234680 Hull et al. Jun 2007 B2
7243763 Carlson Jul 2007 B2
7255210 Larsson et al. Aug 2007 B2
7270221 McAndrews Sep 2007 B2
7270222 Aymar et al. Sep 2007 B1
7287760 Quick et al. Oct 2007 B1
7289138 Foote et al. Oct 2007 B2
7292867 Werner et al. Nov 2007 B2
7293764 Fang Nov 2007 B2
7299112 LaPlante et al. Nov 2007 B2
7302961 Martin et al. Dec 2007 B2
7306206 Turner Dec 2007 B2
7316406 Kimura et al. Jan 2008 B2
7325660 Norgaard et al. Feb 2008 B2
7363129 Barnicle et al. Apr 2008 B1
7374028 Fox May 2008 B2
7397355 Tracy Jul 2008 B2
7413062 Vandewal Aug 2008 B2
7413063 Davis Aug 2008 B1
7415336 Burch et al. Aug 2008 B1
7422092 Hitchcock et al. Sep 2008 B2
7441638 Hanawa Oct 2008 B2
7469910 Münster et al. Dec 2008 B2
7484603 Fox Feb 2009 B2
7490705 Fox Feb 2009 B2
7513490 Robertson Apr 2009 B2
7523617 Colpitts et al. Apr 2009 B2
7558313 Feher Jul 2009 B2
7558574 Feher et al. Jul 2009 B2
7566290 Lee et al. Jul 2009 B2
7569952 Bono et al. Aug 2009 B1
7581743 Graney et al. Sep 2009 B2
7591352 Hanawa Sep 2009 B2
7600616 Anderfaas et al. Oct 2009 B2
7628259 Norgaard et al. Dec 2009 B2
7628414 Dobson et al. Dec 2009 B2
7631882 Hirao et al. Dec 2009 B2
7654369 Murray et al. Feb 2010 B2
7673936 Hsu et al. Mar 2010 B2
7684911 Seifert et al. Mar 2010 B2
7694785 Nakadate Apr 2010 B2
7694987 McAndrews Apr 2010 B2
7699753 Daikeler et al. Apr 2010 B2
7703585 Fox Apr 2010 B2
7722056 Inoue et al. May 2010 B2
7722069 Shirai May 2010 B2
7726042 Meschan Jun 2010 B2
7730906 Kleinert et al. Jun 2010 B2
7736272 Martens Jun 2010 B2
7764990 Martikka et al. Jul 2010 B2
7766794 Oliver et al. Aug 2010 B2
7770701 Davis Aug 2010 B1
7775128 Roessingh et al. Aug 2010 B2
7779974 Timoney et al. Aug 2010 B2
7795711 Sauciuc et al. Sep 2010 B2
7828125 Sekiya et al. Nov 2010 B2
7828126 Lun Nov 2010 B2
7837213 Colegrove et al. Nov 2010 B2
7840346 Huhtala et al. Nov 2010 B2
7841258 Komatsu et al. Nov 2010 B2
7845602 Young et al. Dec 2010 B1
7857325 Copsey et al. Dec 2010 B2
7872764 Higgins-Luthman et al. Jan 2011 B2
7874567 Ichida et al. Jan 2011 B2
7901292 Uhlir et al. Mar 2011 B1
7909348 Klieber et al. Mar 2011 B2
7927253 Dibenedei et al. Apr 2011 B2
7931132 Braun Apr 2011 B2
7931563 Shaw et al. Apr 2011 B2
7946163 Gartner May 2011 B2
7975814 Soederdahl Jul 2011 B2
8016349 Mouri et al. Sep 2011 B2
8021270 D'Eredita Sep 2011 B2
8042427 Kawakami et al. Oct 2011 B2
8056392 Ryan et al. Nov 2011 B2
8069964 Deferme et al. Dec 2011 B2
8087676 McIntyre Jan 2012 B2
8091910 Hara et al. Jan 2012 B2
8104591 Barefoot et al. Jan 2012 B2
8121757 Extance et al. Feb 2012 B2
8121785 Swisher et al. Feb 2012 B2
8127900 Inoue Mar 2012 B2
8136877 Walsh et al. Mar 2012 B2
8141438 Roessingh et al. Mar 2012 B2
8151952 Lenz et al. Apr 2012 B2
8157629 Yanke et al. Apr 2012 B2
8191964 Hsu et al. Jun 2012 B2
8201476 Miyama Jun 2012 B2
8210106 Tai et al. Jul 2012 B2
