Communications systems are typically modular in design, made of various communications modules that include hardware and software that transmit inter-module communications signals, such as data or clock signals, in order to support communications traffic running through the communications system. In such a communications system, several communications modules may connect to a chassis through which the modules send communications signals to one another. The chassis may include a backplane with a number of socket-type connectors, and the modules may include pin-type card connector(s). The card connector(s), if compatible with the chassis backplane connectors, mate with the backplane connectors, thereby connecting to the chassis backplane and completing a communications path to other modules.
Often, a communications system supports a number of different modules that connect to the backplane. However, a particular backplane connector may not be compatible with a particular module's card connector(s). If such a connection is made without regard to connector compatibility, an incorrect connection may result, possibly preventing desired communications or even damaging the system. Moreover, a module intended to connect to the correct backplane connector may be oriented incorrectly, causing an improper connection, no connection, or damage to the connectors. In these and other cases when incorrect connections may occur, it is preferable to prevent incorrect connections.
Embodiments of the present invention provide a system and method of ensuring proper insertion of circuit boards, communication modules, or other communication systems elements into a support assembly, such as a card cage or other chassis. In one embodiment of the present invention, a circuit board assembly includes a first keying feature located on the circuit board assembly at a location other than on a faceplate coupled to the circuit board assembly. The first keying feature may be integral with or coupled to a circuit board assembly notch, tab, or slot and the circuit board assembly may include at least one first component of a first connector assembly (e.g., pin-type connector). In this embodiment, the support assembly comprises a second keying feature and a second component of the connector assembly (e.g., socket-type connector), where the second component of the connector assembly may be located on a backplane in the support assembly. The second keying feature is positioned in a manner allowing circuit board assemblies with the correct keying feature to have the first component of the connector assembly connect with the second component of the connector assembly. The second keying feature prevents contact between the first connector component and the second component in cases where the circuit board assemblies lack the first keying feature or have the first keying feature misaligned from the second keying feature. As a result, embodiments of the present invention provide a cost-effective keying solution that prevents damage to circuit connectors and can be manufactured with relative ease.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of preferred embodiments of the invention follows.
Embodiments of the present invention determine and prevent incorrect card insertions prior to making connector component contact. Example embodiments are presented below in reference to
Upon mating of connector components 130/140 and 135/145, circuit board traces connected to the connector components permit communications between the card 105, 110 and the backplane 125. Because other communications modules can similarly connect to the backplane 125, the backplane 125 provides a mechanism supporting communications between or among two or more cards. A dashed line 115 illustrates such inter-card communications passing through the cards 105, 110 and backplane 125. A solid line 120 illustrates communications traffic running through the system. For simplicity, connector components may be referred to herein as simply “connectors,” and it should be understood that pin—or socket-type connectors may be located on circuit board assemblies or on backplanes 125 in any combination.
The cards 105, 110 of
In a prior art system, the card tray 162 includes a flange or bend 148 that has a small hole 150 at a particular location. The hole 150 mates with a narrow pin 155 located within the chassis 160 for purposes of aligning the circuit board 110 to align pins (or sockets) in the connector 145 with their counterparts in the backplane connector 135. Only a card having a hole 150 at the location that is of a particular size and shape so as to mate with the pin 155 can be inserted and mated with the socket 135. The card 110 must also be oriented so that the pin 155 and hole 150 are aligned, ensuring that the traces of each mating edge are also correctly aligned. Because this method includes a small hole 150 and pin 155, it calls for precise manufacturing tolerances, which may be costly or difficult to achieve. Moreover, cards 105 not equipped with a flange or bend 148 are susceptible to damage since the connectors 140, 135 can contact each other, and cards 110 with the flange 148 may experience damage of the connector 145, or electrical to electrical components on the cards 110, if orientation between the flange 148 and connector 145 is improperly offset.
In other prior art systems, the connectors 130, 135 and 140, 145 have been configured with built-in alignment or keying features to protect against misaligned insertion or connection of incompatible circuit boards. Adding keying features to connectors with tight tolerances can be expensive and difficult to implement.
Alternatively, in other prior art systems, a protruding part with a complex shape, such as an “R” or crescent shape, and a similarly-shaped hole is used in place of the pin 155 and hole 150. Such solutions may also require precise manufacturing. Yet another prior art technique locates a hole at location 165 on a card faceplate 175 mechanically connected to the card 110. In addition to requiring precise manufacturing and costly customization and configuration efforts on the part of a faceplate manufacturer, system designer, and system integration personnel, this method may not be aesthetically pleasing because it prevents a streamlined look for the faceplate.
