The present disclosure relates generally to wireless power transfer, and more specifically to methods and apparatuses for thermal dissipation in vehicle pads for wireless power transfer applications.
Inductive power transfer (IPT) systems provide one example of wireless transfer of energy. In IPT systems, a primary power device (or “transmitter”) transmits power wirelessly to a secondary power device (or “receiver”). Each of the transmitter and receiver includes an inductive coupler, typically a single or multi-coil arrangement of windings comprising electric current conveying materials, such as Litz wire. An alternating current passing through a primary coupler produces an alternating magnetic field. When a secondary coupler is placed in proximity to the primary coupler, the alternating magnetic field induces an electromotive force (EMF) in the secondary coupler according to Faraday's law, thereby wirelessly transferring power to the receiver.
Vehicle pads for inductively receiving power may receive relatively large amounts of power to charge and/or power the vehicle. Receiving such large amounts of power generates heat. Thus, vehicle pads may require the ability to dissipate large amounts of thermal energy from electrical resistance heating of internal electrical components in order to maintain acceptable operating temperatures. As such, methods and apparatuses for thermal dissipation in vehicle pads for wireless power transfer applications are desirable.
In some implementations, apparatus for wirelessly receiving charging power is provided. The apparatus comprises at least one receive coil configured to wirelessly receive charging power. The apparatus further comprises a plurality of electrical components configured to convert the charging power to a direct current. The apparatus further comprises a primary heat sink comprising a plurality of fins configured to dissipate heat generated by the plurality of electrical components. The plurality of fins are disposed adjacent to the plurality of electrical components. The apparatus further comprises at least one thermally conductive structure configured to physically connect at least some of the plurality of electrical components to the primary heat sink.
Some other implementations provide a method for wirelessly receiving charging power. The method comprises wirelessly receiving charging power via at least one receive coil. The method comprises converting the charging power to a direct current via a plurality of electrical components. The method comprises dissipating heat generated by the plurality of electrical components via a primary heat sink comprising a plurality of fins. The plurality of electrical components disposed adjacent to the plurality of fins and at least some of the plurality of electrical components physically connected to the primary heat sink.
Yet other implementations provide an apparatus for wirelessly receiving charging power. The apparatus comprises means for wirelessly receive charging power. The apparatus further comprises a plurality of means for converting the charging power to a direct current. The apparatus further comprises means for dissipating heat generated by the plurality of means for converting the charging power to the direct current, the means for dissipating heat comprising a plurality of fins disposed adjacent to the means for converting the charging power to the direct current. The apparatus further comprises means for thermally connecting at least some of the plurality of means for converting the charging power to the direct current to the means for dissipating heat.
Yet other implementations provide apparatus for wirelessly receiving charging power on a vehicle. The apparatus comprises at least one receive coil configured to wirelessly receive charging power. The apparatus further comprises a plurality of electrical components configured to convert the charging power to a direct current. The apparatus further comprises a primary heat sink configured to dissipate heat generated by the plurality of electrical components. The apparatus further comprises a controller configured to adjust an amount of the charging power drawn by the at least one receive coil based on a temperature of the primary heat sink.
Yet other implementations provide a method for wirelessly receiving charging power at a vehicle. The method comprises wirelessly receiving charging power via at least one receive coil. The method comprises converting the charging power to a direct current via a plurality of electrical components. The method comprises dissipating heat generated by the plurality of electrical components via a primary heat sink. The method comprises adjusting an amount of the charging power drawn by the at least one receive coil based on a temperature of the primary heat sink.
The detailed description set forth below in connection with the appended drawings is intended as a description of implementations and is not intended to represent the only implementations. The detailed description includes specific details for the purpose of providing a thorough understanding of the implementations. In some instances, some devices are shown in block diagram form.
Wirelessly transferring power may refer to transferring any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise from a transmitter to a receiver without the use of physical electrical conductors (e.g., power may be transferred through free space). The power output into a wireless field (e.g., a magnetic field) may be received, captured by, or coupled by a “receiving coil” to achieve power transfer.