8210330 Vandewal Jul 2012 B2
8246065 Kodama et al. Aug 2012 B1
8256587 Bakke et al. Sep 2012 B2
8256732 Young et al. Sep 2012 B1
8262058 Kot Sep 2012 B2
8262062 Kamo et al. Sep 2012 B2
8262100 Thomas Sep 2012 B2
8265825 Kajino et al. Sep 2012 B2
8285447 Bennett et al. Oct 2012 B2
8286982 Plantet et al. Oct 2012 B2
8291889 Shafer et al. Oct 2012 B2
8292274 Adoline et al. Oct 2012 B2
8307965 Föster et al. Nov 2012 B2
8308124 Hsu Nov 2012 B2
8317261 Walsh et al. Nov 2012 B2
8322497 Marjoram et al. Dec 2012 B2
8328454 McAndrews et al. Dec 2012 B2
8336683 McAndrews et al. Dec 2012 B2
8364389 Dorogusker et al. Jan 2013 B2
8393446 Haugen Mar 2013 B2
8413773 Anderfaas et al. Apr 2013 B2
8423244 Proemm et al. Apr 2013 B2
8430770 Dugan et al. Apr 2013 B2
8458080 Shirai Jun 2013 B2
8459619 Frinh et al. Jun 2013 B2
8480064 Talavasek Jul 2013 B2
8495947 Hata Jul 2013 B2
8550223 Cox et al. Oct 2013 B2
8550551 Shirai Oct 2013 B2
8556048 Maeda et al. Oct 2013 B2
8556049 Jee Oct 2013 B2
8596663 Shirai et al. Dec 2013 B2
8616351 Roessle et al. Dec 2013 B2
8622180 Wootten et al. Jan 2014 B2
8627932 Marking Jan 2014 B2
8641073 Lee et al. Feb 2014 B2
8651251 Preukschat et al. Feb 2014 B2
8655548 Ichida et al. Feb 2014 B2
8684367 Haugen Apr 2014 B2
8727947 Tagliabue May 2014 B2
8744699 Yamaguchi et al. Jun 2014 B2
8752682 Park et al. Jun 2014 B2
8763770 Marking Jul 2014 B2
8770357 Sims et al. Jul 2014 B2
8781680 Ichida et al. Jul 2014 B2
8781690 Hara et al. Jul 2014 B2
8814109 Laird et al. Aug 2014 B2
8833786 Camp et al. Sep 2014 B2
8838335 Bass et al. Sep 2014 B2
8845496 Arrasvuori et al. Sep 2014 B2
8857580 Marking Oct 2014 B2
8868253 Hashimoto et al. Oct 2014 B2
8888115 Chubbuck et al. Nov 2014 B2
8935036 Christensen et al. Jan 2015 B1
8936139 Galasso et al. Jan 2015 B2
8950771 Felsl et al. Feb 2015 B2
8955653 Marking Feb 2015 B2
8967343 Battlogg et al. Mar 2015 B2
8985594 Yabumoto Mar 2015 B2
8991571 Murakami Mar 2015 B2
9033122 Ericksen et al. May 2015 B2
9038791 Marking May 2015 B2
9047778 Cazanas et al. Jun 2015 B1
9057416 Talavasek Jun 2015 B2
9073592 Hsu Jul 2015 B2
9103400 Becker Aug 2015 B2
9108098 Galasso et al. Aug 2015 B2
9120362 Marking Sep 2015 B2
9126647 Kuo Sep 2015 B2
9140325 Cox et al. Sep 2015 B2
9157523 Miki et al. Oct 2015 B2
9186949 Galasso et al. Nov 2015 B2
9194456 Laird et al. Nov 2015 B2
9199690 Watarai Dec 2015 B2
9229712 Takamoto et al. Jan 2016 B2
9239090 Marking et al. Jan 2016 B2
9278598 Galasso et al. Mar 2016 B2
9303712 Cox Apr 2016 B2
9353818 Marking May 2016 B2
9366307 Marking Jun 2016 B2
9415659 Kikuchi et al. Aug 2016 B2
9422018 Pelot et al. Aug 2016 B2
9422025 Pezzi et al. Aug 2016 B2
9452654 Ericksen et al. Sep 2016 B2
9523406 Galasso et al. Dec 2016 B2
9528565 Marking Dec 2016 B2
9550405 Marking et al. Jan 2017 B2
9556925 Marking Jan 2017 B2
9616728 Marking Apr 2017 B2
9650094 Laird et al. May 2017 B2