Embodiments of the present invention improve upon existing methods by implementing a low-cost and efficient keying arrangement to prevent incorrect card insertion into the chassis 160. Such embodiments may be created from simple, two- or three-dimensional shapes that are easily manufactured as part of a card assembly and card chassis, and do not require complex shapes as found in some faceplate keying systems or precise tolerances as required by other keying systems.
When the card assembly 200 is inserted into the chassis 230, the notch 215 in the card tray 210 “mates” with the tab 225 by “clearing” it (i.e., the notch 215 allows the card assembly 200 to slide past the tab 225). The notch 215 and tab 225 thus function as corresponding keying features and are shaped and positioned so as to allow the card assembly 200 to slide into the chassis 230 without collision between the notch 215 and tab 225. After the notch 215 clears the tab 225, the card assembly 200 can be inserted further into the chassis 230 so that the card connector 220 (i.e., connector component) can mate with a backplane socket (not shown) or other connector (i.e., connector component) in the chassis 230.
In this embodiment, the keying feature (i.e., notch 215) on the card assembly 200 may be located on either the right edge (as shown) or left edge of the card tray 210. These two edges may be adjacent to both the connecting edge 220 and the faceplate (not shown), or may correspond to opposite sides of the chassis where keying features may be located in this embodiment. Thus, a system may implement the keying features 215, 225 for multiple different types of cards and connector assemblies.
An example of another embodiment may be as follows: a card chassis may have sockets of type X, Y, and Z, where card assemblies of type A may connect with sockets of type X, card assemblies of type B may connect with sockets of type Y, and cards of type C may connect only with sockets of type Z. To ensure that no card assemblies connect with or contact incorrect sockets, the cards and chassis may have keying features in the following arrangement: A and X have a notch and tab on the left edge, B and Y have a notch and tab on the right edge, and C and Z have no notches or tabs. As a result, the keying features prevent several different card assemblies from making incorrect connections to the chassis. Moreover, only one type of card assembly may connect to sockets X and Y, and, because the chassis has no notches in front of Z, any card may connect to socket Z. This feature may be useful when a socket is compatible to connect to more than one different card assembly or when a card assembly is compatible to connect to more than one different socket.
The embodiment of
Further, keying features need not be located on the edges of each card or card tray; for example, keying features may be positioned on a face of a card or card tray and aligned to features on a corresponding wall or element of the chassis. By aligning the notches and tabs or other keying features parallel or perpendicular to one another, several unique keys can be created for different types of card assemblies. The keying features can be oriented in any direction with respect to one another, so long as the features contact to prevent incorrect card insertion.
Continuing to refer to
Furthermore, this exemplary embodiment may also prevent insertion of a card assembly that has the correct keying feature, as does assembly 200 of
To accomplish this keying, notches must be placed so that each unique card tray has notches at different locations, and the notches on both sides of one card cannot be longer than the notches on both sides of a different card. If the construction of the chassis allows for cards to be inserted inversely, where the keying features can be positioned next to an opposite wall, then each card or card tray is preferably keyed so that the notches of each card or card tray do not match notches of the opposite sides of a different card or card tray.
The keying features shown in
Notches 411a, 421a, 431a, located on the bottom edge of each card tray, are of lengths that are multiples of length A (e.g., A, 2A, 3A), and none is longer than the mid-length 405. Tabs 412a, 422a, 432a are located at distances from the back wall of the chassis 450 that correspond to the length of each notch, respectively. Notches 411b, 421b, 431b, on the top side of each card tray, begin at length B (card tray 410) and decrease in increments of length A (B, B-A, B-2A), and all lengths are longer than the mid-length 405. Tabs 412b, 422b, 432b are located at distances from the back wall of the chassis 450 that correspond to the length of each notch, respectively. The mid-length 405 may be designated at any length along the card trays, so long as this length is uniform among the card trays and the aforementioned criteria are met.