An electric vehicle is used herein to describe a remote system, an example of which is a vehicle that includes, as part of its locomotion capabilities, electrical power derived from a chargeable energy storage device (e.g., one or more rechargeable electrochemical cells or other type of battery). As non-limiting examples, some electric vehicles may be hybrid electric vehicles that include, besides electric motors, a traditional combustion engine for direct locomotion or to charge the vehicle's battery. Other electric vehicles may draw all locomotion ability from electrical power. An electric vehicle is not limited to an automobile and may include motorcycles, carts, scooters, and the like. By way of example and not limitation, a remote system is described herein in the form of an electric vehicle (EV). Furthermore, other remote systems that may be at least partially powered using a chargeable energy storage device are also contemplated (e.g., electronic devices such as personal computing devices and the like).
The electric vehicle 112 may include a battery unit 118, an electric vehicle coupler 116, and an electric vehicle wireless charging unit 114. The electric vehicle wireless charging unit 114 and the electric vehicle coupler 116 constitute the electric vehicle wireless charging system. In some diagrams shown herein, the electric vehicle wireless charging unit 114 is also referred to as the vehicle charging unit (VCU). The electric vehicle coupler 116 may interact with the base coupler 104a for example, via a region of the electromagnetic field generated by the base coupler 104a.
In some implementations, the electric vehicle coupler 116 may receive power when the electric vehicle coupler 116 is located in an electromagnetic field produced by the base coupler 104a. The field may correspond to a region where energy output by the base coupler 104a may be captured by the electric vehicle coupler 116. For example, the energy output by the base coupler 104a may be at a level sufficient to charge or power the electric vehicle 112. In some cases, the field may correspond to a “near-field” of the base coupler 104a. The near-field may correspond to a region in which there are strong reactive fields resulting from the currents and charges in the base coupler 104a that do not radiate power away from the base coupler 104a. In some cases the near-field may correspond to a region that is within about ½π of a wavelength of the frequency of the electromagnetic field produced by the base coupler 104a distant from the base coupler 104a, as will be further described below.
Local distribution center 130 may be configured to communicate with external sources (e.g., a power grid) via a communication backhaul 134, and with the base wireless charging system 102a via a communication link 108.
In some implementations the electric vehicle coupler 116 may be aligned with the base coupler 104a and, therefore, disposed within a near-field region simply by the electric vehicle operator positioning the electric vehicle 112 such that the electric vehicle coupler 116 is sufficiently aligned relative to the base coupler 104a. Alignment may be considered sufficient when an alignment error has fallen below a tolerable value. In other implementations, the operator may be given visual and/or auditory feedback to determine when the electric vehicle 112 is properly placed within a tolerance area for wireless power transfer. In yet other implementations, the electric vehicle 112 may be positioned by an autopilot system, which may move the electric vehicle 112 until the sufficient alignment is achieved. This may be performed automatically and autonomously by the electric vehicle 112 with or without driver intervention. This may be possible for an electric vehicle 112 that is equipped with a servo steering, radar sensors (e.g., ultrasonic sensors), and intelligence for safely maneuvering and adjusting the electric vehicle. In still other implementations, the electric vehicle 112 and/or the base wireless charging system 102a may have functionality for mechanically displacing and moving the couplers 116 and 104a, respectively, relative to each other to more accurately orient or align them and develop sufficient and/or otherwise more efficient coupling there between.
The base wireless charging system 102a may be located in a variety of locations. As non-limiting examples, some suitable locations include a parking area at a home of the electric vehicle 112 owner, parking areas reserved for electric vehicle wireless charging modeled after conventional petroleum-based filling stations, and parking lots at other locations such as shopping centers and places of employment.
Charging electric vehicles wirelessly may provide numerous benefits. For example, charging may be performed automatically, virtually without driver intervention or manipulation thereby improving convenience to a user. There may also be no exposed electrical contacts and no mechanical wear out, thereby improving reliability of the wireless power transfer system 100. Safety may be improved since manipulations with cables and connectors may not be needed and there may be no cables, plugs, or sockets to be exposed to moisture in an outdoor environment. In addition, there may also be no visible or accessible sockets, cables, or plugs, thereby reducing potential vandalism of power charging devices. Further, since the electric vehicle 112 may be used as distributed storage devices to stabilize a power grid, a convenient docking-to-grid solution may help to increase availability of vehicles for vehicle-to-grid (V2G) operation.