9663181 Ericksen et al. May 2017 B2
9682604 Cox et al. Jun 2017 B2
9784333 Marking Oct 2017 B2
9810282 Roessle et al. Nov 2017 B2
9975598 Bender et al. May 2018 B2
10029172 Galasso et al. Jul 2018 B2
10036443 Galasso Jul 2018 B2
10040328 Marking Aug 2018 B2
10040329 Ericksen et al. Aug 2018 B2
10054185 Cox Aug 2018 B2
10072724 Haugen et al. Sep 2018 B2
10086670 Galasso et al. Oct 2018 B2
10089868 Hayward Oct 2018 B1
10094443 Marking Oct 2018 B2
10145435 Galasso Dec 2018 B2
10180171 Laird et al. Jan 2019 B2
10330171 Cox et al. Jun 2019 B2
10336148 Ericksen et al. Jul 2019 B2
10336149 Ericksen et al. Jul 2019 B2
10406883 Marking Sep 2019 B2
10415662 Marking Sep 2019 B2
10443671 Marking Oct 2019 B2
10473179 Ripa Nov 2019 B2
10550909 Haugen Feb 2020 B2
10591015 Galasso et al. Mar 2020 B2
10697514 Marking Jun 2020 B2
10718397 Marking Jul 2020 B2
10737546 Tong Aug 2020 B2
10933709 Shaw et al. Mar 2021 B2
11162555 Haugen Nov 2021 B2
11279198 Marking Mar 2022 B2
11472252 Tong Oct 2022 B2
20010017334 Vincent Aug 2001 A1
20010022621 Squibbs Sep 2001 A1
20010030408 Miyoshi et al. Oct 2001 A1
20010042663 Marking et al. Nov 2001 A1
20010055373 Yamashita Dec 2001 A1
20020000352 Matsumoto et al. Jan 2002 A1
20020032508 Uchino et al. Mar 2002 A1
20020045987 Ohata et al. Apr 2002 A1
20020050112 Koch et al. May 2002 A1
20020050518 Roustaei May 2002 A1
20020053493 Sintorn et al. May 2002 A1
20020055422 Airmet et al. May 2002 A1
20020063469 Nishio May 2002 A1
20020089107 Koh Jul 2002 A1
20020095979 Shirato et al. Jul 2002 A1
20020113347 Robbins et al. Aug 2002 A1
20020121416 Katayama et al. Sep 2002 A1
20020130000 Lisenker et al. Sep 2002 A1
20020130003 Lisenker et al. Sep 2002 A1
20020185581 Trask et al. Dec 2002 A1
20020187867 Ichida et al. Dec 2002 A1
20030001346 Hamilton et al. Jan 2003 A1
20030001358 Becker et al. Jan 2003 A1
20030034697 Goldner et al. Feb 2003 A1
20030040348 Martens et al. Feb 2003 A1
20030051954 Sendrea Mar 2003 A1
20030054327 Evensen Mar 2003 A1
20030065430 Lu et al. Apr 2003 A1
20030075403 Dernebo Apr 2003 A1
20030103651 Novak Jun 2003 A1
20030128275 Maguire Jul 2003 A1
20030160369 Laplante et al. Aug 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030216845 Williston Nov 2003 A1
20040004659 Foote et al. Jan 2004 A1
20040017455 Kremers et al. Jan 2004 A1
20040021754 Kremers et al. Feb 2004 A1
20040075350 Kuhnel Apr 2004 A1
20040091111 Levy et al. May 2004 A1
20040099312 Boyer et al. May 2004 A1
20040103146 Park May 2004 A1
20040172178 Takeda et al. Sep 2004 A1
20040208687 Sicz et al. Oct 2004 A1
20040220708 Owen et al. Nov 2004 A1
20040220712 Takeda et al. Nov 2004 A1
20040222056 Fox Nov 2004 A1
20040256778 Verriet Dec 2004 A1
20050055156 Maltagliati et al. Mar 2005 A1
20050056507 De Molina et al. Mar 2005 A1
20050077131 Russell Apr 2005 A1
20050098401 Hamilton et al. May 2005 A1