With the notches and tabs positioned as specified, each card tray 410, 420, 430 may be fully inserted into only one slot 415, 425, 435, respectively, the tabs of which match the notches of the particular card or card tray. For example, the first card tray 410, with tabs 411a/b of lengths A and B, may only fit into the first slot 415, with notches of lengths A and B. If the first card tray 410 is inserted into the second slot 425, a tab 422a collides with notch 411a, preventing the first card tray 410 from being fully inserted. Likewise, if the second card tray 420 is inserted into the first slot 415a, a tab 412b collides with a notch 421b, preventing the second card tray 420 from being fully inserted.
When this embodiment is implemented, circuit boards (not shown) may be mounted to each card tray 410, 420, 430, with connecting edge aligned at the front edge of each tray. When inserted into the chassis 450, these circuit boards may connect with sockets (not shown) located on a backplane (not shown) at the back wall of the chassis 450. As a result, this embodiment of the present invention prevents cards mounted to a card tray from connecting with an incorrect socket, ensuring that each card connects only to a correct socket. Moreover, this embodiment allows the creation of multiple unique keys at a low cost to ensure the proper insertion and alignment of several different card assemblies into their respective slots.
As described above regarding other embodiments, the embodiment of
At the same time as the manufacturing of the circuit board assembly, a support assembly manufacturing process 500b may be performed. Alternatively the support assembly may be manufactured at a different time. Either way, the support assembly manufacturing process 500b begins (step 505b) by a manufacturer who makes components or assembles a support assembly for the circuit boards. The support assembly manufacturer produces the support assembly with a second keying feature (e.g., a tab) (step 510b). Any of the example techniques for applying the second keying feature to the support assembly described above may be performed in this step (510b).
A support assembly configured to receive the circuit board assembly and including (i) a second component of the connector assembly and (ii) a second keying feature coupled to the support assembly at a location offset in a direction relative to the second component toward the first component as the first component travels toward the second component to mate with the second component that (a) allows the circuit board assembly to be inserted into the supporting assembly to mate the first and second components of the connector assembly if the first keying feature is aligned with the second keying feature and (b) prevents contact between the first and second components of the connector assembly if the circuit board assembly lacks the first keying feature or has the first keying feature but is not aligned with the second keying feature.
Because the keying features do not require, in some embodiments, precise tolerances, production of the first keying feature and the second keying feature can be done separately from one another and even by different manufacturers. This can result in a distribution of work, production of the keying features by low cost processes, and other benefits known in the art associated with such processes.
After the circuit board assembly and support assemblies are manufactured with their respective keying features, an assembler may assemble a system that is protected by a combination of the first and second keying features (515). In other words, the support assembly with its second keying feature ensures that only circuit board assemblies with the first keying feature, and which have their first keying feature properly aligned with the second keying feature, can be inserted into the system to an extent that the connectors on the circuit assembly and in the support assembly, such as on a backplane, can make contact with one another. Such protection allows for low cost assembly of systems employing the first and second keying features, as described above in reference to the various embodiments. Once a system is assembled (step 520), the system may be deployed to its end use location, such as in a telecommunications network, optical communications network, or other operating environment.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/686,998, filed on Jun. 4, 2005. The entire teachings of the above application are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2925537 | Winkler | Feb 1960 | A |
2935725 | Fox | May 1960 | A |
2968019 | Steinman et al. | Jan 1961 | A |
3364458 | Black, Jr. et al. | Jan 1968 | A |
3533045 | Henschen | Oct 1970 | A |
4853830 | Corfits et al. | Aug 1989 | A |
5273463 | Kaetsu et al. | Dec 1993 | A |
5387132 | Sarver et al. | Feb 1995 | A |
5398161 | Roy | Mar 1995 | A |
5421734 | MacWilliams | Jun 1995 | A |
5688147 | Coteus et al. | Nov 1997 | A |
6315614 | Hassanzadeh et al. | Nov 2001 | B1 |
6421252 | White et al. | Jul 2002 | B1 |
6428360 | Hassanzadeh et al. | Aug 2002 | B2 |
6466044 | Smith | Oct 2002 | B1 |
6520805 | Hassanzadeh et al. | Feb 2003 | B2 |
6814583 | Young et al. | Nov 2004 | B1 |
6822874 | Marler | Nov 2004 | B1 |
6921296 | Lecinski et al. | Jul 2005 | B2 |
7079381 | Brehm et al. | Jul 2006 | B2 |
20010007803 | Wilson | Jul 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20060286869 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60686998 | Jun 2005 | US |