With reference to
The base resonant circuit 206 (including the base coupler 204 and tuning capacitor C1) and the electric vehicle resonant circuit 222 (including the electric vehicle coupler 216 and tuning capacitor C2) may be tuned to substantially the same frequency. The electric vehicle coupler 216 may be positioned within the near-field of the base coupler and vice versa, as further explained below. In this case, the base coupler 204 and the electric vehicle coupler 216 may become coupled to one another such that power may be transferred wirelessly from the base coupler 204 to the electric vehicle coupler 216. The series capacitor C2 may be provided to form a resonant circuit with the electric vehicle coupler 216 that resonates substantially at the operating frequency. The series-tuned resonant circuit 222 should be construed as examples. In another implementation, the capacitor C2 may be coupled with the electric vehicle coupler 216 in parallel. In yet other implementations, the electric vehicle resonant circuit 222 may be formed of several reactive elements in any combination of parallel or series topology. Element k(d) represents the mutual coupling coefficient resulting at coil separation “d”. Equivalent resistances Req,1 and Req,2 represent the losses that may be inherent to the base and electric vehicle couplers 204 and 216 and the tuning (anti-reactance) capacitors C1 and C2, respectively. The electric vehicle resonant circuit 222, including the electric vehicle coupler 216 and capacitor C2, receives and provides the power P2 to an electric vehicle power converter 238 of an electric vehicle charging system 214.
The electric vehicle power converter 238 may include, among other things, a LF-to-DC converter configured to convert power at an operating frequency back to DC power at a voltage level of the load 218 that may represent the electric vehicle battery unit. The electric vehicle power converter 238 may provide the converted power PLDC to the load 218. The power supply 208, base power converter 236, and base coupler 204 may be stationary and located at a variety of locations as discussed above. The electric vehicle load 218 (e.g., the electric vehicle battery unit), electric vehicle power converter 238, and electric vehicle coupler 216 may be included in the electric vehicle charging system 214 that is part of the electric vehicle (e.g., electric vehicle 112) or part of its battery pack (not shown). The electric vehicle charging system 214 may also be configured to provide power wirelessly through the electric vehicle coupler 216 to the base wireless power charging system 202 to feed power back to the grid. Each of the electric vehicle coupler 216 and the base coupler 204 may act as transmit or receive couplers based on the mode of operation.
While not shown, the wireless power transfer system 200 may include a load disconnect unit (LDU) (not shown) to safely disconnect the electric vehicle load 218 or the power supply 208 from the wireless power transfer system 200. For example, in case of an emergency or system failure, the LDU may be triggered to disconnect the load from the wireless power transfer system 200. The LDU may be provided in addition to a battery management system for managing charging to a battery, or it may be part of the battery management system.
Further, the electric vehicle charging system 214 may include switching circuitry (not shown) for selectively connecting and disconnecting the electric vehicle coupler 216 to the electric vehicle power converter 238. Disconnecting the electric vehicle coupler 216 may suspend charging and also may change the “load” as “seen” by the base wireless power charging system 202 (acting as a transmitter), which may be used to “cloak” the electric vehicle charging system 214 (acting as the receiver) from the base wireless charging system 202. The load changes may be detected if the transmitter includes a load sensing circuit. Accordingly, the transmitter, such as the base wireless charging system 202, may have a mechanism for determining when receivers, such as the electric vehicle charging system 214, are present in the near-field coupling mode region of the base coupler 204 as further explained below.
As described above, in operation, during energy transfer towards an electric vehicle (e.g., electric vehicle 112 of
As stated, an efficient energy transfer occurs by transferring energy via a magnetic near-field rather than via electromagnetic waves in the far field, which may involve substantial losses due to radiation into space. When in the near-field, a coupling mode may be established between the transmit coupler and the receive coupler. The space around the couplers where this near-field coupling may occur is referred to herein as a near-field coupling mode region.