20050104320 Wesling et al. May 2005 A1
20050107216 Lee et al. May 2005 A1
20050110229 Kimura et al. May 2005 A1
20050121269 Namuduri Jun 2005 A1
20050173849 Vandewal Aug 2005 A1
20050195094 White Sep 2005 A1
20050199455 Browne et al. Sep 2005 A1
20050216186 Dorfman et al. Sep 2005 A1
20050227798 Ichida et al. Oct 2005 A1
20050239601 Thomas Oct 2005 A1
20050288154 Lee et al. Dec 2005 A1
20060040793 Martens et al. Feb 2006 A1
20060064223 Voss Mar 2006 A1
20060065496 Fox Mar 2006 A1
20060066074 Turner et al. Mar 2006 A1
20060076757 Bromley Apr 2006 A1
20060081431 Breese et al. Apr 2006 A1
20060096817 Norgaard et al. May 2006 A1
20060113834 Hanawa Jun 2006 A1
20060120080 Sipinski et al. Jun 2006 A1
20060124414 Hanawa Jun 2006 A1
20060136173 Case et al. Jun 2006 A1
20060137934 Kurth Jun 2006 A1
20060163551 Coenen et al. Jul 2006 A1
20060163787 Munster et al. Jul 2006 A1
20060175792 Sicz et al. Aug 2006 A1
20060176216 Hipskind Aug 2006 A1
20060185951 Tanaka Aug 2006 A1
20060213082 Meschan Sep 2006 A1
20060219503 Kim Oct 2006 A1
20060225976 Nakadate Oct 2006 A1
20060231359 Matsunaga et al. Oct 2006 A1
20060237272 Huang Oct 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060254365 Hamel Nov 2006 A1
20060265144 Frolik Nov 2006 A1
20060289258 Fox Dec 2006 A1
20070006489 Case et al. Jan 2007 A1
20070007743 Becker et al. Jan 2007 A1
20070008096 Tracy Jan 2007 A1
20070021885 Soehren Jan 2007 A1
20070032981 Merkel et al. Feb 2007 A1
20070034464 Barefoot Feb 2007 A1
20070039790 Timoney et al. Feb 2007 A1
20070051573 Norgaard et al. Mar 2007 A1
20070070069 Samarasekera et al. Mar 2007 A1
20070080515 McAndrews et al. Apr 2007 A1
20070088475 Nordgren et al. Apr 2007 A1
20070090518 Sauciuc et al. Apr 2007 A1
20070119669 Anderfaas et al. May 2007 A1
20070170688 Watson Jul 2007 A1
20070199401 Kawakami et al. Aug 2007 A1
20070213126 Deutsch et al. Sep 2007 A1
20070239479 Arrasvuori et al. Oct 2007 A1
20070260372 Langer Nov 2007 A1
20070272458 Taniguchi et al. Nov 2007 A1
20080006494 Vandewal Jan 2008 A1
20080009992 Izawa et al. Jan 2008 A1
20080015089 Hurwitz et al. Jan 2008 A1
20080018065 Hirao et al. Jan 2008 A1
20080029730 Kamo et al. Feb 2008 A1
20080041677 Namuduri Feb 2008 A1
20080059025 Furuichi et al. Mar 2008 A1
20080067019 Jensen et al. Mar 2008 A1
20080093820 McAndrews Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080099968 Schroeder May 2008 A1
20080109158 Huhtala et al. May 2008 A1
20080116622 Fox May 2008 A1
20080119330 Chiang et al. May 2008 A1
20080163718 Chiang Jul 2008 A1
20080185244 Maeda et al. Aug 2008 A1
20080200310 Tagliabue Aug 2008 A1
20080250844 Gartner Oct 2008 A1
20080254944 Muri et al. Oct 2008 A1
20080303320 Schranz et al. Dec 2008 A1
20080312799 Miglioranza Dec 2008 A1
20080314706 Lun et al. Dec 2008 A1
20090000885 McAndrews Jan 2009 A1
20090001684 McAndrews et al. Jan 2009 A1