While not shown, the base power converter 236 and the electric vehicle power converter 238 if bidirectional may both include, for the transmit mode, an oscillator, a driver circuit such as a power amplifier, a filter and matching circuit, and for the receive mode a rectifier circuit. The oscillator may be configured to generate a desired operating frequency, which may be adjusted in response to an adjustment signal. The oscillator signal may be amplified by a power amplifier with an amplification amount responsive to control signals. The filter and matching circuit may be included to filter out harmonics or other unwanted frequencies and match the impedance as presented by the resonant circuits 206 and 222 to the base and electric vehicle power converters 236 and 238, respectively. For the receive mode, the base and electric vehicle power converters 236 and 238 may also include a rectifier and switching circuitry.
The electric vehicle coupler 216 and base coupler 204 as described throughout the disclosed implementations may be referred to or configured as “conductor loops”, and more specifically, “multi-turn conductor loops” or coils. The base and electric vehicle couplers 204 and 216 may also be referred to herein or be configured as “magnetic” couplers. The term “coupler” is intended to refer to a component that may wirelessly output or receive energy for coupling to another “coupler.”
As discussed above, efficient transfer of energy between a transmitter and receiver occurs during matched or nearly matched resonance between a transmitter and a receiver. However, even when resonance between a transmitter and receiver are not matched, energy may be transferred at a lower efficiency.
A resonant frequency may be based on the inductance and capacitance of a resonant circuit (e.g. resonant circuit 206) including a coupler (e.g., the base coupler 204 and capacitor C2) as described above. As shown in
As described above, according to some implementations, coupling power between two couplers that are in the near-field of one another is disclosed. As described above, the near-field may correspond to a region around the coupler in which mainly reactive electromagnetic fields exist. If the physical size of the coupler is much smaller than the wavelength, inversely proportional to the frequency, there is no substantial loss of power due to waves propagating or radiating away from the coupler. Near-field coupling-mode regions may correspond to a volume that is near the physical volume of the coupler, typically within a small fraction of the wavelength. According to some implementations, magnetic couplers, such as single and multi-turn conductor loops, are preferably used for both transmitting and receiving since handling magnetic fields in practice is easier than electric fields because there is less interaction with foreign objects, e.g., dielectric objects and the human body. Nevertheless, “electric” couplers (e.g., dipoles and monopoles) or a combination of magnetic and electric couplers may be used.
The base wireless charging system 302 includes a base controller 342 and the electric vehicle charging system 314 includes an electric vehicle controller 344. The base controller 342 may provide a base charging system communication interface to other systems (not shown) such as, for example, a computer, a base common communication (BCC), a communications entity of the power distribution center, or a communications entity of a smart power grid. The electric vehicle controller 344 may provide an electric vehicle communication interface to other systems (not shown) such as, for example, an on-board computer on the vehicle, a battery management system, other systems within the vehicles, and remote systems.
The base communication system 372 and electric vehicle communication system 374 may include subsystems or modules for specific application with separate communication channels and also for wirelessly communicating with other communications entities not shown in the diagram of
In some implementations, electric vehicle controller 344 may also include a battery management system (BMS) (not shown) that manages charge and discharge of the electric vehicle principal and/or auxiliary battery. As discussed herein, base guidance system 362 and electric vehicle guidance system 364 include the functions and sensors as needed for determining a position or direction, e.g., based on microwave, ultrasonic radar, or magnetic vectoring principles. Further, electric vehicle controller 344 may be configured to communicate with electric vehicle onboard systems. For example, electric vehicle controller 344 may provide, via the electric vehicle communication interface, position data, e.g., for a brake system configured to perform a semi-automatic parking operation, or for a steering servo system configured to assist with a largely automated parking (“park by wire”) that may provide more convenience and/or higher parking accuracy as may be needed in certain applications to provide sufficient alignment between base and electric vehicle couplers 304 and 316. Moreover, electric vehicle controller 344 may be configured to communicate with visual output devices (e.g., a dashboard display), acoustic/audio output devices (e.g., buzzer, speakers), mechanical input devices (e.g., keyboard, touch screen, and pointing devices such as joystick, trackball, etc.), and audio input devices (e.g., microphone with electronic voice recognition).