20090020382 Van Weelden et al. Jan 2009 A1
20090038897 Murakami Feb 2009 A1
20090048070 Vincent et al. Feb 2009 A1
20090069972 Templeton et al. Mar 2009 A1
20090070037 Templeton et al. Mar 2009 A1
20090071772 Cho et al. Mar 2009 A1
20090071773 Lun Mar 2009 A1
20090098981 Del et al. Apr 2009 A1
20090118100 Oliver et al. May 2009 A1
20090121398 Inoue May 2009 A1
20090131224 Yuen May 2009 A1
20090138157 Hagglund et al. May 2009 A1
20090140501 Taylor et al. Jun 2009 A1
20090171532 Ryan et al. Jul 2009 A1
20090192673 Song Jul 2009 A1
20090200126 Kondo et al. Aug 2009 A1
20090200760 Gartner et al. Aug 2009 A1
20090236807 Wootten et al. Sep 2009 A1
20090258710 Ouatrochi et al. Oct 2009 A1
20090261542 McIntyre Oct 2009 A1
20090277736 McAndrews et al. Nov 2009 A1
20090288924 Murray et al. Nov 2009 A1
20090294231 Carlson et al. Dec 2009 A1
20090302558 Shirai Dec 2009 A1
20090314592 Nygren Dec 2009 A1
20090324327 McAndrews et al. Dec 2009 A1
20100004097 D'Eredita Jan 2010 A1
20100010709 Song Jan 2010 A1
20100025946 Inoue Feb 2010 A1
20100032254 Anderfaas et al. Feb 2010 A1
20100044975 Yablon et al. Feb 2010 A1
20100059964 Morris Mar 2010 A1
20100066051 Haugen Mar 2010 A1
20100109277 Furrer May 2010 A1
20100133764 Greaves Jun 2010 A1
20100139442 Miyama Jun 2010 A1
20100147640 Jones et al. Jun 2010 A1
20100160014 Galasso et al. Jun 2010 A1
20100164705 Blanchard Jul 2010 A1
20100170760 Marking Jul 2010 A1
20100186836 Yoshihiro et al. Jul 2010 A1
20100198453 Dorogusker et al. Aug 2010 A1
20100207351 Klieber et al. Aug 2010 A1
20100224454 Chen et al. Sep 2010 A1
20100244340 Wootten et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100276238 Crasset Nov 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100308628 Hsu et al. Dec 2010 A1
20100314917 Hsieh et al. Dec 2010 A1
20100324781 Gagliano Dec 2010 A1
20100326780 Murakami Dec 2010 A1
20100327542 Hara et al. Dec 2010 A1
20110022266 Ippolito et al. Jan 2011 A1
20110067965 McAndrews Mar 2011 A1
20110086686 Avent et al. Apr 2011 A1
20110095507 Plantet et al. Apr 2011 A1
20110097139 Hsu et al. Apr 2011 A1
20110109060 Earle et al. May 2011 A1
20110127706 Sims et al. Jun 2011 A1
20110174582 Wootten et al. Jul 2011 A1
20110202236 Galasso Aug 2011 A1
20110204201 Kodama et al. Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110257848 Shirai Oct 2011 A1
20110284333 Krog et al. Nov 2011 A1
20110315494 Marking Dec 2011 A1
20120006949 Laird et al. Jan 2012 A1
20120007327 Talavasek Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120018264 King Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120074660 Thomas Mar 2012 A1
20120080279 Galasso et al. Apr 2012 A1
20120136537 Galasso et al. May 2012 A1
20120166044 Battlogg et al. Jun 2012 A1
20120181126 De Kock Jul 2012 A1
20120221228 Noumura et al. Aug 2012 A1
20120222927 Marking Sep 2012 A1
20120228906 McAndrews et al. Sep 2012 A1