The wireless power transfer system 300 may include other ancillary systems such as detection and sensor systems (not shown). For example, the wireless power transfer system 300 may include sensors for use with systems to determine a position as required by the guidance system (362, 364) to properly guide the driver or the vehicle to the charging spot, sensors to mutually align the couplers with the required separation/coupling, sensors to detect objects that may obstruct the electric vehicle coupler 316 from moving to a particular height and/or position to achieve coupling, and safety sensors for use with systems to perform a reliable, damage free, and safe operation of the system. For example, a safety sensor may include a sensor for detection of presence of animals or children approaching the base and electric vehicle couplers 304, 316 beyond a safety radius, detection of metal objects located near or in proximity of the base or electric vehicle coupler (304, 316) that may be heated up (induction heating), and for detection of hazardous events such as incandescent objects near the base or electric vehicle coupler (304, 316).
The wireless power transfer system 300 may also support plug-in charging via a wired connection, for example, by providing a wired charge port (not shown) at the electric vehicle charging system 314. The electric vehicle charging system 314 may integrate the outputs of the two different chargers prior to transferring power to or from the electric vehicle. Switching circuits may provide the functionality as needed to support both wireless charging and charging via a wired charge port.
To communicate between the base wireless charging system 302 and the electric vehicle charging system 314, the wireless power transfer system 300 may use in-band signaling via base and electric vehicle couplers 304, 316 and/or out-of-band signaling via communications systems (372, 374), e.g., via an RF data modem (e.g., Ethernet over radio in an unlicensed band). The out-of-band communication may provide sufficient bandwidth for the allocation of value-add services to the vehicle user/owner. A low depth amplitude or phase modulation of the wireless power carrier may serve as an in-band signaling system with minimal interference.
The recessed portion 606 may be at least partially sealed from the external environment using a seal 628 between at least portions of the primary heat sink 602 and the secondary heat sink 626. In implementations not including the secondary heat sink 626, the heat spreader 622 and the diode cover 624 may make direct physical contact with the primary heat sink 602.
On a reverse side of the primary heat sink 602, a ferrite structure 608 may be disposed adjacent to, and in some implementations in physical or thermal contact with, the primary heat sink 602. The term “thermal contact” may be defined as direct physical contact or, alternatively, direct physical contact with an electrically insulating material that is in direct physical contact with the primary heat sink 602. Likewise, “thermally connecting” may be defined as being in physical contact such that a physical path is formed through which thermal energy may be transferred. Thus, although the ferrite structure 608 may not be in direct physical contact with the primary heat sink 602, the ferrite structure 608 is in thermal contact in so far as there is a direct physical path between the primary heat sink 602 and the ferrite structure that is thermally conductive but not electrically conductive. In some implementations, the ferrite structure 608 may comprise a plurality of ferrite tiles. In some other implementations, the ferrite structure 608 may comprise a unitary piece of ferrite.
A conductor 610 (e.g., Litz wire) may be wound to form one or more receive coils and may be disposed adjacent to, and in some implementations under, the ferrite structure 608. As will be shown in more detail in connection with
In some implementations, the cover 614 may further include a plurality of guides or ridges along which the conductor 610 may be fitted and wound to form the one or more receive coils. The cover 614 may comprise plastic. In some implementations, the vehicle pad 404 may have a length of 640 mm, a width of 312 mm and a thickness of just 28 mm, although any other dimensions are also contemplated.
In some implementations, the vehicle pad 404 may be configured to receive approximately 10 kW of power. In such implementations, a proportional amount of power (e.g., ˜180 W) may be lost in the form of heat in various portions of the vehicle pad 404. The components of the vehicle pad 404 will heat up due to power lost to internal resistances of the components. The present disclosure contemplates a vehicle pad 404 design that has an improved thermal energy dissipation capacity over previous designs without the need for forced cooling, fans, or significant air flow over the vehicle pad 404 as when the vehicle 112 is stationary over the base pad 402 (see
The flowchart 1300 may start with block 1302, which includes wirelessly receiving charging power via at least one receive coil. For example, the conductor 610 of
The flowchart 1300 may then advance to block 1304, which includes converting the charging power to a direct current via a plurality of electrical components. For example, the capacitors 618 and/or the diodes 620 may comprise a plurality of electrical components that, when arranged in at least a rectification circuit, are configured to convert the charging power received by the at least one receive coil, comprising the conductor 610, to a direct current.