20120253599 Shirai Oct 2012 A1
20120253600 Ichida et al. Oct 2012 A1
20120274043 Lee et al. Nov 2012 A1
20120305350 Ericksen et al. Dec 2012 A1
20120312648 Yu et al. Dec 2012 A1
20130001030 Goldasz et al. Jan 2013 A1
20130037361 Park et al. Feb 2013 A1
20130090195 Yamaguchi et al. Apr 2013 A1
20130119634 Camp et al. May 2013 A1
20130144489 Galasso et al. Jun 2013 A1
20130168195 Park et al. Jul 2013 A1
20130220110 Zhan et al. Aug 2013 A1
20130221713 Pelot et al. Aug 2013 A1
20130292218 Ericksen et al. Nov 2013 A1
20130333993 Yu Dec 2013 A1
20140008160 Marking et al. Jan 2014 A1
20140027219 Marking et al. Jan 2014 A1
20140048365 Kim Feb 2014 A1
20140061419 Wehage et al. Mar 2014 A1
20150073656 Takamoto et al. Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150090547 Haugen Apr 2015 A1
20150141056 Fefilatyev et al. May 2015 A1
20150175236 Walthert et al. Jun 2015 A1
20150179062 Ralston et al. Jun 2015 A1
20150191069 Zuleger et al. Jul 2015 A1
20150197308 Butora et al. Jul 2015 A1
20150233442 Noguchi Aug 2015 A1
20150291248 Fukao et al. Oct 2015 A1
20160003320 Kamakura et al. Jan 2016 A1
20160025178 Kamakura et al. Jan 2016 A1
20160031506 Lloyd et al. Feb 2016 A1
20160076617 Marking Mar 2016 A1
20160153515 Ebersbach et al. Jun 2016 A1
20160153516 Marking Jun 2016 A1
20160185178 Galasso et al. Jun 2016 A1
20160200163 Tsukahara Jul 2016 A1
20160200164 Tabata et al. Jul 2016 A1
20160265615 Marking Sep 2016 A1
20160290431 Marking Oct 2016 A1
20160319899 Franklin et al. Nov 2016 A1
20160355226 Pelot et al. Dec 2016 A1
20160364989 Speasl et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170136843 Marking May 2017 A1
20170184174 Marking Jun 2017 A1
20170247072 Laird et al. Aug 2017 A1
20170259876 Ericksen et al. Sep 2017 A1
20170268595 Inagaki et al. Sep 2017 A1
20170282669 Cox et al. Oct 2017 A1
20170291466 Tong Oct 2017 A1
20180010666 Marking Jan 2018 A1
20180031071 Marking Feb 2018 A1
20180118302 Fukao et al. May 2018 A1
20180150764 Stenneth May 2018 A1
20180156300 Sakai Jun 2018 A1
20180174446 Wang Jun 2018 A1
20180208011 Wigg et al. Jul 2018 A1
20180222541 Madau et al. Aug 2018 A1
20180304149 Galasso et al. Oct 2018 A1
20180326805 Marking Nov 2018 A1
20180326808 Ericksen et al. Nov 2018 A1
20180328442 Galasso et al. Nov 2018 A1
20180328446 Ericksen et al. Nov 2018 A1
20180334007 Ericksen et al. Nov 2018 A1
20180334008 Ericksen et al. Nov 2018 A1
20180335102 Haugen Nov 2018 A1
20180339565 Ericksen et al. Nov 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180339567 Ericksen et al. Nov 2018 A1
20180355943 Cox Dec 2018 A1
20180355946 Ericksen et al. Dec 2018 A1
20190030975 Galasso et al. Jan 2019 A1
20190031264 Laird et al. Jan 2019 A1
20190032745 Marking Jan 2019 A1
20190092116 Magnus et al. Mar 2019 A1
20190154100 Coaplen et al. May 2019 A1
20190176557 Marking et al. Jun 2019 A1
20190184782 Shaw et al. Jun 2019 A1
20190203798 Cox et al. Jul 2019 A1
20190247744 Galasso et al. Aug 2019 A1
20200191227 Laird Jun 2020 A1
20220252129 Haugen Aug 2022 A1
Foreign Referenced Citations (95)
Number Date Country
101468587 Jul 2009 CN
1555311 Aug 1970 DE
3613386 Oct 1986 DE
3532292 Mar 1987 DE
3536655 Apr 1987 DE
3709447 Oct 1988 DE
3711442 Oct 1988 DE
3738048 May 1989 DE
3924166 Feb 1991 DE
4022099 Dec 1991 DE
4029090 Mar 1992 DE
4406918 Sep 1994 DE
202004005229 Aug 2004 DE
10326675 Dec 2004 DE
102005025811 Dec 2006 DE
102007056313 May 2009 DE
102007063365 Jul 2009 DE
202008015968 Apr 2010 DE
202010012738 Dec 2010 DE
207409 Jan 1987 EP
304801 Mar 1989 EP
0306819 Mar 1989 EP
0403803 Dec 1990 EP
552568 Jul 1993 EP
0735280 Oct 1996 EP
0806587 Nov 1997 EP
1050696 Nov 2000 EP
1138530 Oct 2001 EP
1188661 Mar 2002 EP
1241087 Sep 2002 EP
1355209 Oct 2003 EP
1394439 Mar 2004 EP
1449688 Aug 2004 EP
1623856 Feb 2006 EP
1662167 May 2006 EP
1757473 Feb 2007 EP
1825220 Aug 2007 EP
2103512 Sep 2009 EP
2116739 Nov 2009 EP
2189191 May 2010 EP
2248691 Nov 2010 EP
2357098 Aug 2011 EP
2410203 Jan 2012 EP
2479095 Jul 2012 EP
2495472 Sep 2012 EP
2357098 Oct 2014 EP
2848582 Mar 2015 EP
2567839 Mar 2019 EP
3786049 Mar 2021 EP
3786049 May 2023 EP
1343760 Nov 1963 FR
2432424 Feb 1980 FR
2449236 Sep 1980 FR
2529002 Dec 1983 FR
2617928 Jan 1989 FR
2952031 May 2011 FR
806307 Dec 1958 GB
1185074 Mar 1970 GB
2104183 Mar 1983 GB
2159234 Nov 1985 GB
2159604 Dec 1985 GB
2180320 Mar 1987 GB
2282864 Apr 1995 GB
2289111 Nov 1995 GB
57173632 Oct 1982 JP
57173632 Nov 1982 JP
57182506 Nov 1982 JP
01106721 Apr 1989 JP
H0193637 Apr 1989 JP
H02168038 Jun 1990 JP
H03113139 May 1991 JP
04203540 Jul 1992 JP
05149364 Jun 1993 JP
H05319054 Dec 1993 JP
06101735 Apr 1994 JP
06185562 Jul 1994 JP
084818 Jan 1996 JP
2005119548 May 2005 JP
2005119549 May 2005 JP
2007302211 Nov 2007 JP
2008238921 Oct 2008 JP
20070076226 Jul 2007 KR
20100041679 Apr 2010 KR
2469224 Dec 2012 RU
9840231 Sep 1998 WO
9906231 Feb 1999 WO
0027658 May 2000 WO
03070546 Aug 2003 WO
2006065235 Jun 2006 WO
2007017739 Feb 2007 WO
2007117884 Oct 2007 WO
2008086605 Jul 2008 WO
2008114445 Sep 2008 WO
2013066159 May 2013 WO
2021066819 Apr 2021 WO
Non-Patent Literature Citations (60)
Entry
Electronic Translation of DE3709447A1.
English language abstract for EP 0207409 (no date).
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages.
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages.
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2.
“European Search Report for European Application No. 10187320, 12 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (dated Dec. 12, 2017)”.
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages.
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7.
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich , Feb. 25-Mar. 1, 1991.