The flowchart 1300 may then advance to block 1306, which includes dissipating heat generated by the plurality of electrical components via a primary heat sink comprising a plurality of fins. The plurality of electrical components are disposed adjacent to the plurality of fins and at least some of the plurality of electrical components are physically connected to the primary heat sink 602. For example, the diodes 620 and/or the capacitors 618 generate heat during operation that is dissipated by the primary heat sink 602 and the plurality of fins 604, that is disposed adjacent to the diodes 620 and/or the capacitors 618. Moreover, in some implementations, the diodes 620 may be physically connected to the primary heat sink 602 in order to increase the amount of heat that can be transferred to the primary heat sink 602 in a given amount of time.
The flowchart 1400 may start with block 1402, which includes wirelessly receiving charging power via at least one receive coil. For example, the conductor 610 of
The flowchart 1400 may then advance to block 1404, which includes converting the charging power to a direct current via a plurality of electrical components. For example, the capacitors 618 and/or the diodes 620 may comprise a plurality of electrical components that, when arranged in at least a rectification circuit, are configured to convert the charging power received by the at least one receive coil, comprising the conductor 610, to a direct current. In some implementations, the capacitors and/or the diodes 620 may also be known as, or comprise at least a portion of “means for converting the charging power to a direct current.”
The flowchart 1400 may then advance to block 1406, which includes dissipating heat generated by the plurality of electrical components via a primary heat sink 602 comprising a plurality of fins. For example, the diodes 620 and/or the capacitors 618 generate heat during operation that is dissipated by the primary heat sink 602 and the plurality of fins 604. In some implementations, the plurality of fins 504 may be disposed adjacent to the diodes 620 and/or the capacitors 618. Moreover, in some implementations, the diodes 620 may be physically connected to the primary heat sink 602 in order to increase the amount of heat that can be transferred to the primary heat sink 602 in a given amount of time. In some implementations, the primary heat sink 602 may also be known as or comprise at least a portion of “means for dissipating heat.”
The flowchart 1400 may then advance to block 1408, which includes adjusting an amount of the charging power drawn by the at least one receive coil based on a temperature of the primary heat sink 602. For example, a controller (e.g., the electric vehicle controller 344 of
In some implementations, in order to ensure these components do not exceed such a temperature threshold, the flowchart 1400 may additionally include (not shown) disabling the wirelessly receiving the charging power via the at least one receive coil based on the temperature of the primary heat sink 602 satisfying a threshold value. For example, the controller (e.g., the electric vehicle controller 344 of
In some other implementations, the flowchart 1400 may additionally include (not shown) adjusting the amount of the charging power drawn by the at least one receive coil based on whether the vehicle is in motion. For example, the controller (e.g., the electric vehicle controller 344 of
In some other implementations, the flowchart 1400 may additionally include (not shown) adjusting the amount of the charging power drawn by the at least one receive coil based on an identifier of a wireless power transmitter transmitting the charging power. For example, a controller (e.g., the electric vehicle controller 344 of
In some other implementations, the flowchart 1400 may additionally include (not shown) adjusting the amount of the charging power drawn by the at least one receive coil based on a configurability of a wireless power transmitter to transmit the charging power to the vehicle while the vehicle is in motion. For example, a controller (e.g., the electric vehicle controller 344 of
In some other implementations, the flowchart 1400 may additionally include (not shown) adjusting the amount of the charging power drawn by the at least one receive coil from a first value for a first interval of time to a second value lower than the first value after the first interval of time. For example, a controller (e.g., the electric vehicle controller 344 of
The various operations of methods described above may be performed by any suitable means capable of performing the operations, such as various hardware and/or software component(s), circuits, and/or module(s). Generally, any operations illustrated in the Figures may be performed by corresponding functional means capable of performing the operations. For example, means for wirelessly receive charging power may comprise the receive coil formed from the conductor 610, as previously described in connection with
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality may be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the implementations.
The various illustrative blocks, modules, and circuits described in connection with the implementations disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm and functions described in connection with the implementations disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a tangible, non-transitory, computer-readable medium. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD ROM, or any other form of storage medium known in the art. A storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer readable media.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the implementations have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular implementation. Thus, the implementations may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Various modifications of the above described implementations will be readily apparent, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of the present application. Thus, the present application is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.