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207.
European Examination Report for EP Application No. 11188520.8, 9 pages, dated Jul. 19, 2022.
European Examination Report for European Application No. 11275170.6, 6 pages, dated Oct. 20, 2022.
European Search Report for European Application No. 19155995, 11 pages, dated Aug. 28, 2019.
European Search Report for European Application No. 19206334.5, 6 pages, dated May 12, 2020 (dated May 12, 2020).
European Search Report for European Application No. 19212356.0, 8 pages, dated May 7, 2020 (dated May 7, 2020).
Machine translation DE3613386; Oct. 1986.
Machine translation EP 0403803; Dec. 1990.
Machine translation KR20100041679; Apr. 2010.
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages.
European Search Report for European Application No. 21170685.8, dated Nov. 10, 2021, 8 Pages.
EP Search Report for European Application No. 21173940.4, dated Nov. 12, 2021, 9 Pages.
European Search Report for European Application No. 20187747, dated Nov. 18, 2020, 11 Pages.
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207.
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages.
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages.
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages.
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages.
“Basis for Claims Filed Jan. 15, 2023”, European Patent Application No. 14189773.6, 2 Pages.
“Communication Re Oral Proceedings for European Application No. 10161906, dated Feb. 15, 2013 (dated Feb. 15, 2013)”.
“European Search Report for European Application No. 09159949, 2 pages, dated Sep. 11, 2017 (dated Sep. 11, 2017)”.
“European Search Report for European Application No. 09177128, 4 pages, dated Aug. 25, 2010 (dated Aug. 25, 2010)”.
“European Search Report for European Application No. 10161906, 3 pages, dated Sep. 15, 2010 (dated Sep. 15, 2010)”.
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (dated Aug. 10, 2012))”.
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 11172612, 2 pages, dated Oct. 6, 2011 (dated Oct. 6, 2011))”.
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 11275170, 2 pages, dated Jan. 10, 2018 (dated Jan. 10, 2018)”.
“European Search Report for European Application No. 12170370, 2 pages, dated Nov. 15, 2017 (dated Nov. 15, 2017)”.
“European Search Report for European Application No. 13158034, 4 pages, dated Jun. 28, 2013 (dated Jun. 28, 2013))”.
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (dated Jan. 8, 2018))”.
“European Search Report for European Application No. 13189574, 2 pages, dated Feb. 19, 2014 (dated Feb. 19, 2014)”.
“European Search Report for European Application No. 15167426, 4 pages, dated Sep. 18, 2015 (dated Sep. 18, 2015))”.
“European Search Report for European Application No. 16167306, 2 pages, dated Mar. 23, 2017 (dated Mar. 23, 2017)”.
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (dated Jun. 28, 2017)”.
“European Search Report for European Application No. 17188022, 9 pages, dated Feb. 1, 2018 (dated Feb. 1, 2018))”.
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (dated Aug. 28, 2018))”.
“Notice of Intent to Grant EP Application 09159949.8 dated Nov. 14, 2019, p. 48”.
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”.
“The Lee Company Technical Hydraulic Handbook”, 1996, 1-696.
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128.
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages.
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223.
Puhn, “How To Make Your Car Handle”, HPBooks, 1981, 7 Pages.
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, Dec. 13, 2018, 49 Pages.
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39.
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages.
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics, vol. 37, No. 1, 2002, 3-28.
Haller, E, EPO machine translation of CN 101468587 (A) Device with a suspension system and method for setting a suspension system, published on Jul. 1, 2009.
Kensuke, Suspension Control Device, machine translation of JPH05319054 (A), 1993-12-03 (Year: 1993).
Related Publications (1)
Number Date Country
20210023901 A1 Jan 2021 US
Provisional Applications (2)
Number Date Country
61624895 Apr 2012 US
61533712 Sep 2011 US
Continuations (4)
Number Date Country
Parent 16147200 Sep 2018 US
Child 17003746 US
Parent 15061735 Mar 2016 US
Child 16147200 US
Parent 14446179 Jul 2014 US
Child 15061735 US
Parent 13612679 Sep 2012 US
Child 14446179 US